
B
R

IC
S

R
S

-95-25
S

.B
.Lassen:

B
asic

A
ction

T
heory

BRICS
Basic Research in Computer Science

Basic Action Theory

Søren B. Lassen

BRICS Report Series RS-95-25

ISSN 0909-0878 May 1995

Copyright c© 1995, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recentpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.dk/
ftp ftp.brics.dk (cd pub/BRICS)

Basic Action Theory ∗

S. B. Lassen

BRICS†

Department of Computer Science
University of Aarhus

email: thales@brics.aau.dk
URL: http://www.daimi.aau.dk/~thales

Abstract

Action semantics is a semantic description framework with very good
pragmatic properties but until now a rather weak theory for reasoning
about programs. A strong action theory would have a great practical
potential, as it would facilitate reasoning about the large class of
programming languages that can be described in action semantics.

This report develops the foundations for a richer action theory, by
bringing together concepts and techniques from process theory and
from work on operational reasoning about functional programs. Se-
mantic preorders and equivalences in the action semantics setting are
studied and useful operational techniques for establishing contextual
equivalences are presented. These techniques are applied to establish
equational and inequational action laws and an induction rule.

∗A preliminary version was presented at the 6th Nordic Workshop on Programming Theory,
Aarhus, October 17–19, 1994, and appeared in the workshop proceedings.
†Basic Research in Computer Science, Centre of the Danish National Research Foundation.

i

Contents

1 Introduction 1

2 Action Semantics 3
2.1 Action semantic descriptions . 3
2.2 Action notation . 4
2.3 Basic actions . 4
2.4 Action laws . 6

3 Reduction semantics 7
3.1 Decomposition . 7
3.2 Evaluation . 8
3.3 Properties of evaluation . 9

4 Contextual testing 11
4.1 Definedness . 11
4.2 Contextual testing equivalence . 12
4.3 Basic action theory . 13

5 Finite testing 16
5.1 Open extension . 16
5.2 Precongruence . 17
5.3 Soundness of open extension . 18

6 Alternative characterisation 20
6.1 Experimental order proof technique 21
6.2 Basic context lemma . 24
6.3 Stronger characterisations . 27

7 Simulation 28
7.1 may and must simulation . 28
7.2 Simulation proof techniques . 30
7.3 Simulation versus contextual testing 32
7.4 Identity of all characterisations 34

8 (In)equational action theory 35
8.1 Equational theory . 35
8.2 Inequational theory . 37

9 Stuck actions 39

10 Generalisations to other facets 40

11 Conclusion 42

ii

References 44

Index of symbols 47

iii

1 Introduction

In this report we develop a richer theory for reasoning about programs in action
semantics (AS). Because AS is a general semantic description framework, our
work has a wide practical scope. A strong action theory would offer techniques
for reasoning about programs in any programming language that can be described
in AS.

AS is a denotational-style semantics. An action semantic description (ASD)
maps program terms to the semantic entities they denote. The semantic entities
are called actions. ASDs are compositional, therefore language terms are con-
textually equivalent if their denotations, i.e. actions, are equivalent by a suitable
notion of action equivalence.

The undertaking of this report is to examine notions of semantic equivalence
of actions and techniques for reasoning about these action equivalences.

Existing action theory

Action theory has hitherto mainly consisted of a series of action laws that codify
algebraic properties of actions. Mosses [22, App.C] defines a testing equivalence
(a sort of may equivalence [13]), based on a structural operational semantics for
actions, and develops a bisimulation proof technique. By means of bisimulation,
(almost) all action laws can be shown to respect testing equivalence.

This report reworks and strengthens the foundations of Mosses’ approach and
rectifies some deficiencies therein. Moreover, we obtain a richer theory by working
with a range of preorders and equivalences.

Reasoning with actions

Actions have functional, imperative, as well as concurrent features. There is thus
a great range of places to look for inspiration for developing action theory. This
report treats a subset of actions focussing on nondeterminism and parallelism but
all the theory is set up with a view to future extension to the full set of actions.

Process theory Testing [4] and bisimulation [31] are notions widely used in
concurrency. Our definitions of preorders and equivalences for actions are based
on testing and some of our proof techniques use (bi)simulation.

Bisimulation is normally the strongest equivalence considered in semantics
and is, generally, included in all other equivalences. We shall consider weak
bisimulation that abstracts away from unobservable, internal computation steps.
Standard weak bisimulation doesn’t guarantee test equivalence, however, because
it is insensitive to internal divergence. Therefore we use refined, divergence-
sensitive (bi)simulations [35, 34, 28].

1

Operational reasoning about functional programs In recent years, bisim-
ulation has been subject to much study in functional settings, mostly for pure,
deterministic languages but also in conjunction with input/output, state, nonde-
terminism, or parallelism. (Gordon [10] explains and summarises research in this
area.) This research has, however, paid scant attention to testing equivalence in
the presence of nondeterminism. In this report we wish to develop a testing theory
for actions and therefore take a different approach as starting point, namely Ian
Mason and Carolyn Talcott’s operational framework for reasoning about impure
functional languages which lends itself better to testing. They have developed
powerful operational techniques for deciding program equivalences that involve
memory [19, 14] and have also applied their techniques to a concurrent Actor

language [1].
A drawback of these functional approaches is that they deal with particular,

idealised functional languages. Bisimulation techniques seem to be applicable
to most operationally defined languages but a considerable amount of work is
required to set up the framework. Mason and Talcott have treated a number
of programming concepts but it is not clear how to apply their techniques to
other programming languages in general—the operational semantics must be of a
certain form (does this constrain the class of languages that can be considered?)
and, for every language, comprehensive efforts are required to develop the basic
theory.

In contrast, if we can develop a strong action theory, it will apply readily to
the large class of programming languages that admit an ASD.

Why actions? It may appear paradoxical why we should not be content with a
strong theory of λ-calculi and functional languages since λ-calculi are used exten-
sively as meta-language for denotational semantics. However, for large program-
ming languages, the encoding of semantics as higher-order functions, dictated
by λ-calculi, tends to yield inaccessible semantic descriptions that are hard to
maintain and extend. Actions have been designed to rectify these deficiencies
and experience with action semantics substantiates this claim.

We shall in the following apply the various operational techniques to develop an
inequational and equational theory for actions. We have managed to fit actions
into Mason and Talcott’s framework and to generalise their techniques to non-
determinism as it appears in actions. On the basis of this, we have moreover
developed more elegant simulation proof methods.

In what follows only the results for a small subset of actions are reported.
The subset serves to illustrate the major interesting points of the theory. We
have extended these results to substantial parts of the language of actions but a
full presentation becomes very lengthy. We plan to report on further portions of
our work in the near future.

2

Overview

Section 2 introduces AS as well as the ‘basic’ actions and action laws to be treated
in the rest of the report. In order to fit actions into Mason and Talcott’s frame-
work, Section 3 defines a so-called reduction semantics for actions. In Section 4,
contextual testing preorders and equivalences are defined and the equivalence
classes are determined. Section 5 and Section 6 establish a context lemma and,
based on this, develops a technique for proving actions preordered. Section 7
develops simulation proof methods which are used to sketch an inequational and
equational action theory in Section 8 in terms of action laws and an induction
rule. In Section 9 the role of ‘stuck’ actions is discussed. Section 10 surveys
the generalisation of the theory to arbitrary actions. A discussion of future and
related work concludes the report.

2 Action Semantics

Action semantics (AS) is a semantic description framework with very good prag-
matic properties [22]. It has been used to formalise a wide range of realistic pro-
gramming languages, as demonstrated by complete descriptions of Pascal [25],
ANDF [12], most of Occam2 [3], as well as numerous other functional, proce-
dural, object-oriented, and parallel languages. Moreover, a number of compiler
generators have been based on AS [30, 5, 27, 29].

2.1 Action semantic descriptions

An action semantic description (ASD) consists of compositional semantic func-
tions that map abstract syntax to the universal domain of actions. Suppose we
have an imperative language with a syntactic category Statement in the abstract
syntax. We can have a semantic function such as:

• execute :: Statement → action .

Some example semantic equations:

(1) execute “skip” = complete .
(2) execute [[S1:Statement “;” S2:Statement]] =

execute S1 and then execute S2 .
(3) execute [[“loop” S :Statement]] =

(unfolding
(execute S and then unfold))

trap complete .
(4) execute “exit” = escape .

The actions appearing on the right hand sides of the semantic equations will be
explained shortly.

3

2.2 Action notation

Action notation (AN) is the specification language of AS for expressing actions.
It is a rich language which expresses common computational notions in a direct
way. AN is structured into various facets according to the information being
processed:

• The basic facet is concerned with control, no information is processed.
Higher-order, exceptional, nondeterministic, and interleaving control flow
are expressible.

• The functional facet—processes transient data; features unbounded choice.

• The declarative facet—deals with bindings; control, data, and binding
flow may be combined in various ways.

• The imperative facet—operates on a single-threaded storage.

• The communicative facet—connects distributed agents which communi-
cate asynchronously.

The semantic equations above employ only the basic facet of AN. For simplicity
we shall focus on the basic actions in this report. The operational machinery we
shall present is currently developed for all but the communicative facet.

2.3 Basic actions

AN is a combinator-based notation. Actions are either primitives or compounds
built using combinators. The outcome of performing an action is:

completed, normal termination (subsequent processing continues normally);

escaped, exceptional termination (transfers control to an exception handler);

failed, abnormal termination (aborts current processing); or

divergent, no termination.

The basic primitives are:

complete, escape, and fail, completes, escapes, and fails, respectively.

check , takes a truth value argument and completes if it is true and fails if it is
false.

enact , invokes the abstraction yielded by its argument—an abstraction is an
abstracted (or ‘reified’) action.

4

unfold, marks a point of recursion in the body of the unary combinator unfolding (see
below).

The basic combinators are:

and then, binary sequential combinator.

and, binary combinator; performs its two subactions in any, arbitrarily inter-
leaved order.

trap, binary combinator; performs its second subaction as an exception handler
if the first subaction escapes.

or, binary choice combinator; if one subaction fails, the other is chosen, if neither
subaction fails, one is chosen nondeterministically.

unfolding, unary recursion combinator; the primitive unfold in the subaction of
unfolding denotes a recursive unwinding of the subaction. A divergent ac-
tion is most shortly written unfolding unfold . (Let diverge abbreviate this
action.)

A grammar of basic AN can be specified in unified algebras [24] as follows (the
vertical bar denotes sort union):

• action-primitive = complete escape fail
check yielder enact yielder unfold .

• action = action-primitive action and then action action and action
action trap action action or action unfolding action .

• yielder = truth-value abstraction .

The arguments to the parameterised primitives check and enact are called
yielders. In the basic facet, yielders are just constants: either truth values,

• truth-value = true false ,

or abstractions, built from actions using the constructor abstraction of ,

• abstraction of :: action → abstraction .

Open and closed actions

An action A is closed if it has no ‘free’ occurrences of the primitive unfold, i.e.
occurrences not enclosed by the unary combinator unfolding. Otherwise it is open.
Let closed-action denote the action subsort consisting of all closed actions. Open
actions are only meaningful as subactions of unfolding. Only closed actions can
be performed.

The operator @ substitutes its second argument for all free occurrences of
the primitive unfold in the first argument, (A1@A2 =“A1[A2/unfold]”).

• @ :: action, action → action (associative, unit is unfold) .

5

(1) unfold@U = U .
(2) (unfolding A)@U = unfolding A .
(3) O(A1 . . .An)@U = O(A1@U . . . An@U) , if O 6= unfolding .1

(A, Ai, U range over actions and O is any action construct other than unfolding.)
A1@A2 is closed if A1 or A2 is. An action A is closed if and only if A@U = A,

for all actions U .

Action denotations

To illustrate how actions give semantics to programming language terms, consider
two statements from the example language from before:

(i) skip .
(ii) loop exit .

The semantic function execute maps them to a primitive and to a compound
action, respectively; these actions are the ‘denotations’ of skip and loop exit.

(i) complete .
(ii) (unfolding

(escape and then unfold))
trap complete .

The latter escapes inside the body of unfolding, is then caught by trap, and the
whole action completes. We expect (i) and (ii) to be interchangeable and in
Section 2.4 below we shall see that the action denotations are indeed equivalent.

Basic actions are not very expressive in themselves. Basic actions can just
diverge or terminate in three different ways. In particular, they cannot process
data in any way. Only when fused with data processing facets does the expressive
power of basic actions become interesting. Nevertheless, the basic facet suffices
to illustrate the main concepts and techniques which we shall present, and which
apply equally well to the other facets.

2.4 Action laws

There are a series of ‘action laws’ that characterise actions. The following are a
sample of basic action laws:

(1) check true = complete ; check false = fail .

1Normally, see [22], @ doesn’t substitute into bodies of abstractions. Our definition can be
made to coincide with the usual definition by restricting abstraction to closed actions,

• abstraction = abstraction of closed-action .

6

(2) unfolding A = A @ unfolding A .

(3) (A1 and then A2) and then A3 = A1 and then (A2 and then A3) .
(4) complete and then A = A and then complete = A .
(5) escape and then A = escape ; fail and then A = fail .

(6) (A1 trap A2) trap A3 = A1 trap (A2 trap A3) .
(7) escape trap A = A trap escape = A .
(8) complete trap A = complete ; fail trap A = fail .

