
B
R

IC
S

R
S

-95-35
M

.G
oldberg:

C
onstructing

F
ixed-P

ointC
om

binators
U

sing
A

pplication
S

urvival

BRICS
Basic Research in Computer Science

Constructing Fixed-Point Combina-
tors Using Application Survival

Mayer Goldberg

BRICS Report Series RS-95-35

ISSN 0909-0878 June 1995

Copyright c© 1995, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recentpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.dk/
ftp ftp.brics.dk (cd pub/BRICS)

Constructing Fixed-Point Combinators

Using Application Survival
∗

Mayer Goldberg
Computer Science Department

Indiana University †
(mayer@cs.indiana.edu)

June 26, 1995

Abstract

The theory of application survival was developed in our Ph.D. thesis
as an approach for reasoning about application in general and self-
application in particular. In this paper, we show how application sur-
vival provides a uniform framework not only for for reasoning about
fixed-points, fixed-point combinators, but also for deriving and com-
paring known and new fixed-point combinators.

1 Introduction

Fixed-points have long been studied in the λ-calculus, and numerous fixed-
point combinators are known, as well as many theorems about the existence
of single and mutual fixed points. There does not seem to be, however, a sin-
gle unified approach to characterise and to construct fixed points and fixed-
point combinators. On the one hand, the behaviours of fixed-point combi-
nators are characterised by Böhm trees, but on the other hand, they give us
little information as to how to go about constructing a fixed-point combi-
nator. Böhm’s combinator [Barendregt 85, Item 6.5.4, Page 142], [Stoy 77,
Problem 9, Page 77] allows us to generate an infinite sequence of distinct
∗This work was completed while visiting BRICS (Basic Research in Computer Science,

Centre of the Danish National Research Foundation).
†Bloomington, IN 47405, USA.

1

fixed-point combinators starting from a single fixed-point combinator. Al-
though this approach relates Curry’s and Turing’s fixed-point combinators,
it does not give us any clues as to how to construct a fixed-point combinator
“from scratch.” Klop captured some intuition about constructing fixed-
point combinators, and his playful example [Barendregt 85, Problem 6.8.14,
Page 149] can help in constructing a class of fixed-point combinators. As
for the rest, we are on our own.

We wish for a unified approach that will allow us to generate various
fixed-points and fixed-point combinators directly from an equational spec-
ification, as well as to explore the various fixed-point combinators and to
characterise the differences between them. We believe that some progress
towards a unified approach to fixed points is offered by the theory of appli-
cation survival, developed in our Ph.D. thesis as a tool for reasoning about
application in the λ-calculus [Goldberg 95]. It has been successful in dealing
with questions that occur in untyped settings, such as questions related to
self-application. The theory of application-surviving agents has been ap-
plied so far to fixed-point theory, Gödelisation in the untyped λ-calculus,
and solving systems of equations.

In this paper, we show how application survival can be used to derive
fixed points and fixed-point combinators from equational specifications, as
well as to study the differences between various fixed-point combinators.

Section 2 provides a brief overview of application survival. In section 3
we present fixed points in light of application survival.

We shall assume a familiarity with the (untyped) λKβη-calculus, λ-
definability, and Böhm trees [Church 41], [Barendregt 85].

The following notation is assumed: pnq is the n-th Church numeral, S+

is the successor, and P− is the predecessor on Church numerals [Church 41,
Pages 28-30]. zero? is the predicate testing for equality with p0q. Through-
out this paper we use the combinators I = λx.x and K = λxy.x [Church 41,
Pages 10, 58]. We follow [Barendregt 85, Item 2.1.3 (i), Page 22] and let
~x = x1, . . . , xn, where n is implied by the context. Finally, x and y are the
Gothic (Fraktur) letters x and y.

2 Agents

2.1 Preliminaries

2.1.1 Definition: Set of Agents. Let A be a set of λ-expressions, and let
R be a set of rules of the form {〈x, f, y〉 : ∃n, m ∈ N, x ∈ An, y ∈ Am, f ∈ Λ}.

2

We call A a set of agents for R, if for all 〈x = 〈x1, . . . , xn〉, f, y = 〈y1, . . . , ym〉〉 ∈
R, we have (x1 · · ·xn) = (f (y1 · · ·ym)).

Note that by selecting R = ∅ or choosing R such that ∀〈x, f, y〉 ∈ R we
have x = y, etc., we can construct trivial sets of agents. This, however, does
not trivialise the notion of an agent.
2.1.2 Terminology: Interaction. The application of agents in A
according to a rule in R is called an interaction, to set it aside from other
kinds of application.
2.1.3 Terminology: Active Agent, Passive Agent. Given an interaction
(A1 · · ·An), the agent A1 is called the active agent. An agent that is never
used as an active agent is called a passive agent.

