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Abstract
In this paper we introduce a new class of labelled transition sys-

tems - Labelled Markov Processes - and define bisimulation for them.
Labelled Markov processes are probabilistic labelled transition sys-
tems where the state space is not necessarily discrete, it could be the
reals, for example. We assume that it is a Polish space (the underlying
topological space for a complete separable metric space). The math-
ematical theory of such systems is completely new from the point of
view of the extant literature on probabilistic process algebra; of course,
it uses classical ideas from measure theory and Markov process theory.
The notion of bisimulation builds on the ideas of Larsen and Skou and
of Joyal, Nielsen and Winskel. The main result that we prove is that
a notion of bisimulation for Markov processes on Polish spaces, which
extends the Larsen-Skou definition for discrete systems, is indeed an
equivalence relation. This turns out to be a rather hard mathematical
result which, as far as we know, embodies a new result in pure prob-
ability theory. This work heavily uses continuous mathematics which
is becoming an important part of work on hybrid systems.

∗Research supported in part by NSERC.
†Research supported by EPSRC, UK.
‡On Leave from McGill University.
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1 Introduction

Computer Science has been increasingly expanding its borders to include
subjects normally considered part of physics, dynamical systems or control
theory, most notably in areas like “hybrid systems”. One can look at volume
1066 of Springer-Verlag Lecture Notes In Computer Science [AHS96] for ex-
amples of recent work on Hybrid systems. Ideas from continuous mathemat-
ics: differential equations, probability theory, stochastic processes, systems
theory and others are becoming part of the mathematical toolkit of concur-
rency theorists. In the area of performance evaluation of computer systems
the use of stochastic Petri nets is quite widespread, one of the early papers
is [Sif77]. Hillston has pioneered the use of process algebra in performance
evaluation [Hil94]. Systems like Hytech [HHWT95] and the Uppaal sys-
tem [BLL+96] have appeared based on hybrid systems and real-time systems
respectively and use process equivalences very fruitfully.

A new ingredient offered by computer science (apart from the manifest
idea of computability or effectiveness) to these subjects is compositional-
ity. Thus while the theory of stochastic processes [CM65] is concerned with
a detailed analysis of the time evolution of systems behaving according to
probabilistic laws very little is ever done to analyze the behaviour of coupled
systems in a systematic way. Computer scientists have stressed composi-
tionality as a way to attack the formidable intricacy of the systems they
have dealt with. For example, in Hillston’s work, compositionality is the key
contribution of her approach to performance modelling.

The notion of bisimulation is central to the study of concurrent systems.
While there are a bewildering variety of different equivalence relations be-
tween processes (two-way simulation, trace equivalence, failures equivalence
and many more) bisimulation enjoys some fundamental mathematical prop-
erties, most notably its characterization as a fixed-point, which make it the
most discussed process equivalence. Of course there are a lot of different
variants of bisimulation itself! In the present paper we are not so much
concerned with adjudicating between the rival claims of all these relations,
but rather, we are concerned with showing how to extend these ideas to the
world of continuous state spaces. As we shall see below, new mathematical
techniques (from the point of view of extant work in process algebra) have
to be incorporated to do this. Once the model and the new mathematical
ideas have been assimilated, the whole gamut of process equivalences can be
studied and argued about.
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From an immediate practical point of view, bisimulation can be used
to reason about probabilistic, continuous state-space systems (henceforth
Markov processes) in the following simple way. One often “discretizes” a
continuous system by partitioning the state space into a few equivalence
classes. Usually one has some intuition that the resulting discrete system
“behaves like” the original continuous system. This can be made precise by
our notion of bisimulation. It is also the case that some systems cannot be
discretized, once again, one can formalize what this means via bisimulation.

The present paper develops a notion of labelled Markov process which is
meant ultimately to be part of a theory of interacting dynamical systems.
The key technical contribution is the development of a notion of bisimulation
for processes which have continuous state spaces but make discrete temporal
steps. These are called discrete-time Markov processes. If the state space is
also discrete the phrase “Markov chain” is used. The adjective “Markovian”
signifies that the transitions are entirely governed by the present state rather
than by the past history of the system. The interaction is governed by
“labels” in the manner now familiar from process algebra [Hoa85, Mil80,
Mil89].

In brief, a labelled Markov process is as follows. There is a set of states
and a set of labels. The system is in a state at a point in time and moves
between states. Which state it moves to is governed by which interaction
with the environment is taking place and this is indicated by the labels.
The system evolves according to a probabilistic law. If the system interacts
with the environment by synchronizing on a label it makes a transition to
a new state governed by a transition probability distribution. So far, this
is essentially the model developed by Larsen and Skou [LS91] in their very
important and influential work on probabilistic bisimulation. They specify
the transitions by giving, for each label, a probability for going from one
state to another. Bisimulation then amounts to matching the moves with
matching probabilities as well.

In the case of a continuous state space, however, one cannot just specify
transition probabilities from one state to another. In most interesting systems
all such transition probabilities would be zero! Instead one must work with
probability densities. In so doing, one has to confront the major issues that
arose when probability theory was first formalized, such as the existence of
subsets for which the notion of probability does not make sense. In the
appendix we provide a rapid recapitulation of ideas from probability and
measure theory. In the present case we have to introduce a notion of sets
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for which “probabilities make sense” (i.e. a σ-algebra) and instead of talking
about probabilities of going from a state s to another state s′, we have to
talk about going from a state s to a set of states A.

The notion of bisimulation for these systems is a generalization of the def-
inition of Larsen and Skou, which, as we shall argue in the next section, is a
compelling, natural notion. Unfortunately this definition cannot be adapted
in any simple way to the continuous case. One cannot even use their basic
terminology for bisimulation because their definition is inextricably wound
up in the notion of state-to-state transition probabilities. Furthermore, once
the correct generalization is given it turns out to be a formidable technical
problem to even show that bisimulation is an equivalence relation. This is
solved by a construction due to Edalat and is given in detail in an appendix.
In fact the construction heavily relies on properties that are not true for
measure spaces in general. We have assumed a Polish space structure. A
Polish space is a topological space which can be given a metric structure
which generates the topology and such that the metric is complete and sepa-
rable, i.e. there is a countable basis for the topology. In the classical study of
Markov processes metric ideas play a significant role [Par67]. In any example
of physical interest, the spaces will have this Polish structure, indeed they
will usually come as metric spaces. Any discrete space is Polish and any of
the closed subspaces of Rn will be as well.

The definition of bisimulation is inspired by the paper of Joyal, Nielsen
and Winskel [JNW96] which provides a general categorical view of what
bisimulation is in terms of certain special morphisms called open maps. It
is not straightforward to adapt this to the probabilistic case. For discrete
systems this has been done by Cheng and Nielsen [CN95] using infinitesi-
mals1. Unfortunately one still needs to know how to construct pullbacks in
the underlying category and for this one has to rely on the basic construction
given in [Eda96]. It also turns out that our notion of bisimulation is precisely
the notion of coalgebra homomorphism [dVR].

The rest of this paper is organized as follows. We describe some exam-
ples of systems with continuous state spaces in the next section. We then
recapitulate the work of Larsen and Skou on discrete systems. The next two
sections are concerned with the definition of labelled Markov processes and
bisimulation. The last sections discuss related work and conclusions.

1One can actually do this without talking about infinitesimals [Win96].
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2 Two Examples of Processes

We begin with a simple example, more for introducing terminology than for
any intrinsic interest. Imagine a system with two labels {a, b}. The state
space is the real plane, R2. When the system makes an a-move from state
(x0, y0) it jumps to (x, y0) where the probability distribution for x is given
by the density Kα exp(−α(x − x0)

2), where Kα =
√
α/π is the normalizing

factor. When it makes a b-move it jumps from state (x0, y0) to (x0, y) where
the distribution of y is given by the density function Kβ exp(−β(y − y0)

2).
The meaning of these densities is as follows. The probability of jumping
from (x0, y0) to a state with x-coordinate in the interval [s, t] under an a-
move is

∫ t
s
Kα exp(−α(x − x0)

2)dx. Note that the probability of jumping
to any given point is, of course, 0. In this system the interaction with the
environment controls whether the jump is along the x-axis or along the y-axis
but the actual extent of the jump is governed by a probability distribution.
Interestingly, this system is bisimilar to a one-state system which can make a
or b moves. Thus, from the point of view of an external observer, this system
has an extremely simple behaviour. The more complex internal behaviour is
not externally visible. The point of a theory of bisimulation that encompasses
such systems is to say this sort of thing. Of course this example is already
familiar from the nonprobabilistic setting; if there is a system in which all
trasitions are always enabled it will be bisimilar (in the traditional sense) to
a system with one state.

Now we consider a system which cannot be reduced to a discrete system.
There are three labels {a, b, c}. The state space is R. The following physical
description is for “local colour” and is mathematically unimportant. The
state gives the pressure of a gaseous mixture in a tank in a chemical plant.
The environment can interact by (a) simply measuring the pressure, or (b)it
can inject some gas into the tank, or (c) it can pump some gas from the tank.
The pressure fluctuates according to some thermodynamic laws depending
on the reactions taking place in the tank. With each interaction, the pres-
sure changes according to three different probability density functions, say
f(p0, p), g(p0, p) and h(p0, p) respectively, with nontrivial dependence on p0.
There are in addition two threshold values ph and pl. When the pressure rises
above ph the interaction labelled b is disabled, and when the pressure drops
below pl the interaction labelled c is disabled. It is tempting to model this
as a three state system, with the continuous state space partitioned by the
threshold values. Unfortunately one cannot assign unique transition proba-
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bilities to these sets of states for any choices of f, g and h; only if very special
uniformity conditions are obeyed can one do this.

3 Discrete Probabilistic Systems

In this section we recapitulate the Larsen-Skou definition of probabilistic
bisimulation [LS91]. The systems that they consider will be referred to as
labelled Markov chains in the present paper.

Definition 3.1 A labelled Markov chain is a quadruple (S,L, Cl, Pl),
where S is a countable set of states, L is a set of labels, and for each l ∈ L
we have a subset Cl of S, a function, Pl, called a transition probability
matrix,

Pl : Cl × S −→ [0, 1]

satisfying the normalization condition

∀l ∈ L, s ∈ Cl.Σs′∈SPl(s, s
′) = 1.

If we have the weaker property

∀l ∈ L, s ∈ Cl.Σs′∈SPl(s, s
′) ≤ 1

we call the system a partial labelled Markov chain.

The sets Cl are the sets of states that can do an l-action. If we have partial
labelled Markov chains then we can just dispense with the Cl sets. In what
follows we suppress the label set, i.e. we assume a fixed label set given once
and for all.