(9) (A1 or A2) or A3 = A1 or (A2 or A3) .
(10) fail or A = A or fail = A .
(11) A1 or A2 = A2 or A1 .
(12) A or A = A .

Law (1) characterises check. Law (2) states that unfolding is equal to its own
unwinding. Laws (3)–(5) say that and then is associative, has complete as unit,
and is left-absorbed by escape and fail. Laws (6)–(8) are corresponding laws for
trap. The or combinator is furthermore commutative (11) and idempotent (12).

As an example application of these laws, the example actions (i)–(ii) above
can be shown equal using laws (5), (2), (7).

A catalogue of action laws for all facets of AN may be found in [22, App.B].
In abstract semantic algebras [21], a precursor of AS, such laws served as an
algebraic semantics of actions. However, establishing laws sufficient to define full
action notation in this way doesn’t seem feasible.

3 Reduction semantics

Mason and Talcott operate on the basis of a ‘reduction semantics’ for their lan-
guage. A reduction semantics is a small-step operational semantics that repre-
sents control and state syntactically.

Our first step towards fitting actions into Mason and Talcott’s framework is to
define a reduction semantics for basic AN. (A preliminary sketch was presented in
[16].) The essential novelty compared to [22, App.C] is that control is represented
by means of evaluation contexts.

3.1 Decomposition

An evaluation context [8] (or reduction context [19]) is an action with a hole at
a legal point of execution in the action. Either just a hole [], a hole to the left
of the sequential combinators (seq is either of and then , trap), or a hole on

7

either side of the symmetric combinators (sym is either of and , or)—as a BNF
grammar:

E ::= [] | E seq A | E sym A | A sym E ,

where A ranges over actions and E over evaluation contexts.
A redex R is any action that can make a transition directly (see the evaluation

rules below). E[R] denotes the action obtained by filling R into the hole in E.
In an action E[R], the evaluation context E corresponds to the point of exe-

cution in the program, the program pointer, or current continuation. The redex
R is the current instruction.

When an action A can be written as an evaluation context E filled with a
redex R, viz. A = E[R], we say that A decomposes into E, R.

Remark 3.1 Decomposition is not unique. For example, there are two possible
decompositions of A = check true or (check false and then escape),
namely A = E1[check true] = E2[check false],

where E1 = [] or (check false and then escape),
E2 = check true or ([] and then escape).

3.2 Evaluation

The evaluation rules decompose an action and replace the redex with a reduced
(or unwound) action. Let A1,A2:closed-action, A:action, and Y :yielder,

(1) E[check Y] 7→
{

E[complete] if Y = true
E[fail] if Y = false .

(2) E[enact Y] 7→ E[A1] if Y = abstraction of A1 .
(3) E[unfolding A] 7→ E[A@unfolding A].

(4) E[A1 and then A2] 7→
{

E[A1] if A1 : escape fail
E[A2] if A1 = complete .

(5) E[A1 and A2] 7→
{

E[A1] if A1 : escape fail or A2 = complete
E[A2] if A1 = complete or A2 : escape fail .

(6) E[A1 trap A2] 7→
{

E[A1] if A1 : complete fail
E[A2] if A1 = escape .

(7) E[A1 or A2] 7→
{

E[A1] if A1 : complete escape or A2 = fail
E[A2] if A1 = fail or A2 : complete escape .

Terminology

Let success = complete escape , terminated = success fail .
An action is final if there are no transitions out of it. A computation from (or

‘performed by’) some action A is a sequence of transitions, A 7→ A1 7→ A2 7→ · · · .

8

Computations are successful and terminated if they end in final actions in success
and terminated, respectively.

A non-terminated, final action is stuck, so is a computation ending in a stuck
action. enact false is an example of a stuck action. In the following we shall
assume that all actions are well-behaved : A closed action is well-behaved if it
never gets stuck and all its subterms are well-behaved. (Section 9 discusses how
stuck actions fit into our theory.)

An action A must converge, written A⇓, if all computations from A are finite.

Definition 3.2 ⇓ is the least predicate on closed actions satisfying

A⇓ iff, for all B, A 7→ B implies B⇓ .

⇑ denotes the negation of ⇓ , A⇑ def⇔ ¬(A⇓) .

⇓ can be expressed inductively:

⇓ =
⋃

µ<ω

⇓µ where ⇓µ = { A | (∀B|A 7→ B)B ∈
⋃
ν<µ

⇓ν } .

Basic action notation is finitely branching and by König’s lemma we only need
to do induction over the finite ordinals (all µ<ω). If we add the functional
facet which introduces countably branching nondeterminism, induction over all
recursive ordinals is required [2].

3.3 Properties of evaluation

We need to develop some machinery for reasoning about evaluation. Our obser-
vations and results about evaluation rules and transitions are similar to Plotkin’s
activity lemma [33] and Mason and Talcott’s ‘cr’ lemma [14], except for our focus
on nondeterminism.

Evaluation contexts are special instances of arbitrary contexts C with any
number of holes anywhere (also inside abstractions, unfoldings, etc.) In partic-
ular, actions are contexts with no holes. Contexts can be composed by filling
the innermost into the outermost, Couter[Cinner], and this composition is asso-
ciative. Whenever E1 and E2 are evaluation contexts, so is their composition,
E1[E2]. Consequently, by inspection of the evaluation rules above, A 7→ B implies
E[A] 7→ E[B], for all evaluation contexts E.

Remark 3.3 Notice that, given a transition A 7→ B, the reduced redex need not
be uniquely determined, as witnessed by the transition

diverge and diverge 7→ diverge and diverge ,

by reduction of either of the two occurrences of redex diverge = unfolding unfold.

9

Recall that @ substitutes its second argument for all free occurrences of un-
fold in its first argument. With the obvious extension of @ to contexts we have, for
all contexts C and actions U , that C@U is a context and C[A]@U = (C@U)[A],
for all closed A. The definition of open/closed actions naturally generalises to
contexts too. Unless otherwise stated, evaluation contexts are always assumed
to be closed.

Call a context ‘finite’ if no holes occur inside the combinator unfolding, in
particular, all evaluation contexts are finite. Finite contexts F satisfy F [A]@U =
(F@U)[A@U], for arbitrary actions A, U . Open actions A and closed, finite
contexts F are in a one-to-one correspondence, A = F [unfold] and F = A@[],
such that A@U = F [U], for all U .

We are going to use some properties of the interplay between evaluation and
composition, i.e. how do actions composed of a context filled with an action eval-
uate? Consider such an action C[A] where C and A are closed. The contribution
of C and A to the processing capabilities of C[A] is explicated by the following
lemmas which we state without proofs. For notational convenience we restrict
ourselves to the case when C is a finite context F .

The first lemma says that a context either (i) has a hole at an evaluation
point in the context, i.e. the context E obtained by replacing all other holes of
F by unfold is an open evaluation context, or (ii) can evaluate without reference
to what is filled into its holes.

Lemma 3.4 For all closed, finite contexts F ,
either (i) (∃ open E) F = E@[] ,
or else (ii) (∀ closed A, B′ | F [A] 7→ B′)

(∃ closed F ′ | B′ = F ′[A]) (∀ closed A′) F [A′] 7→ F ′[A′] ,
where E is a (possibly open) evaluation context, and F ′ a finite context.

The next lemma describes the role of A in a transition F [A] 7→ B′.

Lemma 3.5 Assume F, A are closed and F [A] 7→ B′. If A is not terminated,
(i) (∃ open E | F = E@[]) (∃ closed B | A 7→ B) B′ = (E@A)[B] ,

or (ii) (∃ closed F ′ | B′ = F ′[A]) (∀ closed A′) F [A′] 7→ F ′[A′] .

(i) and (ii) are not mutually exclusive, as illustrated by remark 3.3:

diverge and diverge 7→ diverge and diverge ,

where F = E = F ′ = (diverge and []), A = B = diverge.
We shall mainly be interested in the special instance where F is an evaluation

context. Then in case (i) E = F , and in case (ii) F ′ is either an evaluation context
or F ′ = B′ (a context with no holes). Thus if an action makes a transition and
the action decomposes into an evaluation context filled with a non-terminated
subaction, then (i) the transition chooses a redex in the subaction, or a parallel
redex is used which either (ii) doesn’t affect the subaction, or (iii) eliminates it:

10

Lemma 3.6 (Choice of execution point) If E[A] 7→ B′ and A is not termi-
nated, then (i) (∃ closed B | A 7→ B) B′ = E[B] ,

or (ii) (∃E′ | B′ = E′[A]) (∀ closed A′) E[A′] 7→ E′[A′] ,
or (iii) (∀ closed A′) E[A′] 7→ B′ .

4 Contextual testing

In this section, we define contextual test preorders and equivalences for actions.

4.1 Definedness

Let us introduce two ‘definedness’ predicates for actions. Action A may succeed,
A↓may , if there exists a successful computation from A. A must succeed, A↓must ,
if all computations from A are successful.

Definition 4.1 (Defined) ↓may and ↓must are the least predicates satisfying

A↓may if A 7→∗ S for some S :success .

A↓must if A 6= fail and (A 7→ B implies B ↓must) .

↓must is defined negatively: A ↓must if no computation from A fails or diverges.
(Consequently A↓must if A is stuck, cf. Section 9).

Recall success = complete escape. These are the two ‘positive’ action outcomes
that can be used constructively. I.e., a context may test whether an action
completes or escapes and respond accordingly,

Ccomplete = ([] and then Response) , Cescape = ([] trap Response) .

It is impossible to respond deterministically to failed and divergent outcome.
A simple consequence of the definition of ↓may and ↓must is:

Fact 4.2 If A 7→ B, then B ↓may implies A↓may, and A↓must implies B ↓must.

Let the preorders �may and �must order definedness of actions:

Definition 4.3 For closed actions A1, A2 and m ∈ {may,must},

A1 �m A2 iff A1 ↓m ⇒ A2 ↓m .

11

We will need the following inductive formulation of the definedness predicates
and relations for induction proofs:

↓may =
⋃

λ<ω

↓λ
may

where ↓λ
may

= success ∪
{ A | ∃ B ∈

⋃
κ<λ

↓κ
may

. A 7→ B } .

↓must =
⋃

λ<ω

↓λ
must

where ↓λ
must

= { A | A 6= fail ∧
(∀B|A 7→ B)B ∈

⋃
κ<λ

↓κ
must

} .

�m =
⋂

λ<ω

�λ
m where A1 �λ

m A2 ⇔ A1 ↓λ
m ⇒ A2↓m .

If countable nondeterminism is added, ↓must and �must run over all recursive
ordinals as in definition 3.2. We shall phrase all induction proofs so that they
also hold for transfinite induction and thus carry over to the more general case.

4.2 Contextual testing equivalence

Now we can define three contextual testing equivalences. They are derived from
may and must preorders defined as the weakest precongruences ordering diver-
gent actions below convergent ones, i.e. included in �may and �must .

Definition 4.4 (Contextual preorders) For arbitrary actions A1, A2,

A1
<∼may A2 iff ∀ closing contexts C. C[A1] �may C[A2] ,

A1
<∼must A2 iff ∀ closing contexts C. C[A1] �must C[A2] ,

where C is closing if C[Ai] is closed, for i = 1, 2.

These contextual testing preorders generalise conventional contextual preorder to
the nondeterministic case. Notice that these preorders are defined for both open
and closed actions. We shall focus on the ‘closed’ preorders, i.e. these preorders
restricted to closed actions only. (Section 5.3 will explain how to generalise our
results to the general case.)

Let 'may and 'must denote the induced equivalences. Define ‘contextual
equivalence’ as ' = 'may ∩ 'must .

These equivalences are, by definition, the weakest equivalences such that,
in any context, equivalent subterms are interchangeable without any observable
effect. One chooses may, must, or their intersection ‘'’, dependent on one’s
view of observation: whether one ignores divergence, regards divergence as catas-
trophic, or demands equal divergence properties, respectively.

As a rough intuition of the <∼may and <∼must preorders, they both mean ‘the
left argument is more divergent than the right argument’, and both =∼may and

12

<∼must mean ‘left argument is less deterministic than right argument’. Thus the
divergent action diverge is both ⊥may and ⊥must, and the completely unpredictable
action chaos is both >may and ⊥must. Refer to the latter as the ‘implementation’
preorder, <∼impl = =∼may ∩ <∼must , i.e. specification S is implemented by the more
deterministic implementation I if S <∼impl I . Notice that ' = <∼impl ∩ =∼impl .

Having all the contextual preorders, we can express more properties of actions
by a variety of inequational laws. This will be exemplified in Section 8.

<∼may and <∼must can be viewed as testing preorders, in the sense of [13], by
taking the set of ‘tests’ or ‘experimenters’ to be all action contexts. A test or ex-
periment C is performed on an action A by performing C[A]. If the computation
is successful, A ‘passes’ test C.

The testing equivalence defined for actions in [22, C.4] corresponds to our
may equivalence. (Both the notion of test and the notion of observation used
there are a little less standard.) We shall instead take contextual equivalence,
' , as basic. It is a stronger equivalence, and thus a ‘safe compromise’ between
the may and the must view of divergence, and it turns out that the action laws
hold even for contextual equivalence.

Remark 4.5 (Reactive formulation) We would like our theory to generalise
to AN’s communicative facet also. Testing for some reactive behaviour would
seem more appropriate in that setting. In [13] a special action w signals success.
Similarly, the test setup in [1] has an observer primitive event(). Suppose we
define a special action event, that may occur in test contexts only, and check
whether event may or must be performed during testing, then the resulting pre-
orders will be the same as in definition 4.4. It is easy to see that the new preorders
are as discriminating as the old: just replace every old context Csuccess by

Cevent = (Csuccess and then event) trap event .

The opposite is less direct: in every new context, replace occurrences of event by
escape and ensure that this exception is not trapped (somehow resolve conflicts
with traps and other escapes in the context).

4.3 Basic action theory

There are, in fact, only 4 may and 8 must equivalence classes for closed basic
actions. Define diverge, succeed, terminate, and chaos.

diverge = unfolding unfold .
succeed = complete or escape .
terminate = succeed trap (escape and fail) .

13

chaos = (diverge and fail and escape) trap succeed .

The or combinator discards any failing argument, i.e. if one argument fails the
other is chosen. This gives or an ‘angelic’ flavour and makes it inapplicable for
straightforward formulations of some of the actions above. To further the intu-
ition behind the latter three, suppose we had a binary nondeterministic ‘internal’
or ‘demonic’ choice operator ⊕ (as in [13]) which chooses any of its two arguments
without inspection of the other, then

succeed = complete ⊕ escape .
terminate = success ⊕ fail .
chaos = terminate ⊕ diverge .

complete ⊕ fail, escape ⊕ fail can be coded as

complete ⊕ fail = succeed trap fail .
escape ⊕ fail = succeed and then fail .

The closed may and must orderings can be depicted as follows:2

succeed =
terminate =

chaos = >may

�
�
�

@
@
@

complete escape

@
@
@

�
�
�

diverge = ⊥may = fail

complete fail escape
HHHHH

�������
��
�

HH
HH

H

complete
⊕ fail succeed

escape
⊕ fail

HH
HH

H

��
��
�

terminate

diverge = ⊥must = chaos

(Notice that ⊕ is the may least upper bound operator, ‘tmay’, and the must

greatest lower bound, ‘umust’, hence also the impl greatest lower bound, ‘uimpl’.)
In Section 7 we will show that the diagrams exactly describe the closed pre-

orders. Here we only show that the may and must preorders are at least as
discriminative as illustrated by the diagrams. To this end we define simple pre-
orders that are in exact correspondence with the diagrams.

Definition 4.6 For closed actions A1, A2, define

A1 ⇀∼may A2 iff (∀S :success | A1 7→∗ S) A2 7→∗ S ,

A1 ⇀∼must A2 iff A1 ⇓ ⇒ A2 ⇓
∧ (∀T :terminated | A2 7→∗ T) A1 7→∗ T .

2In [17] the must picture was erroneous.

14

These relations are easily shown to be preorders.

Proposition 4.7 The diagrams are exact descriptions of ⇀∼may and ⇀∼must .

Proof (sketch): By inspection of the diagrams, the preorders can be seen to
make all the (implicit) distinctions in the diagrams: no two nodes in the diagrams
can be merged and no lines can be added between the nodes.

Conversely, simple combinatorial arguments based on the definitions of ⇀∼may

and ⇀∼must show that there are no more ⇀∼ equivalence classes than illustrated
in the diagrams (in the must case we exclude the stuck equivalence class, cf.
Section 9). It is easily checked that all lines between nodes reflect the preorders.

We shall now prove that the closed contextual preorders are included in ⇀∼may

and ⇀∼must . Thus it follows by proposition 4.7 that the contextual preorders are
at least as discriminative as depicted by the diagrams.

Lemma 4.8 For closed actions A1, A2,

A1
<∼may A2 implies A1 ⇀∼may A2 .

A1
<∼must A2 implies A1 ⇀∼must A2 .

Proof: Let m ∈ {may,must}. Assume A1
<∼m A2, hence C[A1]↓m ⇒ C[A2]↓m ,

for all closed C. Show A1 ⇀∼m A2:

m = may: Let C1 = [] trap fail , C2 = [] and then fail . Examination of the
evaluation relation shows, for all closed A,

Ci[A]↓may ⇔ A 7→∗ Si , for i = 1, 2 ,

where S1 = complete, S2 = escape. Thus Ci[A1] ↓may ⇒ Ci[A2] ↓may gives
A1 7→∗ Si ⇒ A2 7→∗ Si , for i = 1, 2. This is exactly the definition of
A1 ⇀∼may A2.

m = must: Let C0 = [] or complete ,
C1 = ([] or escape) and then fail ,
C2 = ([] or complete) trap fail ,
C3 = [] .

These contexts satisfy, for all closed A,

C0[A]↓must ⇔ A⇓ ,

Ci[A]↓must ⇔ A⇓ ∧ A 67→∗ Ti , for i = 1, .., 3 ,

where T1 = complete, T2 = escape, T3 = fail. Expand Ci[A1] ↓must ⇒
Ci[A2]↓must , for i = 0, .., 3, according to the above. Putting it all together
yields the definition of A1 ⇀∼must A2.

15

5 Finite testing

The contextual test preorders are defined by quantification over arbitrary action
contexts which makes it hard to reason about the preorders directly from the def-
inition. In Section 6 we show that it suffices to quantify over evaluation contexts
(the basic context lemma 6.10) and use this to show actions preordered. It
is advantageous to perform the restriction from arbitrary contexts to evaluation
contexts in two steps, namely first to restrict to finite contexts (where no holes
occur inside the combinator unfolding). The restriction to finite contexts is most
conveniently proved separately because it involves a thorough treatment of open
and closed actions and contexts. The further restriction to evaluation contexts
need only deal with closed actions and thus becomes more clear.

Before proceeding to Section 6 we carry out this first step. We shall prove the
following lemma:

Lemma 5.1 (Finite restriction) For closed A1, A2 and m ∈ {may,must},

A1
<∼m A2 if and only if ∀ closed, finite contexts F. F [A1] �m F [A2] .

The ‘only if’ direction is immediate because closed, finite contexts are instances of
arbitrary closed contexts. (Observe that for closed actions, every closed context is
a closing context.) We shall postpone the proof of the ‘if’ direction till Section 5.2.

5.1 Open extension

The contextual preorders <∼m and equivalences 'm are defined for arbitrary
actions. Yet, Section 4.3 as well as the following sections deal only with closed
actions. In particular, we shall develop alternative characterisations of the se-
mantic preorders that will be defined for closed actions only. In the terminology
of Gordon [10], define their ‘open extensions’ as follows:

Given a relation on closed actions, R ⊆ closed-action × closed-action, its open
extension is a relation on open actions R◦ ⊆ action × action,

A1R◦A2
def⇔ ∀U :closed-action. (A1@U) R (A2@U) ,

for arbitrary actions A1, A2. The open extensions of relations R and S coincide,
R◦ = S◦, if and only if the restrictions to closed actions of R and S coincide.

The proof of lemma 5.1 will establish that <∼
◦
m is contained in <∼m , see

Section 5.3. Hence any safe approximation R to <∼m on closed actions yields a
safe approximation R◦ to <∼m . Therefore we shall be content with developing
characterisations of <∼m on closed actions.

16

5.2 Precongruence

Lemma 5.1 can be restated as <∼
◦
m = <

@
◦
m , for m ∈ {may,must}, where:

Definition 5.2 For all closed A1, A2,

A1
<
@m A2

def⇔ ∀ closed, finite F. F [A1] �m F [A2] .

Because of the correspondence between closed, finite contexts and open actions,

Fact 5.3 A1
<
@m A2 ⇔ ∀A. A@A1 �m A@A2 .

Our proof of lemma 5.1 follows the approach of Mason, Smith, and Talcott
[14]. The crux of the proof consists of showing that <

@
◦
m is a precongruence.

Proposition 5.4 <
@
◦
m is a precongruence, i.e.

A1
<
@
◦
m A2 implies C[A1] <

@
◦
m C[A2] ,

for arbitrary actions A1, A2, contexts C, and m ∈ {may,must}.

Proof: By structural induction on C.
If C = [] or C has no holes, the result is immediate, in the latter case because

<
@
◦
m is reflexive.

If C = O(C1 . . . Cn) and O 6= unfolding , then, for all closed, finite contexts F
and closed actions U ,

F [C[A1]@U] = F [O(C1 . . . Cn)[A1]]@U , since F is closed and finite
= F1[C1[A1]@U] , where F1 = F [O([] C2[A1] . . . Cn[A1])]@U

�m F1[C1[A2]@U] , since C1[A1] <
@
◦
m C1[A2] by I.H.

and F1 is closed and finite
= F2[C2[A1]@U]
...
= Fn[Cn[A1]@U]

�m Fn[Cn[A2]@U] , by I.H. since Fn is closed and finite
= F [C[A2]@U] ,

where Fi = F [O(C1[A2] . . . Ci−1[A2] [] Ci+1[A1] . . . Cn[A1])]@U . Conclude
C[A1] <

@
◦
m C[A2].

If C = unfolding C0, let A′i = C0[Ai], Ui = C[Ai] = unfolding A′i, for i = 1, 2.
A′1

<
@
◦
m A′2 by I.H. We must show U1

<
@
◦
m U2 which is equivalent to U1

<
@m U2

because Ui is closed. We show ∀λ<ω. P (λ), where P (λ) ⇔ ∀ closed F. F [U1] �λ
m

F [U2], by induction on λ. Let λ<ω, assume ∀κ<λ. P (κ) and show P (λ):
m = may: Assume F [U1]↓λ

may
.

Either (1) F [U1]:success, then F :success, hence F [U2]:success and F [U2]↓may.
Or (2) F [U1] 7→ B′, B′↓κ

may
for some κ<λ. By lemma 3.5:

17

Either (i) B′ = (E@U1)[B] where F = E@[] and U1 7→ B. Then B = A′1@U1 by
evaluation rule (3). Observe B′ = E[A′1]@U1. By I.H. and fact 5.3, B′↓κ

may

implies E[A′1]@U2 ↓may which can be written (E@U2)[A′1@U2] ↓may. This
implies (E@U2)[A′2@U2] ↓may since A′1

<
@
◦
may

A′2. It is easily checked that
F [U2] 7→ (E@U2)[A′2@U2], hence F [U2]↓may by fact 4.2.

Or (ii) B′ = F ′[U1] and F [U2] 7→ F ′[U2]. Since F ′[U1] ↓κ
may

, F ′[U2] ↓may by I.H.,
hence F [U2]↓may by fact 4.2.

m = must: Assume F [U1]↓λ
must

.
F [U2] = fail only if F = fail, in which case F [U1] = fail. So F [U1] 6= fail implies
F [U2] 6= fail. What remains to be shown is whenever F [U2] 7→ B′, B′ ↓must. By
lemma 3.5:

Either (i) B′ = (E@U2)[B] where F = E@[], U2 7→ B, and B = A′2@U2. Observe
B′ = E[A′2]@U2 and F [U1] 7→ E[A′1]@U1. Hence E[A′1]@U1 ↓κ

must
for some

κ<λ. By I.H. and fact 5.3, E[A′1]@U2 ↓must. Now E[A′2]@U2 ↓must follows
from A′1

<
@
◦
must

A′2, i.e. B′↓must.

Or (ii) B′ = F ′[U2] and F [U1] 7→ F ′[U1]. Hence F [U1] ↓κ
must

for some κ<λ. By
I.H. F [U2]↓must, i.e. B′↓must.

Thus ∀λ<ω. P (λ) is established which concludes the proof.

We are now in a position to prove the ‘if’ direction of lemma 5.1. Since <
@
◦
m

is a precongruence and contained in �m (trivial from the definition of <
@
◦
m),

<
@
◦
m ⊆ <∼m , because <∼m is defined as the weakest precongruence contained in

�m. In particular, this is the case when restricted to closed actions, <
@m ⊆ <∼m .

More formally:

Proof (lemma 5.1, ‘if’): Let m ∈ {may,must} and A1, A2 be closed actions.
Assume A1

<
@m A2, hence A1

<
@
◦
m A2, and let C be any closing context and show

C[A1] �m C[A2]. C is closed so by the precongruence of <
@
◦
m (proposition 5.4),

C[A1] <
@
◦
m C[A2]. Conclude since <

@
◦
m is included in �m.

Thus <
@m and <∼m coincide for closed actions and consequently <

@
◦
m and

<∼
◦
m coincide for arbitrary actions since the open extension R◦ of a relation R

by definition is completely determined by the restriction of R to closed actions.
Hence proposition 5.4 implies that <∼

◦
m is a precongruence.

5.3 Soundness of open extension

Analogously to the proof of lemma 5.1 we get that <∼
◦
m , being a precongruence,

is included in <∼m :

18

Lemma 5.5 For arbitrary actions A1, A2,

A1
<∼
◦
m A2 implies A1

<∼m A2 .

Proof: Assume A1
<∼
◦
m A2 and C is any closing context. By the precongruence

of <∼
◦
m , C[A1] <∼

◦
m C[A2]. Since C[Ai] is closed, C[A1] <∼m C[A2]. Hence

C[A1] �m C[A2] because <∼m by definition is included in �m.

This is the most important direction of implication. It means that for show-
ing open actions preordered, it suffices to show them preordered by the open
extension. In many common cases results about closed preorderings generalise
straightforwardly to their open extensions.