Definition 3.2 Let T = (S, Pl) be a labelled Markov chain. Then a proba-
bilistic bisimulation ≡p, is an equivalence on S such that, whenever s ≡p t,
the following holds:

∀l ∈ L.∀A ∈ S/ ≡p, Σs′∈APl(s, s
′) = Σs′∈APl(t, s

′).

Two states s and t are said to be probabilistically bisimilar (s ∼LS t) in
case (s, t) is contained in some probabilistic bisimulation.
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Intuitively we can read this as saying that two states are bisimilar if
we get the same probability when we add up the transition probabilities to
all the states in an equivalence class of bisimilar states. The adding up is
crucial – the probabilities are not just another label. The subtlety in the
definition is that one has to somehow know what states are probabilistically
bisimilar in order to know what the equivalence classes are, which in turn
one needs in order to compute the probabilities to match them appropriately.
In fact a very natural notion of probabilistic synchronization trees yields a
model of a probabilistic version of CCS with both probabilistic branching
and nondeterministic branching. If one looks just at probabilistic branching,
equality is precisely the Larsen-Skou notion of bisimulation [BK96].

The paper by Larsen and Skou does much more than just define bisim-
ulation. They introduce the notion of testing a probabilistic process and
associating probabilities with the possible outcomes. They then introduce a
notion of testable properties. The link with probabilistic bisimulation is that
two processes are probabilistically bisimilar precisely when they agree with
the results of all tests. They also introduce a probabilistic modal logic and
show that bisimulation holds exactly when two processes satisfy the same
formulas.

One slight awkwardness in the Larsen-Skou definition is that when one
compares two processes one has to combine the state sets and define proba-
bilistic bisimulation on the combined states. This is a minor point but the
reader should keep this in mind when reading the proofs below.

4 A Category of Markov Processes

A Markov process is a transition system with the property that the transition
probabilities depend only on the current state and not on the past history
of the process. We will consider systems where there is an interaction with
the environment described by a set of labels as in process algebra. For each
fixed label the system may undergo a transition governed by a transition
probability. One could have a new set of possible states at every instant but,
for simplicity, we restrict to a single state space.

We will organize the theory in categorical terms with objects being tran-
sition systems and morphisms being simulations. Bisimulation is most easily
thought of in these terms. This presentation will also allow us to compare
the theory with the more traditional theory of non-probabilistic processes,
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see, for example, the handbook article by Winskel and Nielsen [WN95].
In formulating the notion of Markov processes we need to refine two

concepts that were used in the discrete case. First we cannot just define
transition probabilities between states; except in rare cases such transition
probabilities are zero. We have to define transition probabilities between a
state and a set of states. Second, we cannot define transition probabilities
to any arbitrary set of states; we need to identify a family of sets for which
transition probabilities can be sensibly defined. These are the measurable
sets. Thus in addition to specifying a set of states we need to specify a
σ-algebra on the set of states [Ash72, Bil79, Hal74, KT66, Rud66]

A key ingredient in the theory is the transition probability function.

Definition 4.1 A transition probability function on a measurable space (X,Σ)
is a function T : X × Σ −→ [0, 1] such that for each fixed x ∈ X, the set
function T (x, ·) is a (sub)probability measure and for each fixed A ∈ Σ the
function T (·, A) is a measurable function.

One interprets T (x,A) as the probability of the system starting in state x
making a transition into one of the states in A. The transition probability is
really a conditional probability; it gives the probability of the system being
in one of the states of the set A after the transition, given that it was in the
state x before the transition.

It will turn out to be convenient to work with sub-probability functions;
i.e. with functions where T (x,X) ≤ 1 rather than T (x,X) = 1. The mathe-
matical results go through in this extended case and the resulting categories
are often nicer but the stochastic systems studied in the literature are usually
only the very special version where T (x,X) is either 1 or 0. In fact what is
often done is that a state x with no possibility of making a transition is mod-
elled by having a transition back to itself. For questions concerning which
states will eventually be reached (the bulk of the analysis in the traditional
literature) this is convenient. If, however, we are modelling the interactions
that the system has with its environment it is essential that we make a dis-
tinction between a state which can make a transition and one which cannot.

The key mathematical construction requires a Polish space structure on
the set of states. Thus instead of imposing an arbitrary σ-algebra structure
on the set of states we will require that the set of states be a Polish space
and the σ-algebra be the Borel algebra generated by the topology.

Definition 4.2 A partial, labelled, Markov process with label set L is
a structure (S,Σ, {kl | l ∈ L}), where S is the set of states, which is assumed

8



to be a Polish space, and Σ is the Borel σ-algebra on S, and

∀l ∈ L, kl : S × Σ −→ [0, 1]

is a transition sub-probability function. We are usually interested in the
following special case called a labelled Markov process. We have a partial,
labelled, Markov process as above and a predicate Can on S × L such that
for every (x, l) ∈ Can we have kl(x,X) = 1 and for every (x, l) 6∈ Can we
have kl(x,X) = 0.

We will fix the label set to be some L once and for all. The resulting theory
is not seriously restricted by this. We will write just (S,Σ, kl) for partial,
labelled, Markov processes instead of the more precise (S,Σ, ∀l ∈ L.kl). In
case we are talking about discrete systems we will use the phrase “labelled
Markov chain” rather than “discrete, labelled, Markov process”.

In a (partial), labelled, Markov chain the set of states is countable, one
can easily define a metric so that each point is an open set and the space
is complete and obviously seperable, the Borel σ-algebra is then the entire
powerset and the transition probabilities are given by a L-indexed family of
functions ∀l ∈ L.Pl : S × S −→ [0, 1] satisfying the conditions required of a
(sub)probability distribution. From this presentation we can construct the kl

in the following way kl(s, σ)
def
=
∑

s′∈σ Pl(s, s
′). We use the phrase “transition

function” for an object of type S×Σ −→ [0, 1] and “transition matrix” for an
object of type S × S −→ [0, 1]. A probabilistic transition system as defined
by Larsen and Skou is precisely a labelled Markov chain. The partial notion
has been used by Cheng and Nielsen [CN95] to give an open maps [JNW96]
presentation of bisimulation.

In order to define a category of Markov processes we define simulation
morphisms between processes. Intuitively a simulation says that a simulating
process can make all the transitions of the simulated process with greater
probability than in the process being simulated.

Definition 4.3 A simulation morphism f between two partial, labelled,
Markov processes,
(S,Σ, kl) and (S ′,Σ′, k′l) is a measurable function f : (S,Σ) −→ (S′,Σ′) such
that

∀l ∈ L.∀x ∈ S.∀σ′ ∈ Σ′.kl(x, f
−1(σ′)) ≤ k′l(f(x), σ′).
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One could have defined simulation to be continuous, however, the simulations
play a secondary role in the present paper and we will just require them to
be measurable 2 We do at least require this for the definition to make sense
since without f being measurable we would not be guaranteed that f−1(σ′)
is measurable.

This notion extends the standard notion of simulation of labelled transi-
tion systems [WN95] in the following way. Given a partial, labelled, Markov
chain, (S, Pl) we can define a labelled transition system (lts) with the same
label set as follows. We take the same set of states S and we define a labelled
transition relation→⊆ (S×L×S) by (s, l, s′) ∈→ ⇐⇒ Pl(s, s

′) > 0. Given
two labelled transition systems, (S1,→1) and (S2,→2), a function f : S1

−→ S2 is a simulation morphism if ∀s ∈ S1.s
l−→ s′ ⇒ f(s)

l−→ f(s′). We
cannot do this for Markov processes because we can easily have systems where
all the point-to-point transition probabilities are zero but the Markov process
is nontrivial because the transition probabilities are nonzero to “larger” sets.

Proposition 4.4 Given two partial, labelled, Markov chains, a simulation
morphism between them is also a simulation morphism between the associated
labelled transition systems.

Proof (sketch). Suppose that we have two partial, labelled, Markov chains
(S,Σ, kl) and (S ′,Σ′, k′l) with f a simulation morphism from S to S′. Now

suppose that in the associated lts the transition s1
l−→ s2 is possible. This

means that kl(s1, {s2}) > 0 so since f is a morphism we must have that
k′l(f(s1), {f(s2)}) ≥ kl(s, f

−1(f(s2))) ≥ kl(s1, {s2}) > 0; hence in the lts s1
l−→ s2 is possible.

5 Bisimulation for Markov Processes

The definition of bisimulation is very heavily influenced by the ideas of Joyal,
Nielsen and Winskel [JNW96]. The idea is to identify a class of special sys-
tems called “observations” or “observable paths” or better still “observable

2In older texts, such as Halmos [Hal74] or Rudin [Rud66] measurable is defined to mean
that the inverse image of an open set is measurable. This means that the composite of
two measurable functions need not be measurable. Our definitions are standard and, of
course with this definition the composite of two measurable functions is measurable.
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path shapes”, and to define bisimulation as a relation satisfying a kind of
path lifting property, the so-called “open maps”.

What one can prove for ordinary labelled transition systems is that if
we take paths to be labelled paths in the usual sense then the open maps
are morphisms that satisfy a condition called the “zigzag” condition3. We
essentially want to say that there is a “zigzag relation”. One can talk about
relations by talking about spans. A span in any category between an object
S1 and another object S2 is a third object T together with morphisms from T
to both S1 and S2. One can think of this in the category fo Sets as viewing
a relation as a set of ordered pairs with the morphisms being the projections.

Bisimulation is then defined to hold between two systems if they are
connected by a span of zigzags. In our case the zigzag condition is easy to
state and it is easy to see that it corresponds to Larsen-Skou bisimulation
in the case of partial, labelled Markov chains. For partial, labelled Markov
processes it will be our definition of bisimulation. From now on, we assume
that all systems are partial and we will stop writing the adjective “partial”
explicitly.

Definition 5.1 The objects of the category LMP are labelled Markov pro-
cesses, having L as set of labels, with simulations as the morphisms. The
category of labelled, Markov chains is written LMC and is the full subcate-
gory of LMP that includes only the labelled, Markov chains as objects.

The key concept is the following.

Definition 5.2 A morphism f from (S,Σ, kl) to (S ′,Σ′, k′l) is a zigzag mor-
phism if it satisfies the properties:

1. f is surjective;

2. f is continuous;

3. ∀l ∈ L, s ∈ S, σ′ ∈ Σ′, kl(s, f
−1(σ′)) = k′l(f(s), σ′).

Asking f to be surjective allows us to avoid introducing initial states and
worrying about reachable states. Note that we are now taking the topological
structure seriously and requiring zigzag morphisms to be continuous. One
can immediately check that the identity morphism is a zigzag.