E.g., for closed actions A1, A2, A1R◦A2 ⇔ A1RA2. More generally:

Fact 5.6 Let R be a relation on closed actions. For a clause of the form

∀A1..An. LHS(A1, .., An) R◦ RHS(A1, .., An) , (1)

(normally the universal quantification over arbitrary actions is left implicit in
action laws), in two cases it suffices to show that it holds for the closed relation
R.

(i) When LHS and RHS are both ‘closing’, i.e., for arbitrary actions A1, .., An,
LHS(A1, .., An) and RHS(A1, .., An) are closed. In particular, this is the
case when n = 0 and LHS() and RHS() are closed actions.

(ii) When @ distributes over both LHS and RHS, i.e.

LHS(A1, .., An)@U = LHS(A1@U, .., An@U) ,
RHS(A1, .., An)@U = RHS(A1@U, .., An@U) ,

(2)

for arbitrary A1, .., An and closed U , then (1) is equivalent to

∀closed A′1..A
′
n. LHS(A′1, .., A

′
n) R RHS(A′1, .., A

′
n) . (3)

To see this, observe that, by definition of R◦, (1) holds iff

∀A1..An. ∀closed U. LHS(A1, .., An)@U R RHS(A1, .., An)@U . (4)

This is equivalent to (3) by property (2) and because A′i = Ai@U is closed
when U is and A′i@U = A′i when A′i is closed.

With regard to (ii), note that @ distributes over all action constructs other than
unfolding .

For instance, we only need to prove that the action laws from Section 2.4
hold for ' for closed actions (see Section 8): All the laws generalise to arbitrary
actions and '◦ according to fact 5.6, hence also hold for ' by lemma 5.5.

The converse of lemma 5.5 is not true for basic actions only, at least not in
the must case:

19

Example 5.7 Let A1 = (unfold and then complete), A2 = (unfold and then escape).
They are distinguished by <∼

◦
m by means of context C = ([] trap fail) and closed

action U = complete,

C[A1@U] = (complete and then complete) trap fail ' complete ,
C[A2@U] = (complete and then escape) trap fail ' fail .

Hence A1 6'◦
must

A2.
When a closing context C ′ is fed with an action A, either C ′[A] can only

perform without reference to A (A is ‘dead code’), or else performance of C ′[A] can
reach A. In the latter case, due to the simplicity of basic actions, if performance
of A can reach an occurrence of unfold in A, A can necessarily be reached again,
hence C ′[A] may diverge. Consequently, either C ′ doesn’t distinguish actions at
all, or else, for all actions A which can reach an occurrence of unfold, C ′[A] is
equated to ⊥must = diverge in the must ordering. For the example above, since
A1 and A2 both have a reachable occurrence of unfold, A1 'must A2.

When other facets are added, action contexts become more expressive and
the converse does hold. (For every closed context C and closed action U , it is
possible to produce a closing context CU such that C[A@U] ' CU [A], for all A.)

6 Alternative characterisation

The definition of contextual preorders is difficult to use to prove actions pre-
ordered or equivalent. We need an alternative characterisation which gives a
tractable way of determining equivalence. This approach is used by Hennessy for
test preorders [13] and it is central to Mason and Talcott’s operational work. In-
spired by the ‘ciu’ characterisation of the latter [19], define the following preorders
for actions. Following Gordon [11], we call them ‘experimental’ preorders.

Definition 6.1 (Experimental preorders) For closed actions A1, A2,

A1
<≈may A2 iff ∀ E. E[A1] �may E[A2] ,

A1
<≈must A2 iff ∀ E. E[A1] �must E[A2] ,

where E ranges over closed evaluation contexts.

‘Experimental equivalence’, ≈ , denotes the intersection of the two induced
equivalences. Let <≈impl = >≈may ∩ <≈must , then ≈ = <≈impl ∩ >≈impl .

These preorders only quantify over evaluation contexts, not arbitrary contexts.
This turns out to be much more tractable.

Just as for the inductive formulation of �may and �must, it is possible to
express the experimental preorders as limits of sequences of approximations. For
m ∈ {may,must},

20

<≈m =
⋂

λ<ω

<≈
λ
m where A1

<≈
λ
m A2 ⇔ ∀E. E[A1] �λ

m E[A2] ,

This gives a useful proof technique for showing actions experimental preordered:
Prove ∀λ<ω. A1

<≈
λ
m A2 by induction on λ.

6.1 Experimental order proof technique

The beauty of the experimental preorders is that actions can be proven experi-
mental preordered essentially by induction on the length of their computations.
The possibly interleaved performance of actions adds some complications (com-
pared to Mason and Talcott’s sequential setting [14]; their parallel work [1] is not
directly comparable to the parallelism of basic actions).

As an illustration of the proof technique employed, we shall prove two ‘eval-
uation lemmas’.

First the more general and weaker version which is proved by reference to
fact 4.2:

Lemma 6.2 (Evaluation) A1 7→ A2 implies A1
<≈impl A2 .

Proof: If A1 7→ A2, then also E[A1] 7→ E[A2], for all evaluation contexts E.
First show A1

>≈may A2, i.e. ∀E. E[A2]↓may ⇒ E[A1]↓may. If E[A2]↓may, then
since E[A1] 7→ E[A2], E[A1]↓may, by fact 4.2.

Next show A1
<≈must A2, i.e. ∀E. E[A1] ↓must ⇒ E[A2] ↓must. If E[A1] ↓must,

then since E[A1] 7→ E[A2], E[A2]↓must, by fact 4.2.

In accordance with our intuition that <≈impl means ‘less deterministic than’,
we may read the preceding evaluation lemma as ‘evaluation reduces nondeter-
minism’.

Corollary 6.3 Some immediate consequences are:

(i) complete or A <≈impl complete .
(ii) escape or A <≈impl escape .
(iii) fail or A <≈impl A .
(iv) complete and A <≈impl A .
(v) escape and A <≈impl escape .

21

(vi) fail and A <≈impl fail .

In deterministic settings, when one term can make a transition into another,
then the terms are equivalent [9, 19]. This demonstrates how the presence of
nondeterminism weakens our theory. Under certain conditions we may strengthen
the evaluation lemma, however.

The proof of the following ‘determined’ version of the evaluation lemma em-
ploys the typical machinery for proofs of experimental orderings, namely induc-
tion on the length of computation, λ, using lemma choice of execution point
(3.6).

Lemma 6.4 (Determined evaluation)
If A1 7→ A2 is the only transition out of A1, then A1 ≈ A2 .

Proof: A1
>≈may A2 and A1

<≈must A2 follow from lemma 6.2. Note that since
A1 7→ A2, A1 is not terminated.

A1
<≈may A2 follows from ∀λ<ω. A1

<≈
λ
may

A2 . Show this by induction on λ.
Let λ<ω, assume ∀κ<λ. A1

<≈
κ
may

A2 , and show A1
<≈

λ
may

A2: Assume E[A1]↓λ
may

.
We know A1 is not terminated, so E[A1] is not in success. By the definition of
↓λ
may

, there is a B′ such that E[A1] 7→ B′ and B′ ↓κ
may

, for some κ<λ. Show
E[A2]↓may by application of lemma choice of execution point to E[A1] 7→ B′:

Either (i) B ′ = E [B] where A1 7→ B. Since A1 7→ A2 is the only transition out
of A1, B = A2, B′ = E[A2], and E[A2]↓κ

may
, hence E[A2]↓may.

Or (ii) B ′ = E ′[A1] and, for all A′, E [A′] 7→ E ′[A′]. In particular, E[A2] 7→
E′[A2]. Since E′[A1]↓κ

may
we have E′[A2]↓may by I.H., hence E[A2]↓may by

fact 4.2.

Or (iii) E [A′] 7→ B ′ for all A′. In particular, E[A2] 7→ B′, since B′↓may we have
E[A2]↓may by fact 4.2.

This concludes A1
<≈may A2.

To show A1
>≈must A2, show ∀λ<ω. A2

<≈
λ
must

A1 by induction on λ. Let λ<ω,
assume ∀κ<λ. A2

<≈
κ
must

A1 , and show A2
<≈

λ
must

A1: Assume E[A2] ↓λ
must

. Since
A1 is not terminated, E[A1] 6= fail. What remains to be shown is that E[A1] 7→ B′

implies B′↓must, for all B′. By lemma choice of execution point:

Either (i) B ′ = E [B] where A1 7→ B. Since A1 7→ A2 is the only transition out
of A1, B = A2, B′ = E[A2], and B′↓κ

must
, hence B′↓must.

Or (ii) B ′ = E ′[A1] and, for all A′, E [A′] 7→ E ′[A′]. In particular, E[A2] 7→
E′[A2]. E[A2]↓λ

must
implies E′[A2]↓κ

must
for some κ<λ. By I.H. E′[A1]↓must,

hence B′↓must.

22

Or (iii) E [A′] 7→ B ′ for all A′. In particular, E[A2] 7→ B′, hence B′ ↓must by
fact 4.2.

Conclude A1
>≈must A2.

Corollary 6.5 Some laws from Section 2.4 are direct consequences:

(1) check true ≈ complete ; check false ≈ fail .
(2) unfolding A ≈ A @ unfolding A .
(4)a complete and then A ≈ A .
(5) escape and then A ≈ escape ; fail and then A ≈ fail .
(7)a escape trap A ≈ A .
(8) complete trap A ≈ complete ; fail trap A ≈ fail .

Finally, we prove that fail is the least element of <≈may , a fact that will be
used in Section 7. The proof is somewhat involved.

Proposition 6.6 fail <≈may A , for all closed A.

Proof: Simultaneously, we prove the inequational law A1, A2
<≈may (A1 or A2).

Show ∀λ<ω. P (λ), where

P (λ) ⇔ ∀ closed A, A′, E. (i) E[fail]↓λ
may

⇒ E[A]↓may

∧ (ii) E[A]↓λ
may

∨ E[A′]↓λ
may

⇒ E[A or A′]↓may,

by induction on λ. Let λ<ω, assume ∀κ<λ. P (κ) and show P (λ):
First (i): Clearly E 6= [] since not fail ↓may. So let E = E0[E1] where E1 is
the innermost layer of E; either E1 = ([] seq A1), E1 = ([] sym A1), or E1 =
(A1 sym []), (cf. the definition of evaluation contexts in Section 3.1).

Clearly E[fail] is not in success. Therefore there must be a transition E[fail] 7→
B′ such that B′↓κ

may
for some κ<λ. We will show that E[A] 7→ B′′ or E[A] = B′′

where (∗) B′′ = B′,
or (∗∗) B′ = E′[fail] and B′′ = E′[A′′] for some A′, E′,
or (∗∗∗) B′ = E′[A1] and either B′′ = E′[A or A1] or B′′ = E′[A1 or A].

In any case, conclude B′′↓may; in case (∗) because B′↓κ
may

; in case (∗∗) by I.H.(i);
in case (∗∗∗) by I.H.(ii). Therefore E[A]↓may by fact 4.2.

We have E0[E1[fail]] = E[fail] 7→ B′ and E1[fail] is not terminated so by lemma
choice of execution point:

Either (i) B′ = E0[B] and E1[fail] 7→ B. Tedious examination of the evaluation
rules shows either

(a) B = fail, then conclude (∗∗) with E′′ = E0, A′′ = E1[A]; or

(b) B = A1 and E1[A] 7→ A1, then (∗); or

23

(c) B = E′1[fail] where E′1 = ([] sym A′1) or E′1 = (A′1 sym []) and A1 7→
A′1, then (∗∗) with E′ = E0[E′1] and A′′ = A; or

(d) B = A1 and sym = or, then (∗∗∗) with E′ = E0.

Or (ii) B′ = E′′[E1[fail]] and E0[E1[A]] 7→ E′′[E1[A]]. Then (∗∗) holds with
E′ = E′′[E1] and A′′ = A.

Or (iii) E0[E1[A]] 7→ B′, thus (∗).

Secondly (ii): Assume E[A]↓λ
may

(the case where only E[A′]↓λ
may

is symmetri-
cal). If A = fail, then E[A or A′]↓may by (i) above. If A:success, evaluation rule
(7) gives E[A or A′] 7→ E[A] and conclude E[A or A′]↓may by fact 4.2. If A is not
terminated, E[A] is not in success, therefore there is a B′ such that E[A] 7→ B′ and
B′↓κ

may
for some κ<λ. Apply lemma choice of execution point to E[A] 7→ B′

and show, by examination of cases (i)–(iii), either E[A or A′] 7→ B′ and conclude
by fact 4.2; or else B′ = E′[B] and E[A or A′] 7→ E′[B or A′] and conclude by
I.H.

Remark 6.7 The above proof simplifies if <≈may is defined by quantification only
over evaluation contexts without occurrences of the or combinator (see discussion
in Section 6.3): Items (ii), (∗∗∗), and (d) above become superfluous.

The proof technique employed in the proofs of the evaluation lemmas and
the above proposition is very general and powerful. Currently, everything we
can prove about actions can be proved using this technique. But the proofs are
lengthy and tedious and, moreover, they follow a common pattern. The simula-
tion proof methods in Section 7 will distill this pattern and are more convenient
to work with.

6.2 Basic context lemma

We shall now prove that the experimental preorders coincide with the corre-
sponding closed contextual preorders. Thereby all the results we can show for
the experimental orders, including the evaluation lemmas above, apply directly
to the contextual orders also.