3The name arises from modal logic, see, for example, [Pop94].
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We often refer to a labelled Markov process by its set of states. Following
Joyal, Nielsen and Winskel ([JNW96]) we define bisimulation as the existence
of a span of zigzag morphisms.

Definition 5.3 Let T and T ′ be two labelled Markov processes. T is prob-
abilistically bisimilar to T ′ (written T ∼ T ′) if there is a span of zigzag
morphisms between them, i.e. there exists a labelled Markov process S and
zigzag morphisms f and g such that

S

	�
�
�
�
�

f
@
@
@
@
@

g

R

T T ′

Notice that if there is a zigzag morphism between two systems, they are
bisimilar since the identity is a zigzag morphism.

It is interesting to note that we can take a coalgebraic view of bisimula-
tion [AM89, Rut95, dVR] as well. We can view a labelled Markov process
as a coalgebra of a suitable functor; in fact it is a functor introduced by
Giry [Gir81] in order to define a monad on Mes analogous to the powerset
monad. From this point of view, bisimulation is a span of coalgebra homo-
morphisms. But if one checks what this means, these are precisely zigzag
morphisms.

We want bisimulation to be an equivalence, so we need to prove transi-
tivity of the existence of span, since it is obviously reflexive and symmetric.
Proving transitivity presents formidable difficulties. In particular, it proba-
bly isn’t true for probabilistic transition systems without the assumption of
Polish structure. The proof works only for Polish spaces4 The main result
proved in detail in the appendix is the following.

Theorem 5.4 The category with labelled Markov processes as objects and
zigzag morphisms as the morphisms has pullbacks.

Corollary 5.5 Bisimulation defined as above (i.e. with Polish space struc-
ture on the sets of states and with zigzag morphisms assumed to be continu-
ous) on labelled Markov processes is an equivalence relation.

4We have recently extended it to analytic spaces.
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Before outlining the proof it is worth discussing why this isn’t trivial. A naive
idea might be to mimic the construction for the discrete case but this is too
closely tied to the idea of there being probabilities defined for point-to-point
transitions. Consider the situation in the diagram below.

S1 S2

@
@
@
@
@

f1

R 	�
�
�
�
�

f2

S

where f1 and f2 are zigzags. Then we want to show that we can find a system,
say U , such that the following diagram commutes.

U

	�
�
�
�
�

g1

@
@
@
@
@

g2

R

S1 S2

@
@
@
@
@

f1

R 	�
�
�
�
�

f2

S

It is natural to mimic the pullback construction in Set, thus, we take U to
be the collection of all pairs (s1, s2) from S1 × S2 such that f1(s1) = f2(s2),
and g1 and g2 to be the obvious projections, π1 and π2. The set U inherits
a σ-algebra from the product σ-algebra on S1 × S2. Now we have to define
a transition probability h : U × ΣU −→ [0, 1]. The requirement that π1 and
π2 are zigzags forces us to define h((s1, s2), (σ1 × S2) ∩ U) = k1(s1, σ2) and
similarly for π2. Unfortunately sets of the form σ1 × S2 and S1 × σ2 are not
enough to determine a measure on all of ΣU . Roughly speaking we need the
values on all the rectangles not just on the “strips”. Worse yet, given a set of
the form (σ1×σ2)∩U we do not have σ1 and σ2 unambiguously determined;
there could be two unrelated sets σ′1 and σ′2 with

(σ1 × σ2) ∩ U = (σ′1 × σ′2) ∩ U

13



so we cannot really use σ1 and σ2 to define h.
The actual construction uses two key ideas. The first is to forget about

U for the moment and define a transition probability on S1× S2 but instead
of just taking the product system we condition the probabilities on the tran-
sitions agreeing when their images are looked at in S. Now we can define the
transition probability on “rectangles” and extend to all of the space. The
conditioning automatically makes the measure live just on U rather than on
all of S1 × S2. This finesses the ambiguities of the naive approach.

Proof. The fact that the identity morphism is a zigzag immediately implies
that bisimulation is reflexive and the fact that it is defined by spans gives
symmetry trivially. In order to prove transitivity we need to show that given
two spans we can construct a composite span. If we had pullbacks we can of
course compose spans. In fact pullbacks do exist if we look at the (obviously
nonfull) subcategory of zigzag morphisms. The proof of this is given in
detail in the appendix. It should not be assumed that the complete proof is
uninteresting or unimportant; indeed it can be formulated as a theorem of
pure probability theory.

Three objects

S1 = (S1,Σ1, k1 : S1 × Σ1 → [0, 1]),

S2 = (S2,Σ2, k2 : S2 × Σ2 → [0, 1]),

S = (S,Σ, k : S × Σ→ [0, 1])

and morphisms f1 : S1 → S and f2 : S2 → S are given.
Let U = {(s1, s2) ∈ S1×S2 | f1(s1) = f2(s2)} equipped with the subspace

topology of the product topology on S1 × S2. The Borel σ-algebra ΣU on U
is generated by the set {(σ1 × σ2) ∩ U | σ1 ∈ Σ1, σ2 ∈ Σ2}. Let π1 : U → S1

and π2 : U → S2 be the projection maps. Since f1 and f2 are surjective, U
is not empty. We want to construct h : U ×ΣU → [0, 1] so that (U,ΣU , h) is
an object and π1 : U → S1 and π2 : U → S2 are morphisms. For an element
x of a set X, an element y of a set Y , subsets A ⊆ X, B ⊆ Y and a function
f : X → Y , we sometimes write x instead of {x}, fx instead of f(x), fA
instead of f(A), and f−1B instead of f−1(B).

We fix (s1, s2) ∈ U , i.e. s1 ∈ S1 and s2 ∈ S2 with f1s1 = f2s2, throughout
this proof. The index i always takes the values 1 and 2. The variable ωi
always runs through Si whereas the variable s runs through S.
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For i = 1, 2, we have the probability measures ki(si,−) : Σi → [0, 1]
on the space (Si,Σi). Also Σ′i = {f−1

i σ | σ ∈ Σ} ⊆ Σi is a sub-σ-algebra
of Σi (i = 1, 2). We therefore have, for a given σi ∈ Σi, the conditional
probability distribution P ((si, σi)|Σ′i) : Si → [0, 1] of the probability mea-
sure ki(si,−) given the sub-σ-algebra Σ′i ⊆ Σi. Since Si is a Polish space
we can assume [Dud89, Theorem 10.2.2] that P ((si, σi)|Σ′i)(−) is a regular
conditional probability distribution, i.e.

(i) P ((si, σi)|Σ′i) : Si → [0, 1] is Σ′i measurable and integrable.

(ii) For all γ′i ∈ Σ′i, we have∫
γ′i

P ((si, σi)|Σ′i)(ωi)ki(si, dωi) = ki(si, σi ∩ γ′i).

(iii) For ki(si,−)-almost all ωi ∈ Si, P ((si,−)|Σ′i)(ωi) : Σi → [0, 1] is a
probability measure on Si.

A regular conditional probability distribution, like a conditional probability
distribution, is unique up to a set of measure zero, i.e. any two functions
satisfying the above three properties are equal for ki(si,−)-almost all ωi ∈ Si.

One should think of P ((si, σi)|Σ′i)(ωi) as the probability that si makes a
transition to σi given that si makes a transition to f−1

i fiωi, or equivalently
as the probability that si makes a transition to σi given that fisi makes a
transition to fiωi.

By a standard method we can obtain the conditional probability distri-
bution

P ((si, σi)|Σ) : S → [0, 1].

Here, P ((si, σi)|Σ)(s) gives the probability that si makes a transition to σi
given that si makes a transition to some ωi with fi(ωi) = s or equivalently the
probability that si makes a transition to σi given that fisi makes a transition
to s.

In order to define h((s1, s2),−) : ΣU → [0, 1] we first define a probability
measure g((s1, s2),−) : ΣS1×S2 → [0, 1] on the product space (S1×S2,ΣS1×S2)
where ΣS1×S2 is the Borel σ-algebra of S1 × S2. We will then show in the
next section that g((s1, s2),−) is supported on U , i.e. g((s1, s2), U) = 1. We
will finally define h((s1, s2), α ∩ U) = g((s1, s2), α).
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Let R = Σ1 × Σ2 be the collection of all “rectangles” σ1 × σ2 ∈ ΣS1×S2 ;
R is a semi-ring. For σ1 × σ2 ∈ R and s ∈ S, put

ρ((s1, s2), σ1 × σ2)(s) = P ((s1, σ1)|Σ)(s)P ((s2, σ2)|Σ)(s).

Since for k(f1s1,−)-almost all s ∈ S, P ((s1,−)|Σ)(s) and P ((s2,−)|Σ)(s)
are probability measures on S1 and S2 respectively, we have:

Proposition 5.6 [Dud89, Theorem 4.4.1]
For k(f1s1,−)-almost all s ∈ S, ρ((s1, s2),−)(s) is countably additive on

R.

For σ1 × σ2 ∈ R, put

g((s1, s2), σ1 × σ2) =

∫
S

P ((s1, σ1)|Σ)(s)P ((s2, σ2)|Σ)(s)k(f1s1, ds). (1)

Now we can show the following result.

Proposition 5.7 g((s1, s2),−) has a unique extension to a probability mea-
sure on (S1 × S2,ΣS1×S2).

The measure g is defined on all of S1×S2 not just on U . But the following
remarkable proposition says that in fact g is only supported on U .

Proposition 5.8 For any σ1 ∈ Σ1 and σ2 ∈ Σ2 with U ∩ (σ1 × σ2) = ∅ we
have g((s1, s2), σ1 × σ2) = 0.

This proof used some subtle facts about Borel sets and continuous functions
from Polish spaces to Hausdorff spaces and in given in detail in the appendix.
From this result we can easily define

h((s1, s2), α ∩ U) = g((s1, s2), α).

We can now complete the proof by checking the following statement.
(U,ΣU , h : U ×ΣU → [0, 1]) is an object of the category and πi : U → Si are
morphisms.

The verification of the last statement is as follows. Clearly U is a Polish
space as it is a closed subset of the Polish space S1 × S2. We have already
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shown that h((s1, s2),−) is a probability measure on U for any (s1, s2) ∈ U .
Finally, for any σ1 ∈ Σ1 we have:

h((s1, s2), π
−1
1 σ1)

= h((s1, s2), (σ1 × S2) ∩ U)

= g((s1, s2), σ1 × S2)

=

∫
S

P ((s1, σ1)|Σ)(s)P ((s2, S2)|Σ)(s)k(f1s1, ds)

=

∫
S

P ((s1, σ1)|Σ)(s)k(f1s1, ds) P ((s2, S2)|Σ)(s) = 1 a.e.

= k1(s1, f
−1
1 (s) ∩ σ1) = k1(s1, σ1).

Therefore π1 is a morphism. Similarly π2 is a morphism.

We close this section with some examples. The first example is technically
trivial but conceptually crucial.

Example 5.9 We let the label set be the one element set. Consider a system
(S,Σ, k) with S an arbitrarily complicated states space and Σ a σ-algebra
generated by some Polish space structure on S. For example, S could be R,
the reals with the Borel algebra. We define the transition function, k(s, σ)
in any manner we please subject only to the conditions of the definition of
a transition function and to the condition that ∀s ∈ S.k(s, S) = 1; i.e. for
every s, the distribution k(s, ·) is a probability measure. Consider the trivial
labelled Markov chain with just one label, one state and one transition from
the state to itself with probability 1. These two systems are bisimilar!

This example allows us to clarify the discussion in the introduction. All of
conventional stochastic process theory is described by systems like the first
system above. From our point of view they are trivial. This is to be expected,
as we are modelling interaction and all such systems are indeed trivial from
the point of view of interaction. In order to get nontrivial examples one has to
consider systems with richer label sets, and which are not always capable of
making transitions with every label. Note also that many continuous systems
are bisimilar to discrete ones. If we know this we can use the (presumably
simpler) discrete system when reasoning about composite systems. Without
our framework this would not be possible.
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Example 5.10 Consider the labelled Markov chain over a one-element la-
bel set ({a, b, c}, P ) where the transition matrix, P is given by P (a, b) =
P (a, c) = 1/2 with all other entries being zero. Consider another system
over the same label set with 4 states {w, x, y, z} and with transition matrix Q
given by Q(w, x) = Q(w, y) = Q(w, z) = 1/3. These two systems are bisimi-
lar. One can easily verify this by constructing the obvious “product” system
and checking that the projections are zigzags. On the other hand there is no
zigzag morphism between the two systems. These systems are small enough
to check this by hand.

The last example shows that bisimulation really does have to be defined in
terms of spans, i.e. it really is a relation.

Example 5.11 The next example illustrates a continuous system. Consider
the labelled Markov process, over the trivial label set, defined as follows S =
(R,B, k), i.e. the states are real numbers, the measurable sets are Borel
sets and the transition function is defined on intervals (and then extended to
arbitrary Borel sets) as follows:

k(x, [r, s]) =

{
λ/2

∫ s
r
e−λ|x−y|dy if x ≥ 0,

0 otherwise.

where the constant factor of λ/2 chosen to make k be 1 on the whole space.
Intuitively this is a system where a particle makes random jumps with prob-
ability exponentially distributed with the length. However, there is an “ab-
sorbing wall” at the point x = 0 so that if the system jumps to the left of
this point it gets stuck there. Note that every positive state has a different
probability density for jumping to a negative state. Now consider the system
U = (R2,B2, h) defined as

h((x, y), [r, s]× [p, q]) = k(x, [r, s])P ([p, q]),

where P is some arbitrary probability measure over R. This system should
behave “observably” just like the first system because, roughly speaking, the
first coordinate behaves just like the first system and the second system has
trivial dynamics, i.e. it is bisimilar to the one-state, one-transition system.
Indeed these two systems are bisimilar with the projection from the second to
the first being a zigzag.

The next example illustrates a possible objection to our definition.
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Example 5.12 Suppose that we have two systems, (R,B, {a, b}, kl) and
(R,B, {a, b}, hl). In the first system we have the following transitions

ka(x, S) = µ(S ∩ [x− 0.5, x+ 0.5])

and

kb(x, S) = µ(S ∩ [x+ 0.5, x+ 1.5])

where S is a Borel set and µ is Lebesgue measure. For the other system we
have

ha(x, S) =

{
µ(S ∩ [x− 0.5, x+ 0.5]) if x is irrational

0 if x is rational.

the b transitions are the same as those for the first system. These two systems
are not bisimilar by our definition. The first one is bisimilar to the trivial
one-state system with both a and b enabled all the time while the second one
is has states in which a gets disabled. However, the probability of landing in
one of these states is 0. Thus, in some sense, the difference is visible only
on a set of probability 0. Should they be distinguished?

6 Discrete Systems Revisited

In this section we reconsider discrete systems (Markov chains) from the point
of view of the bisimulation notion that we have defined for general partial,
labelled, Markov processes. We show that the Larsen-Skou definition coin-
cides with the “span of zigzags” definition. First, we have to say what it
means for two Markov chains to be Larsen-Skou bisimilar, since the Larsen-
Skou definition involves states of a single process rather than states of two
different processes, and so doesn’t apply without an appropriate interpreta-
tion. Roughly speaking, if there were an initial state in every Markov chain,
then we would say that two Markov chains are Larsen-Skou bisimilar if and
only if in a system “combining” them, their initial states are Larsen-Skou
bisimilar. We have chosen not to equip Markov chains with initial states,
instead we will use the following as a definition of Larsen-Skou bisimulation
between two Markov processes.
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Definition 6.1 Let (S1, P
1
l ), (S2, P

2
l ), be two Markov chains and (T,Hl),

their disjoint union, that is, T is the disjoint union of the two sets S1 and
S2, and for s, t ∈ T , Hl(s, t) = P i

l (s, t) if s, t are both in Si (i = 1, 2) and
zero otherwise. We will say that S1 ∼LS S2 if in T there is a probabilistic
bisimulation ≡p such that for every state si of Si there is a state sj of Sj
such that si ≡p sj (i, j ∈ {1, 2}, i 6= j).

We assume that all systems are partial in this section. Recall that we
can always define a topology in which all the sets are open and hence all
functions are continuous. Since the space is countable the topology is clearly
Polish. Thus, we can forget about the topology in this section but we keep in
mind that discrete systems are a special case of the formalism of the previous
section.

Proposition 6.2 Let (S, Pl) and (S ′, P ′l ) be two labelled Markov chains.
(S, Pl) ∼LS (S ′, P ′l )

′ if and only if there exists a span of zigzag morphisms f
and f ′:

U

	�
�
�
�
�

f
@
@
@
@
@

f ′

R

S S ′

Proof. We write kl and k′l for the two transition functions induced by the
transition matrices Pl and P ′l respectively.

⇐: We first show that if S
f→ S ′, where f is a zigzag morphism, then

S ∼LS S ′. Let (t,Hl) be the disjoint union of (S, Pl) and (S ′, P ′l ), and hl be
the transition function induced by the transition matrix Hl. Now f defines
the following equivalence relation, R, on T :

s1Rs2 ⇐⇒ (s1 = s2) ∨ (f(s1) = s2) ∨ (f(s1) = f(s2)).

The equivalence classes are of the form {s′} ∪ f−1(s′) for each s′ ∈ S ′; thus
each equivalence class can be represented uniquely by an element of S′. Let
l ∈ L, s1, s2 ∈ T such that s1Rs2, and choose any t′ ∈ S ′ that represents the
equivalence class {t′}∪f−1(t′). We want to show that hl(s1,−) and hl(s2,−)
agree on {t′} ∪ f−1(t′).
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First assume s1 ∈ S and s2 ∈ S ′, meaning that f(s1) = s2. Then

hl(s1, {t′} ∪ f−1(t′)) = kl(s1, f
−1(t′)) since s1 ∈ S

= k′l(f(s1), {t′}) since f is a zigzag morphism

= hl(s2, {t′} ∪ f−1(t′)),

which is precisely the condition for Larsen-Skou bisimulation. Now if s1

and s2 are both in S (and still R-related), they have the same image, so
s1Rf(s1) = f(s2)Rs2 and we can simply apply the above calculation. Fi-
nally we have the trivial case where s1 and s2 are both in S ′, they are then
equal and we are done since, f being a surjective function, every state of S is
R-equivalent to a state of S′ are vice versa. Since we know that Larsen-Skou
bisimulation is an equivalence relation it follows that whenever we have a
span of zigzags connecting two labelled Markov chains they are Larsen-Skou
bisimilar.
⇒: Assume (S, Pl) ∼LS (S ′, P ′l ), with ≡p the probabilistic bisimulation

over (T,Hl) the disjoint union of (S, Pl) and (S ′, P ′l ). We need to construct
a span of zigzag morphisms

U

	�
�
�
�
�

f
@
@
@
@
@

f ′

R

S S ′

To do this, let U = (U, (Ql)l∈L) where U = {(s, s′) ∈ S × S ′ : s ∼LS s′ in T}
and where the transition matrix Q is given by, for l ∈ L,

Ql((s, s
′), (t, t′)) =

Pl(s, t)P
′
l (s
′, t′)

hl(s, [t]∼LS)

where [t]∼LS denotes the equivalence class containing t in T , and hl is the
transition function induced by the transition matrix Hl. Since s ∼LS s′ and
t ∼LS t′, we have by definition of ∼LS that hl(s, [t]∼LS) = hl(s

′, [t]∼LS) =
hl(s

′, [t′]∼LS).
To prove that U is a partial, labelled, Markov chain, we need that for any

(s, s′) ∈ U , ∑
(t,t′)∈U

Ql((s, s
′), (t, t′)) ≤ 1.
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This will follow from the proof that we have zigzag morphisms from U to
S and S ′. As morphisms f : U → S and f ′ : U → S ′, we simply take the
left and right projections which are surjective by definition of Larsen-Skou
probabilistic bisimulation. We prove that they are zigzag morphisms. We
write ql for the transition function derived from the transition matrix Ql.
First note that

∀t ∈ S.f−1(t) = {t} × (S ′ ∩ [t]∼LS ).

For any l ∈ L, (s, s′) ∈ U, t ∈ S, we have

ql((s, s
′), f−1(t)) =

∑
t′∈S′∩[t]∼LS

Ql((s, s
′), (t, t′))

=
∑

t′∈S′∩[t]∼LS

Pl(s, t)P
′
l (s
′, t′)

hl(s, [t]∼LS)

=
Pl(s, t)

hl(s′, [t]∼LS)

∑
t′∈S′∩[t]∼LS

P ′l (s
′, t′)

=
Pl(s, t)

k′l(s, [t]∼LS ∩ S)
k′l(s

′, [t]∼LS ∩ S ′)

= Pl(s, t) = kl(f(s, s′), {t}).

and f is thus a zigzag morphism. The same argument applies to f ′.

7 Testing equivalences

In this section we examine the relationship between a notion of testing equiv-
alence, 2-way simulation and probabilistic bisimulation.