As explained in Section 5, lemma 5.1 establishes half of the claim. It states
that finite contexts suffices for contextual testing, thus it remains to be shown that
finite contexts and evaluation contexts are equally discriminative. Analogously
to the proof of lemma 5.1, we show that the experimental preorders are preserved
by all finite contexts. The coincidence of <∼m and <≈m is an easy consequence
by reference to lemma 5.1.

First of all, all action constructs other than unfolding are monotone:

Lemma 6.8 All action constructs other than unfolding are monotone in <≈m .

24

Proof: Let A1, A2 be closed actions and assume A1
<≈m A2. For all action

constructs O 6= unfolding , let n be its arity and, for i = 1, . . . , n, let Fi =
O(A1 . . . Ai−1 [] Ai+1 . . .An), and show Fi[A1] <≈m Fi[A2].

case F1 = enact abstraction of []. (In the basic subset of AN that we consider,
abstractions can only occur as immediate arguments to enact.) By lemma 6.4,
F1[Ai] = enact abstraction of Ai ≈ Ai. Conclude from

Fi[A1] ≈ A1
<≈m A2 ≈ Fi[A2] .

case F1 = [] and then A. For any evaluation context E, E[Ai and then A] = F [Ai],
for i = 1, 2, where F = E[F1] is an evaluation context.

By definition of A1
<≈m A2, we get F [A1] �m F [A2], i.e.

E[A1 and then A] �m E[A2 and then A] .

Conclude (A1 and then A) <≈m (A2 and then A).

case F2 = A and then []. First examine the case when A is terminated. Evalua-
tion rule (4) gives the only out-going transition

A and then Ai 7→
{

A if A : escape fail ,
Ai if A = complete .

By lemma 6.4,

A and then Ai ≈
{

A if A : escape fail ,
Ai if A = complete .

Hence

(A and then A1) ≈ (A and then A2) if A : escape fail ,
(A and then A1) <≈m (A and then A2) if A = complete ,

by transitivity of ≈ and <≈m , using A1
<≈m A2 in the latter case.

For arbitrary closed A, we prove ∀λ<ω. P (λ) where

P (λ) ⇔ ∀ closed A. (A and then A1) <≈
λ
m (A and then A2) ,

by induction on λ. Let λ<ω, ∀κ<λ. P (κ) and show P (λ):
For terminated A, the conclusion follows by the above argument. So assume
A is not terminated, E[A and then A1]↓λ

m, and show E[A and then A2]↓m.

m = may: Clearly not E[A and then A1]:success. Thus E[A and then A1] 7→
B′1 where B′↓κ

may
for some κ<λ. By lemma choice of execution point:

25

Either (i) B′1 = E[B1] where (A and then A1) 7→ B1 which must be because
A 7→ A′ and B1 = (A′ and then A1) since A is not terminated. Hence
also E[A and then A2] 7→ E[A′ and then A2] . By I.H. B′1 ↓κ

may
implies

E[A′ and then A2]↓may and by fact 4.2, E[A and then A2]↓may.

Or (ii) B′1 = E′[A and then A1] and E[A and then A2] 7→ E′[A and then A2].
By I.H. and fact 4.2, E[A and then A2]↓may.

Or (iii) E[A and then A2] 7→ B′1 and by fact 4.2, E[A and then A2]↓may.

m = must: Clearly E[A and then A2] 6= fail. We must furthermore show
whenever E[A and then A2] 7→ B′2, B′2 ↓must. By lemma choice of execu-
tion point:

Either (i) B′2 = E[B2] and (A and then A2) 7→ B2 which must be be-
cause A 7→ A′ and B2 = (A′ and then A2) since A is not termi-
nated. Hence also E[A and then A1] 7→ E[A′ and then A1] . Since
E[A and then A1]↓λ

must
, E[A′ and then A2]↓κ

must
for some κ<λ and by

I.H. B′2 ↓must.

Or (ii) B′2 = E′[A and then A2] and E[A and then A1] 7→ E′[A and then A1].
E′[A and then A1]↓κ

must
for some κ<λ, hence B′2 ↓must by I.H.

Or (iii) E[A and then A1] 7→ B′2 and by fact 4.2, B′2 ↓must.

This concludes case F2 = A and then [] .

The A trap [] case is similar to the A and then [] case. The remaining cases
[] and A, A and [], [] or A, A or [], [] trap A are similar to the [] and then A
case (these are evaluation contexts).

Consequently, all finite contexts are monotone:

Proposition 6.9 All closed, finite contexts are monotone in <≈m .

Proof: Assume A1
<≈m A2 and show F [A1] <≈m F [A2], for all closed, finite F , by

structural induction on F .
If F = [] or F has no holes, the result is immediate.
Otherwise, if F = O(F1 . . . Fn), by I.H. Fi[A1] <≈m Fi[A2], for i = 1, 2. O is

monotone since O 6= unfolding, hence

F [A1] = O(F1[A1] F2[A1] . . . Fn−1[A1] Fn[A1])
<≈m O(F1[A2] F2[A1] . . . Fn−1[A1] Fn[A1])
...

<≈m O(F1[A2] F2[A2] . . . Fn−1[A2] Fn[A1])
<≈m O(F1[A2] F2[A2] . . . Fn−1[A2] Fn[A2]) = F [A2] .

26

We can now prove the following context lemma by the same proof technique
as exercised for lemma 5.1 in Section 5.2.

Lemma 6.10 (Basic context lemma) For closed actions A1, A2,

A1
<∼may A2 if and only if A1

<≈may A2 .

A1
<∼must A2 if and only if A1

<≈must A2 .

Proof: By reference to lemma 5.1 it suffices to show, for m ∈ {may,must},

∀ closed, finite F. F [A1] �m F [A2] ⇔ A1
<≈m A2 .

‘⇒’ is immediate because evaluation contexts are instances of finite contexts.
For ‘⇐’, assume A1

<≈m A2 and let C be any closed, finite context. By
proposition 6.9, C[A1] <≈m C[A2], and the result follows because <≈m by its
definition is included in �m.

6.3 Stronger characterisations

The experimental preorders restrict the set of observing contexts to evaluation
contexts. Section 6.1 demonstrates how this restriction admits proofs by induc-
tion on the length of computation (the pattern of practically all experimental
order proofs).

Further restrictions of the set of observing contexts—that still characterise
the contextual preorders and still generalise to all facets—may expose general
properties of actions but appear to be useful for special cases only. Essential sim-
plifications of the experimental order characterisation cannot be obtained along
this path. Nevertheless, let us mention a few possible restrictions:

In the may case (which normally has the simplest characterisation, cf. [13])
one can show that evaluation contexts without occurrences of the or combinator
suffice. For an example where this stronger characterisation would be convenient,
see remark 6.7.

As long as we have no side-effects allowing interference between interleaved
actions—i.e., when we restrict ourselves to the basic, functional, and declarative
facets—contexts with no occurrences of the interleaving combinator and suffice.

For basic actions, things are very simple and, in fact, only a small finite
number of contexts are needed to distinguish the equivalence classes of the may

and must relations. The 2 may contexts and the 4 must contexts listed in
Section 4.3 are both sufficient and minimal. This can be verified by examining
the pictures in Section 4.3. As soon as other facets are added, infinite collections
of contexts are required to characterise the contextual preorders.

27

7 Simulation

The proofs for showing actions experimental preordered all follow the same pat-
tern: Construct an invariant or relation and show the actions to evaluate to
related actions or to the same action. By induction on ↓may or ↓must the result
follows.

This is a straightforward but lengthy and tedious technique. Moreover the
connection to co-inductive bisimulation proof techniques is striking. In this sec-
tion, simple simulation proof principles will be established for actions.

7.1 may and must simulation

The ⇀∼m preorders (definition 4.6) are simple ‘simulation-style’ preorders, de-
fined in terms of entire computations.

Because of the possibly interleaved performance of actions, their semantics
is defined in terms of atomic computation steps and simulation is also most
appropriately phrased in terms of individual computation steps.

We define simulation co-inductively, inspired by the bisimulation for actions
in [22, C.4]. Our may and must formulation is taken from [34].

Define two operators 〈 〉
may

and 〈 〉
must

:

Definition 7.1 Given a relation R ⊆ closed-action × closed-action, define rela-
tions 〈R〉

may
, 〈R〉

must
⊆ closed-action × closed-action as follows

A1 〈R〉
may

A2
def⇔ (I) A1:success ⇒ A2 7→∗ A1

∧ (II) (∀B1 | A1 7→ B1)(∃B2 | A2 7→∗ B2) B1RB2 .

A1 〈R〉
must

A2
def⇔

A1 ⇓ ⇒ (I) A2 ⇓
∧ (II) A2:terminated ⇒ A1 7→∗ A2

∧ (III) (∀B2 | A2 7→ B2)(∃B1 | A1 7→∗ B1) B1RB2 .

Both 〈 〉
may

and 〈 〉
must

are easily seen to be monotone.
Call a post-fixed point of 〈 〉

may
a ‘may simulation’, and a post-fixed point of

〈 〉
must

a ‘must simulation’.

Fact 7.2 For m ∈ {may,must}, Id def= {(A, A) | A:closed-action} is a m simula-
tion, and if R and S are m simulations, so is their composition RS.

Definition 7.3 <∼may

def=
⋃{R | R is a may simulation} ,

<∼must

def=
⋃{R | R is a must simulation} .

Thus A1
<∼m A2 if and only if there is a m simulation R such that (A1, A2) ∈ R.

Call A1 ‘m similar to’ A2 if A1
<∼m A2. Fact 7.2 implies

28

Fact 7.4 <∼may and <∼must are reflexive and transitive, i.e. preorders.

Let ‘simulation equivalence’ denote the intersection of the induced equiva-
lences of the two preorders. Notice that two actions are simulation equivalent if
there is a symmetric relation containing them which is both a may and a must

simulation; call such a relation an ‘equivalence simulation’.

Proposition 7.5 <∼may and <∼must are the largest may and must simulations,
and the largest fixed points of 〈 〉

may
and 〈 〉

must
.

Proof: See lemma 1 and theorem 1 in [10].

Remark 7.6 One can also define a bisimulation preorder as in [35]: A1 is pre-
bisimilar to A2 iff (A1, A2) ∈ νR.(〈R〉

may
∩ 〈R〉

must
). The induced equivalence

is sensitive to divergence and thus stronger than standard weak bisimulation in
process calculus [20] and as defined for actions by Mosses [22, C.4]. This makes
this pre-bisimulation equivalence stronger than both may and must contextual
test equivalence which is not the case for standard weak bisimulation (see [20]).

The simulation preorders correspond to Ulidowski’s ‘copy+refusal testing’.
For processes, Ulidowski shows that this refines our contextual preorders (but is
coarser than pre-bisimulation).

Because the may and must simulations to some extent ‘mirror’ each other,
they naturally combine into impl simulations. These prove very convenient and
are used extensively for the development of the equational theory of actions in
Section 8.1. As usual, define <∼impl = >∼may ∩ <∼must , that is, <∼impl =

⋃{R |
R is an impl simulation} where R is an impl simulation if R is a must simula-
tion and R−1 is a may simulation,

R ⊆ 〈R〉
must

∩
〈
R−1

〉−1

may

.

Define an auxiliary operator 〈 〉
impl

= 〈 〉
must

∩ 〈 −1〉−1
may

. Notice that every
symmetric impl simulation is an equivalence simulation.

Fact 7.7 The definition of 〈 〉
impl

expands to

A1 〈R〉
impl

A2 ⇔ (I) A1⇓ ⇒ (i) A2 ⇓
∧ (ii) A2 = fail ⇒ A1 7→∗ fail

∧ (II) A2:success ⇒ A1 7→∗ A2

∧ (III) (∀B2 | A2 7→ B2)(∃B1 | A1 7→∗ B1) B1RB2 .

29

7.2 Simulation proof techniques

We shall now demonstrate the power of simulations by conducting a number of
proofs of simulation orderings, including simulation order versions of the experi-
mental order results from Section 6.1. The simpler simulation proofs demonstrate
how may and must simulations expose the inductive backbone of the correspond-
ing experimental order proofs.

It proves convenient to enhance the simulation proof technique in two ways:

• must and impl simulation proofs require arguments about convergence.
But we shall escape the development of machinery for reasoning about
convergence by defining a ‘hybrid weak/strong’ impl operator; it ensures
that similar actions, say A1, A2, simulate each other so closely that whenever
A2 diverges, so does A1.

• General proof techniques for greatest fixed points of monotone operators
will allow us to conduct simulation proofs using improper “simulations”
that are smaller than proper post-fixed points of the 〈 〉m operators.

This subsection concludes by applying these techniques for proving simulation
versions of the evaluation lemmas (6.2) and (6.4).

Simple examples

First three examples that demonstrate the concise co-inductive simulation proof
method of exhibiting simulations:

Proposition 7.8 fail <∼may A , for all closed A.

Proof: R = {(fail, A) | A:closed-action} is a may simulation, i.e., for all A,
fail 〈R〉

may
A , because (I) fail is not in success; and (II) there are no transitions

out of fail.

The proof is much simpler than that of proposition 6.6 because 〈 〉
may

has been
defined to make fail the bottom element.

diverge is the must bottom element because diverge⇑:

Proposition 7.9 A1 ⇑ implies A1
<∼must A2 , for all closed A1, A2.

Proof: {(A1, A2) | A1, A2:closed-action, A1 ⇑)} is clearly a must simulation be-
cause A1 ⇑ implies A1 〈R〉

must
A2, for all R, A1, A2.

chaos is both >may and ⊥must (cf. Section 4.3):

Proposition 7.10 chaos <∼impl A , for all closed A.