The tests we consider are simple sequences of experiments, each just
described by a label. As usual, let L be the fixed set of labels describing the
interaction of processes with their environments.

Definition 7.1 A test over L is a finite sequence of labels of L. Given
a labelled Markov process S = (S,ΣS, kl), a state s0 of S and a test T , the
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probability p(s0;T ) of success is defined in the following way;

p(s0; ε) = 1
p(s0; a.T ) =

∫
S
p(s;T )ka(s0, ds)

where ε is the empty string. Let (S,Σ, kl) and (S ′,Σ′, k′l) be two labelled
Markov processes. We say that S test-simulates S′ if, for every s′ ∈ S ′, there
exists s ∈ S such that for all test T ,

p(s′;T ) ≤ p(s;T ).

We say that S and S ′ are test-equivalent, written S ∼T S ′ if they test-
simulate each other.

It is easily seen that p(·;T ) : S −→ < is a measurable function and that
test-equivalence is indeed an equivalence relation.

Proposition 7.2 Let (S,Σ, kl) and (S ′,Σ′, k′l) be labelled Markov processes.
If there is a simulation morphism from S to S′, then S ′ test-simulates S.
Moreover, if the morphism is a zigzag morphism, then S and S′ are test-
equivalent.

Proof. We prove the second part since the first one can be easily proved in
almost the same way, essentially by replacing the equalities by inequalities.
Let f : S −→ S ′ be a zigzag morphism. We show that for all s ∈ S, for
all tests T , p(s;T ) = p(f(s);T ) by induction on the length of tests. Since
f is a surjective function, this will prove that S ∼T S ′. We trivially have
p(s; ε) = p(f(s); ε) = 1 for all s ∈ S. Now assume the assertion is true for
tests of length n. Let s ∈ S and let aT be a test of length n+ 1 . We have
by induction hypothesis and from the definition of zigzag expressed in the
following from,

ka(s, ·) ◦ f−1 = k′a(f(s), ·),
that

p(s; a.T ) =

∫
S

p(t;T )ka(s, dt)

=

∫
S

p(f(t);T )ka(s, dt)

=

∫
S′
p(s′;T )k′a(f(s), ds′)

= p(f(s); a.T ).
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Corollary 7.3 If there is a 2-way simulation between S and S′, then S and
S ′ are test-equivalent.

Corollary 7.4 If S and S ′ are bisimilar, then S and S ′ are test-equivalent.

Note that the converse is not true, that is there exist two stochastic
transition systems that are test-equivalent but not stochastic bisimilar.

These results are not meant to be a serious analysis of testing notions.
They are only meant to give some feeling for what zigzag means. In future
work we intend to analyze testing thoroughly.

8 Towards A Modal Logic for Bisimulation

In this section we begin the study of logics that characterize bisimulation.
For discrete systems, indeed even if only one system is discrete, we can define
a simple logic which plays the role of Hennessy-Milner logic. In practice one
often wants to know that a continuous system can be discretized, i.e. is
bisimilar to some discrete system, and this fact will be useful to determine
that. We follow the treatment of Larsen and Skou [LS91] closely in terms of
the definition of the logic but not in terms of proofs. The key difference is
that we use negation.

We take as the syntax the following formulas:

T |¬φ|φ1 ∧ φ2|〈a〉qφ

where a is an action from the fixed set of actions L and q is a rational number.
Given a labelled Markov process (S,Σ, ka) we write s |= φ to mean that the
state s satisfies the formula φ. The definition of the relation |= is given
by induction on formulas. The definition is obvious for the propositional
constants and connectives. We say s |= 〈a〉qφ iff ∃A ∈ Σ.∀s′ ∈ A.s′ |=
φ∧ka(s, A) ≥ q. In other words, s can make an a-move to a state that satisfies
φ with probability greater than q. We write φ for the set {s ∈ S|s |= φ}.
If we have two systems , say S, S ′, in mind and we want to distinguish them
we write φ S.

The first proposition below says that sets of states definable by formulas
are always measurable.

Proposition 8.1 For all formulas φ, we have φ ∈ Σ.
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Proof. We proceed by structural induction on φ. The base cases correspond-
ing to T is trivial since S ∈ Σ. The propositional connectives are trivial
because a σ-algebra is closed under countable union and complementation,
by definition. Finally we have 〈a〉qφ = ka(·, φ )−1([q, 1]) ∈ Σ. To justify

this first note that, by hypothesis, φ ∈ Σ so ka(s, φ ) is meaningful. Sec-
ondly, ka is a measurable function in its first argument and finally intervals
are Borel.

The next proposition links zigzag morphisms with formulas in the logic.

Proposition 8.2 If f is a zigzag morphism from S to S′ then for all for-
mulas φ,

s |= φ ⇐⇒ f(s) |= φ.

Proof. We proceed by structural induction on φ. The only nontrivial cases
correspond to the modal formulas. We proceed as follows; s |= 〈a〉qφ means
ka(s, φ S) ≥ q. By the inductive hypothesis we have that f−1( φ S′) =

φ S. Thus we have

q ≤ ka(s, φ S) = ka(s, f
−1( φ S′)) = k′a(f(s), φ S′).

But the last equality means f(s) |= 〈a〉qφ.

From this we get the immediate corollary, but first we need to define bisim-
ilarity of states. We say s ∈ S and s′ ∈ S ′ are bisimilar if S and S ′ are
bisimilar and for some span of morphisms f : T −→ S and f ′ : T −→ S ′ there
exists t ∈ T with f(t) = s and f ′(t) = s′. Now this defines an equivalence re-
lation. In anticipation of this we write, s ∼ s′ when two states are bisimilar.
To check the claim suppose that for s ∈ S, s′ ∈ S ′ and s′′ ∈ S ′′ we have s ∼ s′

and s′ ∼ s′′. Then we have f : T −→ S and f ′ : T −→ S ′ and g : T ′ −→ S ′

and g′ : T ′ −→ S ′′ with the required properties and we can use the pullback
(h : U −→ T, k : U −→ T ′) of f ′ : T −→ S ′ and g : T ′ −→ S ′ to obtain p : U
−→ S and q : U −→ S ′′. In order to show that s ∼ s′′ we proceed as follows.
By assumption there exists t ∈ T and t′ ∈ T ′ such that f(t) = s, f ′(t) = s′,
g(t′) = s′ and g′(t′) = s′′. Now (t, t′) ∈ U since f ′(t) = s′ and g(t′) = s′.
Therefore, putting p = f ◦ h and q = g′ ◦ k we have p((t, t′)) = f(t) = s and
q((t, t′)) = g′(t′) = s′′. Thus s ∼ s′′.
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Corollary 8.3 If s and s′ are bisimilar states of S and S′ respectively then
they satisfy the same formulas.

Now one can show that the transition probabilities to definable sets are de-
termined completely by the formulas, independently of the system. Suppose
that (S,Σ, ka) and (S ′,Σ′, k′a) are two systems. We say that they satisfy all
the same formulas if ∀s ∈ S∃s′ ∈ S ′ such that s and s′ satisfy all the same
formulas and the same with s and s′ interchanged. We write S ./ S′ if this
is the case.

Proposition 8.4 Suppose that (S,Σ, ka) ./ (S ′,Σ′, k′a) then for all formulas
φ and all pairs (s, s′) such that s and s′ satisfy all the same formulas, we
have ka(s, φ S) = k′a(s

′, φ S′).

Proof. Suppose that the equation does not hold. Then, say, for some φ,
ka(s, φ S) < k′a(s

′, φ S′). Now we choose a rational number q between
these values. Now it follows that s′ |= 〈a〉qφ but s 6|= 〈a〉qφ, which contradicts
the assumption that s and s′ satisfy all the same formulas.

Now we would like to show that if two systems satisfy all the same formu-
las they must be bisimilar. Instead of defining a span of zigzags directly, we
can define a cospan and use the pullback property to infer that a span must
exist. Given two systems (S,Σ, ka) ./ (S ′,Σ′, k′a) we first construct a system,
(T,ΣT , ja), called the direct sum of S and S ′, as follows. We set T = S ] S ′
with the evident σ-algebra. We define the transition probabilities as follows:
ja(s, A]A′) = ka(s, A) if s ∈ S and ja(s

′, A]A′) = k′a(s
′, A′) if s′ ∈ S ′ where

A ∈ Σ and A′ ∈ Σ′. There are the evident canonical injections ι, ι′ which
are not zigzags because they are not surjective. Now we define an equiva-
lence relation on the states of T by saying that two states are equivalent iff
they satisfy all the same formulas. We write s ≈ s′. We define a quotient
system (V,ΣV , ha) as follows. The states of V are the equivalence classes
and the topology is the greatest one making the canonical surjection r : T
−→ V continuous (and hence measurable). The set T is a Polish space since
it is discrete. The composites r ◦ ι and r ◦ ι′ are continuous and surjective,
henceforth we call them q and q′ respectively. To see that q, q′ are surjective
we recall that an equivalence class must, by hypothesis, include members of
both S and S ′. If we can define ha so as to make q, q′ both zigzag we will be
done.
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Proposition 8.5 If we have (S,Σ, ka) ./ (S ′,Σ′, k′a) and s ≈ s′ then for all
t ∈ T , defined as above, we have ka(s, [t] ∩ S) = k′a(s

′, [t] ∩ S ′).

Proof. Let {φi|i ∈ N} be an enumeration of the formulas satisfied by the
members of [t]. If s is any state such that s ./ t, s must satisfy any formula
satisfied by t, so s is in the intersection. Conversely, if s 6./ t, there is a
formula φ that distinguishes s and t, hence either s 6∈ φ and t ∈ φ or

s ∈ φ and t 6∈ φ ; since the latter is equivalent to saying s 6∈ ¬φ and

t ∈ ¬φ , we have in both cases that s is not in the intersection of the φi’s.

Let ∀i ∈ N.ψi def
=
∧i
l=1 φl. We show that [t] = ∩∞i=1 ψi . The sets ψi S

and ψi S′ are both measurable for all i and decrease as i increases. Fur-
thermore, these decreasing chains converge to [t]∩S and [t]∩S′ respectively.
By the monotone convergence property of measures we have

ka(s, [t] ∩ S) = lim
i−→∞ ka(s, ψi S),

by the previous proposition we have

= lim
i−→∞ k

′
a(s
′, ψi S′) = k′a(s

′, [t] ∩ S ′).

We can define ha as follows. We only need to specify the point to point
transition probabilities since, in the discrete case, these determine all the

transition probabilities. Now we set ha([s], [t])
def
= ka(s, q

−1([t])). Clearly the
representative of the [s] equivalence class does not matter. Furthermore by
proposition 8.5, we can see that ha([s], [t]) = k′a(s

′, q′−1([t])). The morphisms
are now zigzags. Thus we have proved the following proposition

Proposition 8.6 If we have two systems and one of them is discrete then
they are bisimilar iff they obey the same formulas.

Note that this implies the result for discrete systems without using the min-
imum deviation assumption used by Larsen and Skou.

9 Related Work

There has been a substantial amount of work on probabilistic transition
systems and their associated equivalences. As far as we are aware, none of
them have looked at bisimulation for continuous state spaces.
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The starting point of work in the area of probabilistic semantics are the
fundamental papers of Saheb-Djahromi [SD78, SD80] and of Kozen [Koz81,
Koz85]. These are concerned with domain theory and programming lan-
guages rather than with process equivalences but they both introduced non-
trivial measure-theoretic ideas. Kozen also noticed a very interesting duality
between state-transformer semantics as described by stochastic kernels and
a probabilistic predicate-transformer semantics in which programs are seen
as inducing linear continuous maps on the Banach algebra of bounded mea-
surable functions.

The one paper with an abstract categorical approach to stochastic pro-
cesses is by Giry [Gir81] but she studies categorical constructions rather
than process equivalences. Of course her work, inspired originally by Law-
vere, does provide some of the mathematical underpinnings of our ideas. In
particular she shows that the stochastic kernels (conditional probability dis-
tributions) that we use to define transition probabilities arise as the Kleisli
category of a monad, which is a natural generalization of the powerset monad
to the probabilistic case. If we recall that the category Rel of sets and rela-
tions is the Kleisli category of the powerset monad, we see that the stochastic
kernels can reasonably be viewed as the probabilistic analogues of relations.
This makes the analogy between labelled Markov processes and ordinary
transitions quite striking.

The starting point of our investigations has been the pioneering paper of
Larsen and Skou [LS91] which gave the first compelling analysis of proba-
bilistic bisimulation. As we have mentioned before their work is couched in
terms of state-to-state transition probabilities so there were both conceptual
as well as technical obstacles to overcome. The work of Joyal, Nielsen and
Winskel [JNW96] and of Cheng and Nielsen [CN95] provided vital clues. Fol-
lowing Joyal et. al. we define probabilistic bisimulation as spans of zigzags.

From the point of view of applications there have been a number of very
interesting results. The most interesting work, in our opinion, is the work of
Jane Hillston [Hil94] on developing a process algebra for performance eval-
uation. Her work is not comparable to ours at present because she works
with continuous-time Markov chains, i.e. with continuous time and a dis-
crete state space. Nevertheless it is our hope that as our own work evolves
we will make contact with her approach.

The group at Oxford has been developing an extensive theory of proba-
bilistic systems; see the collection of reports available from the web [Pro]. The
focus has been on equational laws satisfied by processes. From the semantic
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point of view they have extensively developed and enriched Kozen’s [Koz85]
predicate-transformer view. They have looked at continuous state-space sys-
tems and have incorporated nondeterminism in their framework. As with the
earlier work of Kozen [Koz81, Koz85] stochastic kernels play an important
role.

Finally we mention a sample of the large amount of work on vari-
ous notions of testing [CSZ92, Chr90, JY95], simulations [SL94], specifica-
tion [JL91], model checking [HK96], generative processes [vGSST90] and
other variations which, for example, allow one to have both probability and
nondeterminism. It should be possible to develop analogous notions for a va-
riety of continuous state-space systems once the mathematical foundations
are in place. With the present work the mathematical apparatus needed is
in place though of course a significant amount of work remains to determine
which models and equivalences are useful in practice.

10 Conclusions

In this paper we have two main contributions. First, we develop a notion
of labelled Markov process as a model of interacting Markov processes. The
state space may have complex structure but the interactions are simple syn-
chronizations. Unlike the classical theory of Markov processes, which asks
about the evolution of the system in state space, we study behavioural equiv-
alences from the point of view of observing interactions. This kind of system
is exactly what is studied in much of hybrid systems – simple finite-state con-
trollers interacting with a complex dynamical system. Of course the stochas-
tic versions of such systems have not been studied very much as yet.

Secondly we develop a notion of bisimulation for probabilistic processes
which applies to systems where the state space can be continuous. The
essential limitation, met in all examples known in physics, control theory
or computing, is that the state space be equipped with the structure of a
Polish space. The fundamental technical contribution is the proof that this
is indeed an equivalence relation. This requires a fairly hard proof which
can be seen as a theorem of Markov processes in its own right. In particular
no previous study of probabilistic bisimulation has had to deal with these
technical questions. We expect that future studies of such systems will use
either this technique or ones very like it.

The secondary results of this paper are
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1. that we have shown how this notion of bisimulation extends the defi-
nition of Larsen and Skou [LS91] for the discrete case

2. and that we have a logical characterization of bisimulation which works
even when only one of the systems is discrete and does not use the
minimum deviation assumption.

The important questions to answer for the future are the following.

1. The notion of bisimulation in the probabilistic case can be, and should
be, debated. For example suppose there are two systems which have
different behaviours but these differences are only visible with proba-
bility 0, do we want to say that they are or are not bisimilar. In the
present paper we would say that they are not bisimilar.

2. What is the general logical characterization of bisimulation? We might
have to adopt the point of view that formulas are measurable functions
and that the satisfaction “relation” has to be generalized to mean in-
tegration. Kozen has already used such ideas [Koz85] in his study of
probabilistic PDL.

3. What is the right notion of testing and can we exhibit bisimulation as
a testing equivalence? The bisimulation relation that we introduce in
this paper is, like Larsen and Skou’s, sensitive to small changes in the
probabilities. This makes the development of the appropriate testing
notions important in order to discuss what one might plausibly test for
in a continuous state space setting. In particular it should allow us to
initiate a serious study of stability of systems.

4. What is the right notion of simulation? What will happen to simulation
and bisimulation in the presence of nondeterminism? These questions
have been studied extensively in the discrete case.

5. What are the right calculi for such systems? This is completely wide
open at this point.

6. Can we extend these ideas to continuous time? This certainly should
be possible and really bring this work into contact with extant work on
hybrid systems.
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A A Review of Measure Theory

For completeness we give the basic definitions in this section. We only dis-
cuss positive measures. We assume, however, that the reader knows the
basic ideas of measure theory and probability as expounded in, for example
“Probability and Measure” by Billingsley [Bil79] or “Real Analysis and Prob-
ability” by Ash [Ash72] or the book with the same title by Dudley [Dud89] or
“Introduction to Measure and Probability” by Kingman and Taylor [KT66].

The basic concept is that of a σ-algebra on a set. These are the sets for
which a notion of “measure” or “size” can be defined.

Definition A.1 A σ-algebra on a set X is a family of subsets of X which
includes X itself and which is closed under complementation and countable
unions.

A set equipped with a σ-algebra is called a measurable space. For simple
situations we can usually take the σ-algebra to be all the subsets but when
we get to sets like the real line (or closed intervals of the real line) we cannot
any longer work with this σ-algebra because one cannot consistently define
probabilities (measures) sensibly on all subsets.

Fact A.2 The intersection of an arbitrary collection of σ-algebras is a σ-
algebra.

Thus, given an arbitrary collection of subsets of a set we can define the σ-
algebra generated by the collection. For example, given a topological space
(X, T ), we can define the σ-algebra, often written B, generated by the open
sets. This is usually called the Borel algebra.
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The notion of measure generalizes the concept of “length of an interval”
to arbitrary σ-algebras.

Definition A.3 Given a σ-algebra (X,Σ), a (probability) measure on X
is a ([0, 1]-valued) [0,∞]-valued set function, µ, defined on Σ such that

• µ(∅) = 0,

• for a pairwise disjoint, countable collection of sets, {Ai|i ∈ I}, in Σ,
we require

µ(
⋃
i∈I
Ai) =

∑
i∈I

µ(Ai).

In addition for probability measures we require µ(X) = 1.

The second property above is called countable additivity. A probability space
is a set X equipped with a σ-algebra Σ and a measure P such that P (X) = 1.

Example A.4 The key example in the subject is provided by Lebesgue mea-
sure on the real line. Let R stand for the real numbers. The elements of
the σ-algebra generated by the open intervals are called the Borel sets. There
is a measure defined on these sets which on intervals agrees with the intu-
itive notion of length. This is the Lebesgue measure. It may be calculated as
follows. Suppose that A is a Borel set. We take a family of intervals, J ,
(not necessarily pairwise disjoint) which covers A. We define the length of
J as the sum of the lengths of all the intervals in J . Now we take the inf
of the lengths over all J which cover A. One can verify that single points
have measure zero and that any countable set has measure zero. The Cantor
set gives an example of an uncountable set of measure zero. The set of all
irrationals between 0 and 1 has measure 1. This measure is translation in-
variant and is in fact the unique translation-invariant measure which assigns
1 to the interval [0, 1]. The fact that makes this entire theory so complicated
is the existence of nonmeasurable sets.

Functions between measurable spaces are called measurable functions.

Definition A.5 A function f : (X,ΣX) −→ (Y,ΣY ) between measurable
spaces is said to be measurable if ∀B ∈ ΣY .f

−1(B) ∈ ΣX .
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This resembles the topological notion of continuity. The fundamental dif-
ference is that limits of sequences of measurable functions is measurable;
the analogous property certainly does not hold for continuity. Measurable
spaces and measurable functions form a category called Mes. This category
has countable coproducts and all finite limits (in particular products and
equalizers).

We now define Lebesgue integration. We assume that we are given a mea-
sure space (X,Σ, µ). Let f : X −→ R be a real-valued measurable function
defined on X. Instead of carving up the domain space as is done in Rie-
mann integration we carve up the range. More precisely we define a simple,
real-valued function on X to be a function whose range is finite. Any simple
function, say s, can be expressed as a linear combination of characteristic
functions

s =
n∑
i=i

riχAi

where ri are real numbers (the values assumed by s) and Ai are the sets on
which s assumes the value ri. The Ai have to be measurable for s to be
measurable. It is clear what the integral of such a simple function should be∫

sdµ
def
=

n∑
i=1

riµ(Ai).

Let us assume that f , the function we wish to integrate is positive. Now a
fundamental (but easy) result of measure theory is that a positive measurable
functions f can be approximated pointwise by an increasing sequence of
simple functions

s1 ≤ s2 ≤ . . . ≤ sn ≤ . . . ≤ f.