Proof: R = {(chaos, A) | A:closed-action} is an impl simulation, i.e., for all
A, chaos 〈R〉

impl
A , because (I) chaos ⇑; (II) chaos 7→ S, for all S :success; (III)

whenever A 7→ B2, let B1 = chaos.

30

A ‘hybrid’ impl operator

The 〈 〉
must

and 〈 〉
impl

operators involve the convergence predicate, ⇓ , in
order to make simulations sensitive to divergence. This obligation to prove ac-
tions convergent complicates reasoning. Another solution is to resort to strong
(bi)simulation which is also sensitive to divergence but requires that (bi)similar
programs make exactly the same number of computation steps.

A hybrid weak/strong impl operator, 〈 〉hybr
impl

, is a convenient compromise:

Definition 7.11 For every relation R and closed actions A1, A2,

A1 〈R〉hybr
impl

A2
def⇔ (I) A2:terminated ⇒ A1 7→∗ A2

∧ (II) (∀B2 | A2 7→ B2)(∃B1 | A1 7→+ B1) B1RB2 .

〈 〉hybr
impl

is monotone. Intuitively, A1 may perform no less steps than A2. Whenever
A1RA2 for some R ⊆ 〈R〉hybr

impl
, if A2 may diverge, so may A1.

The following lemma states that, in the course of proving a relation R an impl

simulation, i.e. A1RA2 implies A1 〈R〉
impl

A2, it suffices to show A1 〈R〉hybr
impl

A2.

Lemma 7.12 R ⊆ 〈R〉
impl

∪ 〈R〉hybr
impl

implies R ⊆ 〈R〉
impl

.

Proof (sketch): It suffices to show that the antecedent implies 〈R〉hybr
impl

⊆ 〈R〉
impl

.
This is the case if A1 〈R〉hybr

impl
A2 implies A1 ⇓ ⇒ A2 ⇓. The latter follows from

∀µ<ω. A1 ⇓µ ⇒ A2 ⇓ and is shown by induction on µ.

In particular, every post-fixed point of 〈 〉hybr
impl

is an impl simulation. E.g., Id ⊆
〈 〉hybr

impl
shows not only that the greatest fixed point of 〈 〉hybr

impl
is reflexive but also

that <∼impl is reflexive.
Lemma 7.12 allows impl simulation proofs to eschew direct reasoning about

convergence by establishing both the necessary convergence properties and simi-
larity in one co-inductive argument. This idea resembles Gordon’s ‘refined’ treat-
ment of divergence for bisimulation of functional programs [11].

Properties of greatest fixed points

Paulson [32] and Gordon [11] use the following general properties of greatest fixed
points:

Proposition 7.13 Let ν be the greatest fixed point of a monotone operator 〈 〉,
ν

def= νR.〈R〉 . Then ν = νR.〈R〉 ∪ ν
= νR.〈R ∪ ν〉
= νR.〈R ∪ ν〉 ∪ ν .

A useful corollary applies to all the 〈 〉 operators we consider:

31

Corollary 7.14 Whenever 〈 〉 is monotone and Id ⊆ νR.〈R〉 ,

R ⊆ 〈R ∪ Id〉 implies R ⊆ νR.〈R〉 .

Proof: R ⊆ 〈R ∪ Id〉 ⇒ R ⊆ 〈R ∪ νR.〈R〉〉 , 〈 〉 is monotone
⇒ R ⊆ νR.〈R ∪ νR.〈R〉〉 , by co-induction
⇒ R ⊆ νR.〈R〉 , by proposition 7.13.

Evaluation lemmas

We now prove simulation versions of the evaluation lemmas. The proofs apply
hybrid impl simulation and corollary 7.14.

The analogue of lemma evaluation (6.2) is simple to show:

Lemma 7.15 A1 7→ A2 implies A1
<∼impl A2 .

Proof: Let R = {(A1, A2) | A1 7→ A2}. Use lemma 7.12 and corollary 7.14 and
show R ⊆ 〈R ∪ Id〉hybr

impl
, i.e. A1 7→ A2 implies A1 〈R ∪ Id〉hybr

impl
A2: (I) A1 is not

terminated; and (II) whenever A2 7→ B2, also A1 7→2 B1, so choose B2 = B1.

The determined variant of lemma 7.15 is an example where 〈 〉hybr
impl

is not
applicable:

Lemma 7.16 If A1 7→ A2 is the only transition out of A1, then A1 is simulation
equivalent to A2 .

Proof: Given lemma 7.15 and corollary 7.14, it suffices to show R ⊆ 〈S ∪ Id〉
impl

where R = {(A2, A1) | A1 7→ A2 is the only transition out of A1} . Whenever
A1 7→ A2 is the only transition out of A1, show A2 〈R ∪ Id〉

impl
A1, using fact 7.7:

(I)(i) follows by definition 3.2 since A1 7→ A2 is the only transition out of A1.
(I)(ii) and (II) hold because A1 cannot be terminated when A1 7→ A2. To show
(III), notice that A1 7→ B2 implies B2 = A2, so let A2 7→0 B1 = B2.

7.3 Simulation versus contextual testing

Our interest in simulations is as a tool for proving actions contextual preordered.
Therefore we have to show that the simulation preorders are included in the
contextual preorders. By the basic context lemma (6.10) it suffices to prove
that they are included in the experimental preorders. A more standard path, due
to Howe [15], is to show the simulation preorders to be precongruences—as in
the proof of lemma 5.1—and consequently included in the contextual preorders.
Given the basic context lemma, our approach is considerably simpler. (Mason,
Smith, and Talcott follow a similar route in [18].)

32

Lemma 7.17 For closed actions A1, A2,

A1
<∼may A2 implies A1

<≈may A2 .
A1

<∼must A2 implies A1
<≈must A2 .

Proof:
m = may: Show ∀λ<ω. <∼may ⊆ <≈

λ
may

by induction on λ. Let λ<ω, assume
∀κ<λ. <∼may ⊆ <≈

κ
may

, and show <∼may ⊆ <≈
λ
may

:
Assume A1

<∼may A2, hence A1 〈 <∼may 〉
may

A2 because <∼may is a may simulation. If
A1 is terminated, either A1 = fail in which case the result is immediate because fail
is the may bottom element (proposition 6.6); or else A1:success and A2 7→∗ A1,
then conclude by lemma evaluation (6.2). If A1 is not terminated, assume
E[A1]↓λ

may
and show E[A2]↓may. E[A1] is not in success since A1 is not terminated,

therefore E[A1] 7→ B′ and B′↓κ
may

for some κ<λ. By lemma choice of execution
point:

Either (i) B′ = E[B1] where A1 7→ B1 and A2 7→∗ B2 such that B1
<∼may B2. By

I.H. E[B1]↓κ
may

⇒ E[B2]↓may. Conclude by fact 4.2.

Or (ii) B′ = E′[A1] and E[A2] 7→ E′[A2]. The result follows by I.H. and fact 4.2.

Or (iii) E[A2] 7→ B′. Conclude by fact 4.2.

m = must: The must case is more complicated. If we try to prove A1
<∼must A2

implies A1
<≈

λ
must

A2 by induction on λ, as in the may case, we run into a problem:
When A2 7→ B2 we are not guaranteed that A1 7→+ B1 such that B1

<∼must B2.
We may only have that A1

<∼must B2 and then we cannot refer to the induction
hypothesis to perform the induction step.

Therefore construct <∼must as the limit of an increasing sequence,

<∼must =
⋃

µ<ω

<∼
µ
must

where A1
<∼

µ
must

A2 ⇔ A1
<∼must A2 ∧ (A1 ⇓ ⇒ A2 ⇓µ) .

Show ∀λ, µ<ω. <∼
µ
must

⊆ <≈
λ
must

, by well-founded induction on (λ, µ), ordered
lexicographically,

(λ1, µ1) ≺ (λ2, µ2) ⇔ λ1<λ2 ∨ (λ1 =λ2 ∧ µ1<µ2) .

Let λ, µ<ω, assume ∀(κ, ν) ≺ (λ, µ). <∼
ν
must

⊆ <≈
κ
must

, and show <∼
µ
must

⊆ <≈
λ
must

:
Assume A1

<∼
µ
must

A2. If not A1 ⇓, neither E[A1]↓must, hence A1
<≈must A2. Hence-

forth assume A1 ⇓. Since <∼must is a fixed point for 〈 〉
must

, A1
<∼

µ
must

A2 implies

(I) A2 ⇓µ

∧ (II) A2:terminated ⇒ A1 7→∗ A2

∧ (III) (∀B2 | A2 7→ B2)(∃B1 | A1 7→∗ B1) B1
<∼must B2 .

33

If A2 is terminated, conclude by (II) and lemma evaluation (6.2). If A2 is not
terminated, assume E[A1]↓λ

must
and show E[A2]↓must. Clearly E[A2] 6= fail since

A2 is not terminated. Show E[A2] 7→ B′ implies B′ ↓must by lemma choice of
execution point:

Either (i) B′ = E[B2] where A2 7→ B2 and, according to (III), A1 7→∗ B1 such
that B1

<∼must B2. Either A1 = B1 and E[B1] ↓λ
must

, then use that (I) and
A2 7→ B2 imply B2 ⇓ν for some ν<µ, thus B1

<∼
ν
must

B2. Or else A1 7→+ B1

and E[B1] ↓κ
must

, for some κ<λ. In any case, we can apply I.H. to get
E[B2]↓must as required.

Or (ii) B′ = E′[A2] and E[A1] 7→ E′[A1], hence E′[A1] ↓κ
must

, for some κ<λ.
Conclude by I.H.

Or (iii) E[A1] 7→ B′. Conclude by fact 4.2.

7.4 Identity of all characterisations

So far we have shown, for m ∈ {may,must}, <∼m is included in <≈m (lemma 7.17)
that coincide with <∼m (basic context lemma) which is included in ⇀∼m

(lemma 4.8). Now we will show that for closed basic actions all four pairs of
preorders are identical. The missing link in the chain of mutual inclusions is:

Lemma 7.18 For closed actions A1, A2,

A1 ⇀∼may A2 implies A1
<∼may A2 .

A1 ⇀∼must A2 implies A1
<∼must A2 .

Proof: First show that ⇀∼may is a may simulation, ⇀∼may ⊆ 〈 ⇀∼may 〉
may

, i.e.
A1 ⇀∼may A2 implies A1 〈 ⇀∼may 〉

may
A2. The latter expands to

(I) A1:success ⇒ A2 7→∗ A1

∧ (II) (∀B1 | A1 7→ B1)(∃B2 | A2 7→∗ B2) B1 ⇀∼may B2 .

(I) clearly follows from A1 ⇀∼may A2. Regarding (II), if A1 7→ B1, choose B2 = A2;
then B1 ⇀∼may B2: Every successful computation B1 7→∗ S extends to a successful
computation A1 7→ B1 7→∗ S. Since A1 ⇀∼may A2, there is also a computation
A2 7→∗ S, i.e. B2 7→∗ S.

Correspondingly for must, assume A1 ⇀∼must A2 and show

A1 ⇓ ⇒ (I) A2 ⇓
∧ (II) A2:terminated ⇒ A1 7→∗ A2

∧ (III) (∀B2 | A2 7→ B2)(∃B1 | A1 7→∗ B1) B1 ⇀∼must B2 .

The result is immediate if not A1 ⇓, so assume A1 ⇓ and hence also (I) since
A1 ⇀∼must A2. The rest is as for the may case above: (II) clearly follows from
A1 ⇀∼must A2. As for (III), when A2 7→ B2, let B1 = A1, then B1 ⇀∼must B2 because
every successful computation from B2 extends to a successful computation from
A2 and has a corresponding successful computation from A1 = B1.

34

8 (In)equational action theory

This section shows how existing equational action theory respects contextual
equivalence. Moreover, Section 8.2 sketches inequational theories for the pre-
orders and demonstrate their expressive power. They enrich action theory by
interesting characterisations of the behaviour of actions.

8.1 Equational theory

A number of the equational action laws from Section 2.4 were shown to respect
experimental equivalence ‘≈’ in Section 6.1. So by the basic context lemma
(6.10), these laws also respect contextual equivalence ‘'’. We shall now use that
simulation equivalence is also included in contextual equivalence (lemma 7.17) to
prove the remaining laws from Section 2.4.

Eq.law (9) (A1 or A2) or A3 ' A1 or (A2 or A3) .

Proof: Every instance of the law is included in S = R ∪ R−1, where

R = {((A1 or A2) or A3,A1 or (A2 or A3)) | A1, A2, A3:closed-action} .

S is symmetric and by lemma 7.12 and corollary 7.14 it suffices to show S ⊆
〈S ∪ Id〉hybr

impl
which is straightforward.

Laws (3), (6), and (11) can be proved analogously.
Half of laws (4) and (7) were shown in corollary 6.5. Of law (4) remains:

Eq.law (4)b A and then complete ' A .

Proof: Show that the symmetric relation S = R ∪ R−1, where

R = {(A and then complete, A) | A:closed-action} ,

satisfies S ⊆ 〈Id〉
impl

∪ 〈S〉hybr
impl

.
R ⊆ 〈S〉hybr

impl
is easy to establish.