We use this as the basis of the definition of the integral of f∫
fdµ = lim

j−→∞

∫
sjdµ

where the limit on the right is assumed to exist. If the limit does exist we
say that the function is integrable and the value of the limit is the value
of the integral. It is not difficult to show that the value is independent of
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the approximating sequence of simple functions. The integral of a general
function is defined by breaking it up into positive and negative pieces and
defining the two integrals separately. The Lebesgue theory has much better
convergence behaviour than the Riemann theory. In particular we have the

Theorem A.6 (Monotone Convergence Theorem) If {fi|i ∈ I} is a
sequence of measurable functions with ∀i.fi ≤ fi+1 and f = supi∈Ifi then∫

fdµ = lim
i−→∞

∫
fidµ.

There are much stronger convergence theorems available.
A key result in classical measure theory is the Radon-Nikodym theorem.

We write µ << ν if ν(A) = 0⇒ µ(A) = 0 for any measurable set A. We say
that µ is absolutely continuous with respect to ν. The Radon-Nikodym says
that if the measures are finite5 then there is a measurable function h such
that for any measurable set A we have

µ(A) =

∫
A

hdν.

Furthermore this function is unique almost everywhere; in other words, if
there is another function h′ with the same property it can only differ from h
on a set of ν measure 0. This theorem gives a notion of differentiating one
measure by another. One often calls h the Radon-Nikodym derivative of µ
with respect to ν.

An important application of the Radon-Nikodym theorem is to construct
conditional probability distributions. Conditional probabilities relate proba-
bilistic information with definite information and are the key to probabilistic
reasoning. In the discrete case the conditional probability can be defined as
follows

P (A|B)
def
=
P (A ∩B)

P (B)
.

This should be read as “the probability of A being true given that B is true”.
Of course, this makes sense only if P (B) 6= 0. In the continuous case most of
the probabilities are 0, so conditional probabilities have to be defined more
subtly.

5Actually a much weaker condition suffices but the present result is all one needs for
probability.
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Suppose that we have a probability space (X,Σ, P ). Suppose that Σ′ is a
sub σ-algebra of Σ. Suppose that A is a measurable set in Σ. We wish to know
the following kind of information. We do an experiment and find out in which
subset of Σ′ a point lies; now we want to know how to estimate probabilities
that the point lies in A. We can define a new probability measure Q by
Q(B) = P (A ∩ B) for B ∈ Σ′. Now using the Radon-Nikodym theorem we
can define a conditional probability density function P (A|Σ′) : X −→ [0, 1]
with the properties:

1. P (A|Σ′)(·) is measurable with respect to Σ′ and integrable as well;

2. for a set B in Σ′ we have∫
B

P (A|Σ′)(x)dP (x) = P (A ∩B).

This density replaces the naive conditional probabilities of the previous para-
graph.

B Proof that Spans of Zigzags Can Be Com-

posed

In this section we give a self-contained proof that we can compose spans of
zigzag morphisms. In fact we will prove slightly more. In the category where
the morphisms are zigzags we can construct pullbacks.

B.1 Introduction

Consider the following category. Objects are of the form

S = (S,Σ, k : S ×Σ→ [0, 1]),

where S is a Polish space, i.e. a topologically complete separable metrizable
space, Σ is the Borel σ-algebra on S and k is a transition probability function,
i.e. for each s ∈ S, k(s,−) : Σ→ [0, 1] is a bounded Borel measure which we
assume is extended to all measurable subsets of S. A morphism f : S → S ′,
where S = (S,Σ, k : S × Σ → [0, 1]) and S ′ = (S ′,Σ′, k′ : S ′ × Σ′ → [0, 1]),
is a continuous surjection which preserves transition probabilities, i.e. it
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satisfies, k(x, f−1(σ′)) = k′(f(x), σ′) for all x ∈ S and σ′ ∈ Σ′. It is easy to
see that this gives a category. The composition of two morphisms, when it
exists, is given by the composition of the two continuous maps. A diagram of
morphisms will commute if and only if the corresponding diagram commutes
in Sets.

Three objects

S1 = (S1,Σ1, k1 : S1 × Σ1 → [0, 1]),

S2 = (S2,Σ2, k2 : S2 × Σ2 → [0, 1]),

S = (S,Σ, k : S × Σ→ [0, 1])

and morphisms f1 : S1 → S and f2 : S2 → S are given. We will show that
the pullback of f1 and f2 exists.

Let U = {(s1, s2) ∈ S1×S2 | f1(s1) = f2(s2)} equipped with the subspace
topology of the product topology on S1 × S2. The Borel σ-algebra ΣU on U
is generated by the set {(σ1 × σ2) ∩ U | σ1 ∈ Σ1, σ2 ∈ Σ2}. Let π1 : U → S1

and π2 : U → S2 be the projection maps. Since f1 and f2 are surjective, U
is not empty. We want to construct h : U ×ΣU → [0, 1] so that (U,ΣU , h) is
an object and π1 : U → S1 and π2 : U → S2 are morphisms. For an element
x of a set X, an element y of a set Y , subsets A ⊆ X, B ⊆ Y and a function
f : X → Y , we sometimes write x instead of {x}, fx instead of f(x), fA
instead of f(A), and f−1B instead of f−1(B).

B.2 The conditional probabilities

We fix (s1, s2) ∈ U , i.e. s1 ∈ S1 and s2 ∈ S2 with f1s1 = f2s2, throughout
this paper. The index i always takes the values 1 and 2. The variable ωi
always runs through Si whereas the variable s runs through S.

For i = 1, 2, we have the probability measures ki(si,−) : Σi → [0, 1]
on the space (Si,Σi). Also Σ′i = {f−1

i σ | σ ∈ Σ} ⊆ Σi is a sub-σ-algebra
of Σi (i = 1, 2). We therefore have, for a given σi ∈ Σi, the conditional
probability distribution P ((si, σi)|Σ′i) : Si → [0, 1] of the probability mea-
sure ki(si,−) given the sub-σ-algebra Σ′i ⊆ Σi. Since Si is a Polish space
we can assume [Dud89, Theorem 10.2.2] that P ((si, σi)|Σ′i)(−) is a regular
conditional probability distribution, i.e.
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(i) P ((si, σi)|Σ′i) : Si → [0, 1] is Σ′i measurable and integrable.

(ii) For all γ′i ∈ Σ′i, we have∫
γ′i

P ((si, σi)|Σ′i)(ωi)ki(si, dωi) = ki(si, σi ∩ γ′i).

(iii) For ki(si,−)-almost all ωi ∈ Si, P ((si,−)|Σ′i)(ωi) : Σi → [0, 1] is a
probability measure on Si.

A regular conditional probability distribution, like a conditional probability
distribution, is unique up to a set of measure zero, i.e. any two functions
satisfying the above three properties are equal for ki(si,−)-almost all ωi ∈ Si.

One should think of P ((si, σi),Σ
′
i)(ωi) as the probability that si makes a

transition to σi given that si makes a transition to f−1
i fiωi, or equivalently

as the probability that si makes a transition to σi given that fisi makes a
transition to fiωi.

By the standard method in the theory of conditional probability (see for
example [Bil79, Exercise 33.5]), we can obtain the conditional probability
distribution

P ((si, σi)|Σ) : S → [0, 1].

Here, P ((si, σi)|Σ)(s) gives the probability that si makes a transition to σi
given that si makes a transition to some ωi with fi(ωi) = s or equivalently the
probability that si makes a transition to σi given that fisi makes a transition
to s. For the sake of completeness, we explain how this is obtained.

Since P ((si, σi)|Σ′i) : Si → [0, 1] is constant on f−1
i s for any σ ∈ S we can

define

P ((si, σi)|Σ) : S → [0, 1]

by P ((si, σi)|Σ)(s) = P ((si, σi)|Σ′i)(ωi) for any ωi ∈ f−1
i s. Hence,

P ((si, σi)|Σ) ◦ fi = P ((si, σi)|Σ′i), and P ((si, σi)|Σ) has the following proper-
ties which are equivalent to the above three properties for P ((si, σi)|Σ′i):

(i) P ((si, σi)|Σ) is Σ-measurable and integrable.
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(ii) Since ki(si,−) ◦ f−1
i = k(fisi,−), we have, for all σ ∈ Σ:∫

σ

P ((si, σi)|Σ)k(fisi, ds) =

∫
f−1
i σ

P ((si, σi)|Σ′i)ki(si, dωi) = ki(si, σi ∩ f−1
i σ).

(iii) For k(fisi,−)-almost all s, we have a probability measure

P ((si,−)|Σ)(s) : Σi → [0, 1]

on Si.

As before, P ((si, σi)|Σ) is unique up to a set of k(fisi,−)-measure zero.
Note that one can define

P ((si, σi)|Σ) : S → [0, 1]

directly with the Radon-Nykodym derivative rather than using

P ((si, σi)|Σ′i) : Si → [0, 1]

.

B.3 Construction of a probability measure on S1 × S2

In order to define h((s1, s2),−) : ΣU → [0, 1] we first define a probability
measure g((s1, s2),−) : ΣS1×S2 → [0, 1] on the product space (S1×S2,ΣS1×S2)
where ΣS1×S2 is the Borel σ-algebra of S1 × S2. We will then show in the
next section that g((s1, s2),−) is supported on U , i.e. g((s1, s2), U) = 1. We
will finally define h((s1, s2), α ∩ U) = g((s1, s2), α).

Let R = Σ1 × Σ2 be the collection of all “rectangles” σ1 × σ2 ∈ ΣS1×S2 ;
R is a semi-ring. For σ1 × σ2 ∈ R and s ∈ S, put

ρ((s1, s2), σ1 × σ2)(s) = P ((s1, σ1)|Σ)(s)P ((s2, σ2)|Σ)(s).

Since for k(f1s1,−)-almost all s ∈ S, P ((s1,−)|Σ)(s) and P ((s2,−)|Σ)(s)
are probability measures on S1 and S2 respectively, we have:

Proposition B.1 [Dud89, Theorem 4.4.1]
For k(f1s1,−)-almost all s ∈ S, ρ((s1, s2),−)(s) is countably additive on

R.
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For σ1 × σ2 ∈ R, put

g((s1, s2), σ1 × σ2) =

∫
S

P ((s1, σ1)|Σ)(s)P ((s2, σ2)|Σ)(s)k(f1s1, ds). (2)

Proposition B.2 g((s1, s2),−) has a unique extension to a probability mea-
sure on (S1 × S2,ΣS1×S2).

Proof. We check that g((s1, s2),−) is countably additive onR. Let σ1×σ2 =⋃
j∈J σj1 × σj2 be the disjoint union of a countable set of rectangles. Then,

g((s1, s2), σ1 × σ2)

=

∫
S

P ((s1, σ1)|Σ)(s)P ((s2, σ2)|Σ)(s)k(f1s1, ds)

=

∫
S

∑
j∈J

P ((s1, σj1)|Σ)(s)P ((s2, σj2)|Σ)(s)k(f1s1, ds) by Proposition B.1

=
∑

j∈J

∫
S

P ((s1, σj1)|Σ)(s)P ((s2, σj2)|Σ)(s)k(f1s1, ds) monotone convergence

=
∑

j∈J g((s1, s2), σj1 × σj2).

This establishes countable additivity. We next extend g((s1, s2),−) in the
usual way [Dud89, page 102] to the ring A generated by the rectangles in R,
i.e to the collection of all unions of finitely many disjoint elements of R: For
a finite set of disjoint rectangles σj1 × σj2, j = 1, · · · , n, we put

g((s1, s2),
⋃

1≤j≤n
σj1 × σj2) =

∑
1≤j≤n

g((s1, s2), σj1 × σj2).

In fact A is an algebra of subsets of S1 × S2 since it contains S1 × S2. Fur-
thermore,

g((s1, s2), S1 × S2)

=

∫
S

P ((s1, S1)|Σ)(s)P ((s2, S2)|Σ)(s)k(f1s1, ds)

=

∫
S

k(f1s1, ds) since P ((s2, S2)|Σ)(s) = 1 a.e.

= 1.
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Therefore by standard results in measure theory [Dud89, Theorems 3.1.4 and
3.1.10], g((s1, s2),−) has a unique extension to ΣS1×S2 , i.e., the σ-algebra
generated by R or A.

B.4 Construction of h((s1, s2),−)

We will now show that g((s1, s2), U
c) = 0, where U c is the complement of the

set U . First note that U ⊆ S1×S2 is a closed subset of the product topology
on S1 × S2. In fact, the diagonal D = {(s, s) | s ∈ S} is a closed subset of
S × S equipped with the product topology and the function

(f1, f2) : S1 × S2 → S × S

with (f1, f2)(ω1, ω2) = (f1ω1, f2ω2) is continuous. Hence, U is closed since it
is the inverse image of the closed set D under the continuous map (f1, f2).

It follows that (S1 × S2) \ U is an open subset of S1 × S2. Since Si is a
Polish space, it has a countable basis Bi ⊆ Ωi ⊆ Σi of open subsets, where Ωi

is the lattice of open subsets of Si (i = 1, 2). Then B1×B2 forms a countable
basis of open subsets of S1 × S2. Therefore, (S1 × S2) \ U is the countable
union of open rectangles σ1 × σ2 with σi ∈ Bi (i = 1, 2). Hence, in order to
show that U has full g((s1, s2),−)-measure, it is sufficient to prove

Proposition B.3 For any σ1 ∈ Σ1 and σ2 ∈ Σ2 with U ∩ (σ1 × σ2) = ∅ we
have g((s1, s2), σ1 × σ2) = 0.

We prove the above Proposition by using the following technical lemmas.
For the time being, we fix σ1 ∈ Σ and σ2 ∈ Σ2. For convenience we use the
notation µ(−) = k(f1s1,−).

Lemma B.4 The set fiσi (and therefore its complement Si \ fiσi) is µ-
measurable (i = 1, 2).

Proof. This follows from the fact that the continuous image of any Borel
subset of a Polish space into any Hausdorff space Y is measurable (in partic-
ular) with respect to any Borel measure on Y [Fed69, statement 2.2.13].
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Lemma B.5 There exists a measurable subset Bi ⊆ S \ fiσi with µ(Bi) =
µ(S \ fiσi) such that for all s ∈ Bi we have P ((si, σi)|Σ)(s) = 0.

Proof. Since, by Lemma B.4, S \ fiσi is µ-measurable, there exists a Borel
subset Ci ∈ Σ with Ci ⊆ S \ fiσi such that µ(Ci) = µ(S \ fiσi). Hence,∫

Ci

P ((si, σi)|Σ)(s)µ(ds) =

∫
Ci

P ((si, σi)|Σ)(s)k(fisi, ds)

= ki(si, σi ∩ f−1
i Ci)

= 0,

since (σi ∩ f−1
i Ci) ⊆ (σi ∩ f−1

i (S \ fiσi)) = ∅. Therefore, there exists a µ-
measurable subset Bi with Bi ⊆ Ci and µ(Bi) = µ(Ci) = µ(S \ fiσi) such
that P ((si, σi)|Σ)(s) = 0 for all s ∈ Bi.

Proof of Proposition B.3 Since (σ1×σ2)∩U = ∅, we have f1σ1∩f2σ2 = ∅
or equivalently

(S \ f1σ1) ∪ (S \ f2σ2) = S.

It follows, by Lemma B.5, that µ(S \ (B1∪B2)) = 0. Therefore, for µ-almost
all s we have P ((s1, σ1)|Σ)(s) = 0 or P ((s2, σ2)|Σ)(s) = 0. In other words,
for µ-almost all s, we have P ((s1, σ1)|Σ)(s)P ((s2, σ2)|Σ)(s) = 0. Hence,

g((s1, s2), σ1 × σ2) =

∫
S

P ((s1, σ1)|Σ)(s)P ((s2, σ2)|Σ)(s)µ(ds) = 0,

as required.

Corollary B.6 g((s1, s2), (S1 × S2) \ U) = 0.

Proof. By Proposition B.3, g((s1, s2), (S1×S2)\U) = 0, since (S1×S2)\U)
is the countable union of rectangles disjoint from U .
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Any element of ΣU is of the form α∩U with α ∈ ΣS1×S2 . We now define
h((s1, s2), α ∩ U) = g((s1, s2), α).

Theorem B.7 (U,ΣU , h : U × ΣU → [0, 1]) is an object of the category and
πi : U → Si are morphisms.

Proof. Clearly U is a Polish space as it is a closed subset of the Polish space
S1 × S2. We have already shown that h((s1, s2),−) is a probability measure
on U for any (s1, s2) ∈ U . Finally, for any σ1 ∈ Σ1 we have:

h((s1, s2), π
−1
1 σ1)

= h((s1, s2), (σ1 × S2) ∩ U)

= g((s1, s2), σ1 × S2)

=

∫
S

P ((s1, σ1)|Σ)(s)P ((s2, S2)|Σ)(s)k(f1s1, ds)

=

∫
S

P ((s1, σ1)|Σ)(s)k(f1s1, ds) P ((s2, S2)|Σ)(s) = 1 a.e.

= k1(s1, f
−1
1 (s) ∩ σ1) = k1(s1, σ1).

Therefore π1 is a morphism. Similarly π2 is a morphism.

Remark B.8 If we are dealing with discrete processes, i.e. if S1, S2 and S
are countable discrete spaces, then Equation 2 reduces to a sum and we get

h((s1, s2), (σ1 × σ2) ∩ U) = g((s1, s2), σ1 × σ2)

=
∑
s∈S

P ((s1, σ1)|Σ)(s)P ((s2, σ2)|Σ)(s)k(f1s1, s).

Since, for k(fisi, s) 6= 0 we have

P ((si, σi)|Σ)(s) =
ki(si, σi)

k(fisi, s)
,

we obtain

P ((s1, σ1)|Σ)(s)P ((s2, σ2)|Σ)(s)k(f1s1, s) =


k1(s1, σ1)k2(s2, σ2)

k(f1s1, s)
if k(f1s1, s) 6= 0

0 otherwise.
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B.5 The pullback property

We show that (U,ΣU , h : U × ΣU → [0, 1]) and πi : U → Si (i = 1, 2) give
the pullback of fi : Si → S (i = 1, 2).

Let (T,ΣT , r : T × ΣT → [0, 1]) be an object and gi : T → Si (i = 1, 2)
be morphisms such that f1 ◦ g1 = f2 ◦ g2. Let t ∈ T and σi ∈ Σi (i = 1, 2).

Lemma B.9 For k(figit,−)-almost all s ∈ S,

P ((git, σi)|Σ)(s) = P ((t, g−1
i σi)|Σ)(s).

Proof. We have, for any σ ∈ Σ,∫
σ

P ((git, σi)|Σ)(s)k(figit, ds) = ki(git, σi ∩ f−1
i σ),

and also∫
σ

P ((t, g−1
i σi)|Σ)(s)k(figit, ds) = r(t, (g−1

i σi) ∩ (g−1
i f−1

i σ))

= r(t, g−1
i (σi ∩ f−1

i σ))

= ki(git, σi ∩ f−1
i σ).

It follows that the conditional probability P ((git, σi)|Σ)(−) is a version of
P ((t, g−1

i σi)|Σ)(−) and hence they are equal for k(figit,−)-almost all s ∈ S.

Theorem B.10 (U,ΣU , h(−,−)) with πi : U → Si (i = 1, 2) is the pullback
of fi : Si → S (i = 1, 2).

Proof. Let q : T → U be given by q(t) = (g1t, g2t). We show that q :
(T,ΣT , r)→ (U,ΣU , h) is a morphism and is the unique mediating morphism
making the pullback diagram commute. To show that q is a morphism, we
need to check that

r(t, q−1α) = h((g1t, g2t), α), (3)

for all α ∈ ΣU . The sub-σ-algebra Σ′T = {q−1α|α ∈ ΣU} ⊆ ΣT is isomorphic
with ΣU . By Proposition B.2, h((s1, s2),−) is uniquely determined by its
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values on Σ′U = {(σ1 × σ2) ∩ U |σi ∈ Σi}. Hence, r(t,−) : Σ′T → [0, 1] is
uniquely determined by its values on q−1(Σ′U). It therefore suffices to show
that Equation (3) holds for all α ∈ Σ′U . Let α = (σ1 × σ2) ∩ U with σ1 ∈ Σ1

and σ2 ∈ Σ2. Note that

q−1(α) = {t ∈ T |g1t ∈ σ1, g2t ∈ σ2} = (g−1
1 σ1) ∩ (g−1

2 σ2).

Therefore,

r(t, q−1α)

= r(t, g−1
1 σ1 ∩ g−1

2 σ2)

=

∫
S

P ((t, g−1
1 σ1)|Σ)(s)P ((t, g−1

2 σ2)|Σ)(s)k(f1g1t, ds)

=

∫
S

P ((g1t, σ1)|Σ)(s)P ((g2t, σ2)|Σ)(s)k(f1g1t, ds) by Lemma B.9

= h((g1t, g2t), α).

This shows that q is a morphism. Its uniqueness follows from the corre-
sponding uniqueness in Sets. Finally, gi = πi ◦ q (i = 1, 2) follows from the
corresponding equality in Sets.
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