Consider R−1 next. A 〈S〉hybr
impl

(A and then complete) holds whenever there is
a transition out of A. Otherwise show A 〈Id〉

impl
(A and then complete) directly

from fact 7.7:
Clearly A ⇓ and (A and then complete) ⇓ when there are no transitions out

of A. Only if A is terminated can (A and then complete) perform a transition,
(A and then complete) 7→ A, and then conclude since A 7→0 A.

The proof of law (7)b is similar.
Laws (10) and (12) require a fact about convergence of or:

35

Fact 8.1 A1⇓ ∧ A2 ⇓ iff (A1 or A2)⇓ , for all closed A1, A2.

This is proved by induction on ⇓ . The ‘if’ direction is an instance of a more
general fact:

Fact 8.2 E[A]⇓ implies A⇓ , for all evaluation contexts E and closed A.

Eq.law (10) fail or A ' A or fail ' A .

Proof: Corollary 6.3 and the commutativity of or, eq.law (11), established most
of the law. What remains to be shown is A <∼impl fail or A. Therefore, show
R ⊆ 〈R ∪ Id〉

impl
for R = {(A, fail or A) | A:closed-action}:

Since fail⇓, A⇓ implies (fail or A)⇓. If (fail or A) 7→ B, either B = (fail or A′)
and A 7→ A′ and A′RB, or else B = A and conclude since A 7→0 A and A Id B.

Eq.law (12) A or A ' A .

Proof: Split the proof into (A or A) <∼impl A and A <∼impl (A or A) .
For the former, R = {(A or A, A) | A:closed-action} is easily shown to satisfy

R ⊆ 〈R〉hybr
impl

.
For the latter, show R ⊆ 〈R ∪ Id〉

impl
for R = {(A, A1 or A2) | A 7→∗A1∧A 7→∗

A2}, i.e. A 〈R〉
must

(A1 or A2) if A 7→∗A1 ∧ A 7→∗A2 :
A ⇓ implies Ai ⇓, by fact 4.2, which implies (A1 or A2) ⇓, by fact 8.1. If

(A1 or A2) 7→ B, either:

• B = (A′1 or A2) and A1 7→A′1, let A 7→0A, then ARB since A 7→∗A1 7→A′1;

• symmetrically, B = (A1 or A′2) and A2 7→ A′2; or

• B = Ai, let A 7→ Ai, then Ai Id B.

An interesting fact about law (12) is that it doesn’t respect bisimulation equiv-
alence. E.g., terminate is not bisimilar to A = (terminate or terminate) because
A 7→5 succeed whereas terminate cannot evaluate to an action with the same pro-
cessing capabilities.

All other equational action laws appear to be included in bisimulation equiv-
alence (as conjectured by Mosses [22, C.4]).

36

8.2 Inequational theory

Many interesting inequational laws can be expressed in terms of the various se-
mantic preorders.

• The equivalence classes and orderings depicted in Section 4.3 can be ex-
pressed as inequational laws.

• Lemma evaluation (6.2) gives an inequational characterisation of the eval-
uation of actions.

• The action combinators enjoy certain inequational algebraic properties.

• Induction rules characterise unfolding as the least fixed point combinator.

Such laws complement the existing action laws and further characterise the non-
deterministic behaviour of actions.

Several of these laws were established in Section 7.2, e.g. fail is the may

bottom element:

Ineq.law (i) fail <∼may A .

This was proved using the may experimental preorder in proposition 6.6 and
using the may simulation preorder in proposition 7.8.

Since <∼may is a precongruence (by definition), in particular or is monotone
in <∼may and the following law is a simple consequence:

Ineq.law (ii) A1, A2
<∼may (A1 or A2) .

Proof: A1
<∼may (A1 or fail) , fail is unit for or, eq.law (10)
<∼may (A1 or A2) , using ineq.law (i) and or is monotone.

A2
<∼may (A1 or A2) follows by commutativity of or, eq.law (11).

(This law was actually established in the proof of proposition 6.6.)
In conjunction with the idempotency of or we have that or is the may least

upper bound operator, ‘tmay’: it is an upper bound by ineq.law (ii); it is the
least such because A1, A2

<∼may A implies

(A1 or A2) <∼may (A or A2) , by monotonicity of or
<∼may (A or A) , by monotonicity of or
'may A , by idempotency of or, eq.law (12).

Section 4.3 argues that the ⊕ operator is tmay, thus ⊕ coincides with the or com-
binator may-wise. must-wise, only the inequality (A1 ⊕ A2) <∼must (A1 or A2)
holds. The other direction fails because (complete ⊕ fail) 6'must complete but
complete ' (complete or fail) , by eq.law (10). (Thus the inequational theory of
⊕ and or is the same as that of ⊕ and + in [13].)

As another example of an inequational characterisation of action combinators,
we can express an implementation relationship between and, and then:

37

Ineq.law (iii) A1 and A2
<∼impl A1 and then A2 .

Proof: R = {(A1 and A2, A1 and then A2) | A1, A2:closed-action} is easily seen
to satisfy R ⊆ 〈R ∪ Id〉hybr

impl
.

Finally, we show an induction rule for the recursive combinator unfolding. It is
a least fixed point combinator in both the may and must orderings as expressed
by the following recursion induction rule (a.k.a. Park induction):

Rule 8.3 (Recursion induction) For all A, closed B, and m ∈ {may,must},

A@B <∼m B ⇒ unfolding A <∼m B .

Proof: Assume A@B <∼m B. Let U = unfolding A. Notice that U 7→ A@U is
the only transition out of U . By lemma 5.1 unfolding A <∼m B is equivalent to
∀λ<ω. P (λ), where P (λ) ⇔ ∀ closed F. F [U] �λ

m F [B], which we show by induc-
tion on λ. Let λ<ω, assume ∀κ<λ. P (κ) and show P (λ). I.e. assume F [U]↓m λ
and show F [B]↓m.
m = may: If F [U]:success, then F [U] = F = F [B], hence F [B]↓may. Otherwise,
F [U1] 7→ B′, B′↓κ

may
for some κ<λ. By lemma 3.5:

Either (i) B′ = (E@U)[A@U], F = E@[]. Observe B′ = E[A]@U . By I.H. and
fact 5.3, B′↓κ

may
implies E[A]@B↓may, i.e. (E@B)[A@B]↓may. By assump-

tion A@B <∼may B, hence (E@B)[B] ↓may. Conclude since (E@B)[B] =
F [B].

Or (ii) B′ = F ′[U] and F [B] 7→ F ′[B]. Since F ′[U] ↓κ
may

, F ′[B] ↓may by I.H.,
hence F [B]↓may by fact 4.2.

m = must: By lemma 3.4:

Either (i) There exists an evaluation context E s.t. E@[] = F . Hence F [U] =
(E@U)[U] 7→ (E@U)[A@U] = E[A]@U and E[A]@U ↓κ

must
, for some κ<λ.

By I.H. and fact 5.3, E[A]@B ↓must. E[A]@B = (E@B)[A@B] and by
assumption A@B <∼must B, hence (E@B)[B]↓must, i.e. F [B]↓must.

(This covered the case F = []. Hence F [B] = fail only if F [B] = F [U] = F = fail
in conflict with the assumption F [U]↓must. What remains to be shown is F [B] 7→
B′ implies B′↓must.)

Or (ii) whenever F [B] 7→ B′, there exists F ′ s.t. B′ = F ′[B] and F [U] 7→ F ′[U].
F ′[U]↓κ

must
for some κ<λ, hence by I.H. B′↓must. Conclude F [B]↓must.

Normally, see e.g. [13], recursion induction is derived from a stronger induction
rule, either Scott induction or an ω-rule. These stronger induction principles
do not hold in the presence of countably branching nondeterminism and will
therefore not generalise to the functional facet of AN, whereas our direct proof of
fixed point induction does carry over (in the must case by means of transfinite
induction over all recursive ordinals, see Section 10).

38

9 Stuck actions

Hitherto we have assumed that closed actions are always well-behaved, that is,
they never get stuck and all their closed subterms are well-behaved. In this
section we discuss the problems concerned with accounting for stuck actions in our
theory. Although ill-behaved actions are arguably of little interest, the problems
of dealing with them shed light on the definitions and mutual consistency of the
various semantic preorders as well as the definition of the evaluation relation.

Stuck theory

In AN, failure represents controlled error situations during execution, whereas if
execution gets stuck it is a pathological error and can thus be viewed as uninter-
esting. Various syntactic requirements can be used to ensure well-behavedness.

Nonetheless, how would stuck actions fit into our theory as developed above?
Clearly all closed stuck actions are indistinguishable and thus equivalent.

stuck= enact false is a representative of this equivalence class. stuck can be
plotted into the diagrams of the closed basic orderings as follows:

succeed =
terminate =

chaos = >may

�
�
�

@
@
@

complete escape

@
@
@

�
�
�

diverge = ⊥may = fail
= stuck

>must = stuck
p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

complete fail escape
HHHHH

�������
��
�

HH
HH

H

complete
⊕ fail succeed

escape
⊕ fail

HH
HH

H

��
��
�

terminate

diverge = ⊥must = chaos

stuck is the bottom element in the may order—intuitively, stuck can never
contribute ‘positively’ to produce a successful outcome and is thus equated with
diverge and fail.

In the must order, stuck is the top element, perhaps surprisingly—notice
that stuck ↓must and stuck ⇓; examination of the proofs of proposition 4.7 and
lemma 4.8 clarifies why stuck = >must.

All the four preorders, <∼m , <≈m , ⇀∼m , and <∼m , still coincide when stuck
is taken into account.

39

Stuck convergence

It doesn’t appear very satisfactory that stuck is the must top element. It seems
more appropriate to identify stuck with the bottom element diverge—as in the
may ordering. Can this be accomplished?

One reason why stuck is the top element of the four must preorders is that
stuck ↓must and stuck ⇓. The ↓must and ⇓ predicates can be redefined such that
this is not the case, e.g. modify them to become the least predicates ↓′

must
and⇓′

satisfying

A⇓′ ⇔ (A:terminated ∨ ∃B. A 7→ B) ∧ (∀B|A 7→ B)B⇓′ .

A↓′
must

⇔ (A:success ∨ ∃B. A 7→ B) ∧ (∀B|A 7→ B)B ↓′
must

.

The latter is more conveniently expressed as

A↓′
must

⇔ A↓may ∧ (∀B|A 7→ B)B ↓′
must

.

Replace ↓must and ⇓ by ↓′
must

and ⇓′ in the definitions of the four must

preorders and write the resulting preorders as <∼
′
must

, <≈
′
must

, ⇀∼ ′must
, and

<∼
′
must

.
In the modified contextual and experimental preorders, <∼

′
must

and <≈
′
must

,
stuck remains a maximal element above fail (think of the context Cstuck =
[] and escape) but it is no longer the top element. Pictorially, remove the lines
from complete and escape to stuck in the above must diagram.

In the ‘simulation-style’ preorders, ⇀∼ ′must
, and <∼

′
must

, stuck becomes the
bottom element but the preorders are no longer precongruences (recall Cstuck).

Cstuck illustrates the problem that makes stuck maximal in <∼
′
must

and <≈
′
must

and makes ⇀∼ ′must
, and <∼

′
must

non-congruent, namely the unfortunate interplay
between nondeterminism in the operational semantics and stuck redexes:

Whenever there are more redexes to choose from, a non-stuck redex is chosen.
The existence of a stuck redex therefore forces evaluation to choose any alternative
redex. Hence stuck subterms may control the execution of a compound action
without causing the compound action to get stuck. E.g., (stuck and escape) is
indistinguishable from escape .

10 Generalisations to other facets

We have been dealing with four preorders: <∼m , <≈m , <∼m , and ⇀∼m , for
m ∈ {may,must}. And we have shown that they are all equivalent for closed
basic actions,

⇀∼m ⊇(1) <∼m =(2) <≈m ⊇(3) <∼m ⊇(4) ⇀∼m ,

where facts (1), (2), (3), and (4) were established in lemma 4.8, basic context
lemma 6.10, lemma 7.17, and lemma 7.18, respectively. Two proof techniques
for establishing actions contextual preordered have come out of this:

40

• Show them experimental ordered by induction on the length of computation
using lemma choice of execution point (3.6), conclude by the basic
context lemma.

• Exhibit a simulation containing them, conclude by lemma 7.17.

How does all this machinery generalise to other facets of AN?
In general, <∼m , <≈m , and the basic context lemma are straightforward

to generalise whereas the other ‘simulation-style’ preorders are more language-
specific.

The functional and declarative facets

When the functional or declarative facet is added, higher-order data flow is in-
troduced.

This adds a complication to the proof of the basic context lemma. The
proof technique from the proof of the ‘ciu’ theorem in [14] has to be applied.

⇀∼m has to be defined co-inductively (in the style of Ong [28]’s bisimulation
preorder for a nondeterministic λ-calculus). The co-inductive definition of <∼m

must be generalised likewise.
All the techniques, results, and laws we have developed for basic actions

generalise to these facets.
The functional facet also introduces unbounded, countable nondeterminism.

This is easily accommodated in our theory. The only major change is that the
inductive definitions of ↓must and �λ

must
must be defined as transfinite limits,

↓must =
⋃

λ<Ω

↓λ
must

, �must =
⋂

λ<Ω

�λ
must

,

where Ω is the least non-recursive ordinal, cf. [2]. All results and proofs in this
report have also been carefully phrased so that they carry over. Simply replace all
induction arguments in the must case by transfinite induction over all recursive
ordinals.

The imperative and communicative facets

The imperative and communicative facets introduce actions with side-effects and
interacting with their context.

We have extended the basic context lemma to the imperative facet along
the lines of [14]. As for the basic facet, nondeterminism can be handled us-
ing a generalisation of lemma choice of execution point (the AN concept of
‘commitment’ [22] has to be incorporated). We still have not considered the
communicative facet but we believe that [1] should be readily applicable.

The bisimulation for actions in [22, C.4] indicates how ⇀∼m and <∼m can be
generalised. Then lemma 7.18 will cease to hold. Ulidowski [34] explains how

41

<∼m (his ‘copy+refusal testing’) refines our contextual testing but is weaker than
bisimulation. Thus <∼m becomes strictly stronger than <∼m but is a tighter
approximation than bisimulation.

All the action laws of Section 8 also hold for these facets. The evaluation
lemmas 6.2 and 6.4 only address transitions that can be expressed locally, in-
dependent of context. Lemma evaluation (6.2) remains true—when suitably
generalised—for transitions performed by ‘interacting’ imperative and commu-
nicative actions. Lemma determined evaluation (6.4) doesn’t; this lemma in
effect states that, for observing contexts, execution in parallel with the transition
being observed adds no discriminative power to observation. This is, in general,
false for side-effects.

11 Conclusion

We conclude by recapitulating the technical exposition of this report and by
relating our approach to other semantic approaches. Finally, we outline future
work.

Overview

We have defined contextual test preorders for actions and developed useful oper-
ational proof techniques for establishing them.

Firstly, proofs by induction on the length of computation, based on an alter-
native characterisation of the preorders in terms of ‘experimental’ preorders. We
have extended this proof technique, due to Mason and Talcott, to the nondeter-
minism in AN.

Secondly, simple simulation proofs. We use divergence sensitive simulations
in order to match the contextual preorders. To escape the resulting complexity
we employed a ‘hybrid’ simulation technique.

The standard range of test preorders and equivalences allowed us to exhibit
an induction rule and inequational and equational laws that give rich character-
isations of actions. In particular, we have shown that existing action laws hold
for contextual equivalence.

Since basic actions are not very expressive, basic action theory is not very
interesting in itself. But we believe that all the theory which we have presented
for basic actions generalises to full AN. We have already developed this for
the functional, declarative, and imperative facets—we have defined reduction
semantics, proved generalisations of the (basic) context lemma (6.10), and
proved existing action laws to hold for contextual equivalence. The experimental
order proof technique used in the basic facet as well as the evaluation lemma
evaluation (6.2) carry over to these other facets too. All the inequational and
equational basic action laws in Section 8 remain true when other facets are added.

42

The simulation proof methods must be adjusted when imperative side-effects
enter the picture and the simulation proof methods become incomplete.

Related work

Our operational techniques draw inspiration from a wide range of sources. Most
of this literature is concerned with developing special theories for particular lan-
guages. Our aspiration is to obtain a useful, general action theory for reasoning
about a large class of programming languages. The same objective is pursued by
the domain theoretic meta language used in conventional denotational semantics
and the associated reasoning techniques. The claim of action semantics is that
actions have better pragmatic properties as a semantic meta language, in partic-
ular, for descriptions of realistic, complex programming languages. Motivated by
these qualities of actions, our work investigates how actions can also provide a
useful foundation for program reasoning.

Above we have reworked and strengthened the foundations of the existing
action theory in [22] which addresses full AN, based on a nondeterministic struc-
tural operational semantics and bisimulation. Alternative semantic foundations
for actions exist but none of these appear extensible to a comprehensive theory
of full AN. In [7] a categorical semantics is defined for a typed subset of AN
and a number of action laws are proven. For a similar subset of AN, Doh and
Schmidt [6] define a versatile natural semantics framework for reasoning about
(contextual) semantic equivalences (among many other things). Palsberg [30]
and Moura [26] define natural semantics for larger AN subsets. Moura defines a
‘functional’ action equivalence but not a full action theory.

Future work

We plan to extend our work to full AN, as sketched in Section 10. Moreover,
we are going to explore various applications of the theory. We have two sorts of
applications in mind:

First of all, in order to compare action theory to conventional operational
and denotational reasoning principles, we want to apply action theory to the
pure, well-understood programming languages studied in traditional semantic
literature.

Secondly, we would like to exploit the power of action semantics for describing
large, complex languages in popular use. Hopefully, a strong action theory will
provide means to apply rigourous semantic reasoning to such languages.

Acknowledgements I owe thanks to Peter Mosses for helpful suggestions that
improved the presentation of this work, to Peter Ørbæk for discussions of prob-
lems encountered in the course of the work, and to Jaap van Oosten for explaining
transfinite ordinals to me.

43

References

[1] G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foundation for actor
computation, Aug. 1994. To appear in Journal of Functional Programming.

[2] K. R. Apt and G. D. Plotkin. Countable nondeterminism and random as-
signment. J.ACM, 33(4):724–767, 1986.

[3] J. Buhl. Communicative action semantics. M.Sc. dissertation, Computer
Science Department, Aarhus University, Nov. 1994.

[4] R. DeNicola and M. Hennessy. Testing equivalences for processes. Theoretical
Comput. Sci., 34:83–133, 1984.

[5] K.-G. Doh and D. Schmidt. Action semantics-directed prototyping. Comput.
Lang., 19(4):213–233, 1993.

[6] K.-G. Doh and D. Schmidt. The facets of action semantics: Some principles
and applications. In Mosses [23], pages 1–15.

[7] S. Even and D. A. Schmidt. Category sorted algebra-based action semantics.
Theoretical Comput. Sci., 77:73–96, 1990.

[8] M. Felleisen and D. P. Friedman. Control operators, the SECD-machine, and
the λ-calculus. In M. Wirsing, editor, Formal Description of Programming
Concepts III. IFIP, 1987.

[9] M. Felleisen and R. Hieb. The revised report on the syntactic theories of
sequential control and state. Theoretical Comput. Sci., 103:235–271, 1992.

[10] A. D. Gordon. A tutorial on co-induction and functional programming. In
Glasgow Workshop on Functional Programming, 1994.

[11] A. D. Gordon. Bisimulation as a theory of functional programming. In
Proceedings of the 11th Conference of Mathematical Foundations of Pro-
gramming Semantics, volume 1 of Electronic Notes in Computer Science.
Elsevier, 1995.

[12] B. S. Hansen and J. U. Toft. The formal specification of ANDF, an appli-
cation of action semantics. In Mosses [23], pages 34–42.

[13] M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.

[14] F. Honsell, I. A. Mason, S. F. Smith, and C. L. Talcott. A variable typed
logic of effects, 1993. To appear in Information and Computation.

[15] D. J. Howe. Equality in lazy computation systems. In 4th Annual Symposium
on logic in computer science. IEEE, 1989.

44

[16] S. B. Lassen. Design and semantics of action notation. In Mosses [23], pages
16–33.

[17] S. B. Lassen. Reasoning with actions. In U. H. Engberg, K. G. Larsen, and
P. D. Mosses, editors, Proc. 6th Nordic Workshop on Programming Theory
(Aarhus, 17–19 October, 1994), number NS-94-6 in BRICS Notes Series,
pages 251–265, Dept. of Computer Science, Univ. of Aarhus, 1994.

[18] I. A. Mason, S. Smith, and C. L. Talcott. From Operational Semantics to
Domain Theory, 1994. Submitted to Information and Computation.

[19] I. A. Mason and C. L. Talcott. Equivalence in functional languages with
effects. Journal of Functional Programming, 1(3):297–327, 1991.

[20] R. Milner. Operational and algebraic semantics of concurrent processes. In
Handbook of Theoretical Computer Science. Elsevier, Amsterdam, 1990.

[21] P. D. Mosses. Abstract semantic algebras! In D. Bjørner, editor, Formal
Description of Programming Concepts II. IFIP, 1983.

[22] P. D. Mosses. Action Semantics. Number 26 in Cambridge Tracts in Theo-
retical Computer Science. Cambridge University Press, 1992.

[23] P. D. Mosses, editor. Proceedings of the First International Workshop on
Action Semantics (Edinburgh, Scotland, April 1994), number NS-94-1 in
BRICS Notes Series. Dept. of Computer Science, Univ. of Aarhus, 1994.

[24] P. D. Mosses. Unified algebras and abstract syntax. In Recent Trends in
Data Type Specification, volume 785 of Lecture Notes in Computer Science.
Springer-Verlag, 1994.

[25] P. D. Mosses and D. A. Watt. Pascal action semantics, Version 0.6 , Mar.
1993.

[26] H. Moura. Action Notation Transformations. Ph.D. thesis, University of
Glasgow, 1993.

[27] H. Moura and D. Watt. Action transformations in the ACTRESS compiler
generator. In CC’94, volume 786 of Lecture Notes in Computer Science.
Springer-Verlag, 1994.

[28] C.-H. L. Ong. Non-determinism in a functional setting. In 8th Annual
Symposium on logic in computer science. IEEE, 1993.

[29] P. Ørbæk. OASIS: An optimizing action-based compiler generator. In P. Frit-
zon, editor, Proceedings of the 1994 Conference on Compiler Construction,
Edinburgh, volume 786 of LNCS, pages 1–15. Springer-Verlag, April 1994.

45

[30] J. Palsberg. Provably Correct Compiler Generation. PhD thesis, Dept. of
Computer Science, Univ. of Aarhus, 1992.

[31] D. Park. Concurrency and automata on infinite sequences. In Theoretical
Computer Science, volume 104 of Lecture Notes in Computer Science, pages
167–183. Springer-Verlag, 1981.

[32] L. C. Paulson. Co-induction and co-recursion in higher-order logic. Tech.
report 304, University of Cambridge Computer Laboratory, 1994.

[33] G. D. Plotkin. LCF considered as a programming language. Theoretical
Comput. Sci., 5:223–255, 1977.

[34] I. Ulidowski. Equivalences on observable processes. In Seventh Annual Sym-
posium on Logic in Computer Science. IEEE, 1992.

[35] D. J. Walker. Bisimulation and divergence. Information and Computation,
85(2):202–241, 1990.

46

Index
[], 7
Id, 28
≈, 20
<≈impl, 20
<≈
′
must

, 40
<≈m, 20
<
@m, 17
⇀∼ ′must

, 40
⇀∼m, 14
', 12
<∼impl, 13
<∼
′
must

, 40
<∼m, 12
⊥m, 13
<∼impl, 29
<∼
′
must

, 40
<∼m, 28
⇓, 9
⇓′, 40
�m, 11
↓m, 11
↓′
must

, 40
7→, 8
⊕, 14
〈 〉hybr

impl
, 31

〈 〉
impl

, 29
〈 〉m, 28
um, 14
tmay, 14
>m, 13
◦, 16
@, 5

AN, 4
and, 5
and then, 5
AS, 1
ASD, 1

C, 9
Cstuck, 40
chaos, 14
check, 4
complete, 4

diverge, 13

E, 8
enact, 4
escape, 4

F , 10
fail, 4

m simulation, 28
may, 11
must, 11

or, 5

stuck, 39
succeed, 13

terminate, 13
trap, 5

unfold, 5
unfolding, 5

47

Recent Publications in the BRICS Report Series

RS-95-25 Søren B. Lassen.Basic Action Theory. May 1995. 47 pp.

RS-95-24 Peter Ørbæk.Can you Trust your Data?April 1995. 15
pp. Appears in Mosses, Nielsen, and Schwartzbach, edi-
tors, Theory and Practice of Software Development.6th In-
ternational Joint Conference CAAP/FASE, TAPSOFT '95
Proceedings, LNCS 915, 1995, pages 575–590.

RS-95-23 Allan Cheng and Mogens Nielsen.Open Maps (at) Work.
April 1995. 33 pp.

RS-95-22 Anna Inǵolfsdóttir. A Semantic Theory for Value–Passing
Processes, Late Approach, Part II: A Behavioural Seman-
tics and Full Abstractness. April 1995. 33 pp.

RS-95-21 Jesper G. Henriksen, Ole J. L. Jensen, Michael E. Jør-
gensen, Nils Klarlund, Robert Paige, Theis Rauhe, and
Anders B. Sandholm. MONA: Monadic Second-Order
Logic in Practice. May 1995. 17 pp.

RS-95-20 Anders Kock.The Constructive Lift Monad. March 1995.
18 pp.

RS-95-19 François Laroussinie and Kim G. Larsen.Compositional
Model Checking of Real Time Systems. March 1995. 20 pp.

RS-95-18 Allan Cheng. Complexity Results for Model Checking.
February 1995. 18pp.

RS-95-17 Jari Koistinen, Nils Klarlund, and Michael I.
Schwartzbach. Design Architectures through Category
Constraints. February 1995. 19 pp.

RS-95-16 Dany Breslauer and Ramesh Hariharan.Optimal Paral-
lel Construction of Minimal Suffix and Factor Automata.
February 1995. 9 pp.

RS-95-15 Devdatt P. Dubhashi, Grammati E. Pantziou, Paul G.
Spirakis, and Christos D. Zaroliagis.The Fourth Moment
in Luby's Distribution. February 1995. 10 pp. To appear
in Theoretical Computer Science.

RS-95-14 Devdatt P. Dubhashi. Inclusion–Exclusion(3) Implies
Inclusion–Exclusion(n). February 1995. 6 pp.