Interactions for non-trivial sets of agents are typically defined recursively,
and hence some rules represent the base case of a recursion, while others rep-
resent an induction step. A rule of the form 〈x = 〈x1, . . . , xn〉, f, y = 〈y〉〉,
represents the base case of the recursion and corresponds to the statement
that (x1 · · ·xn) = (f y), from which we see that the application of agents on
the left-hand side do not reduce to an application of agents; the process of ap-
plications of agents reducing to other applications of agents has terminated.
Alternatively, a rule of the form 〈x = 〈x1, . . . , xn〉, f, y = 〈y1, . . . , ym>1〉〉 rep-
resents the induction step of the recursion, and corresponds to the statement
that (x1 · · ·xn) = (f (y1 · · ·ym>1)), from which we see that the application
on the left-hand side has resulted in an application of agents; The process
of applications of agents resulting in applications of agents has continued.
The resulting application (y1 · · ·ym) may in turn terminate, by reducing to
(f ′ z), or it may continue, by reducing to (f ′ (z1 · · · zk>1)), where f ′ ∈ Λ
is some λ-expression, and z, z1, . . . , zk ∈ A are agents, etc. We express the
behaviour of the application on the left-hand side in the induction step by
saying that application has been survived. The entire process is referred to
as recursive application-survival.

2.2 Some Facts About Agents

2.2.1 Notation: The expression 〈expression〉〈variables〉 is meant to
suggest that 〈variables〉 are free in 〈expression〉.
2.2.2 Convention: Once we use subscripts to tag a given expression
with some of its free variables, we will not tag that expression with other
free variables. If new variable names appear as subscripts in any future
occurrence of a given expression, then that expression will be understood to
have been renamed. For example, if having mentioned Mx, we now mention

3

My in a similar context, then My should be taken as an abbreviation for
Mx[x := y].
2.2.3 Definition: [Barendregt 85, Problem 8.5.15, Page 184] A Proper
Combinator. A combinator M is a proper combinator if and only if M ≡
λ~x.P~x where ~x = x1, . . . , xn, and P~x ∈ {~x}+.

The reader may have noticed by now that the kinds of applications al-
lowed by our definition of a set of agents are of the form (w1 · · ·wk), i.e.
flat, left-associative applications, and may have wondered whether this re-
striction imposes limitations on what can be expressed in terms of agents.
An arbitrary application of λ-expressions from {w1, . . . , wk} is some expres-
sion M~w ∈ {~w}+. The abstraction of ~w over M is the proper combinator
P ≡ λ~w.M~w and specifies an interaction pattern of w1, . . . , wk, i.e., how we
would like these agents to be applied to each other. By combining P with
the ordered k-tuple 〈w1, . . . , wk〉, we obtain the k + 1-tuple 〈P, w1, . . . , wk〉,
where the corresponding application (P w1 · · ·wk) β-reduces to the desired
application M~w. Our definition is thus sufficiently general to allow for any
application of 〈w1, . . . , wk〉 in {~w}+, either on the right-hand side or the
left-hand side of the defining equation for a set of agents.
2.2.4 Observation: It should now become clear why we need to wrap
the function f explicitly around the resulting interaction in the definition of
an agent, as opposed to choosing a proper combinator that would permute
one of the agents to the position of f . The latter approach would require us
always to pass f along as one of the agents, and although this is occasionally
used, as in for example Turing-style fixed-point combinators, this is not
always desirable in general, especially in the case where f is constant over
all interactions.
2.2.5 Convention: In light of the above discussion, and in order to
simplify the description of an interaction, the proper combinator specifying
the pattern of an interaction will remain implicit.
2.2.6 Definition: Information Content. The information content of
an agent is the number of free variables it contains. An agent with n free
variables is designated as an “n-information agent.” Accordingly, if an agent
is a combinator, it is a “0-information agent.”
2.2.7 Theorem: Any n-information agent, where n > 0, can be written
as a 1-information agent.

Proof: Let Av1,...,vn be some n-information agent. We aggregate v1, . . . , vn

into a store σ represented by the ordered n-tuple [v1, . . . , vn] with selectors
πn

1 , . . . , πn
n. We now define a 1-information agent Aσ equivalent to Av1,...,vn

4

as follows:

Aσ = ((λv1 · · ·vn.Av1,...,vn) (πn
1 σ) · · · (πn

n σ))
−→β Av1,...,vn [v1 := (πn

1 σ)] · · · [vn := (πn
n σ)]

Our theorem follows. �
Active, 0-information agents act as permutors and associators, taking

other agents as arguments in the interaction, and “rearranging” them. The
behaviour of active n-information agents, on the other hand, might depend
on its free variables: We regard free variables in an agent as information to
be accessed and perhaps acted upon by the agent, as well as shared with
other agents.

What principles guide the choice between 0-information and n-information
agents? The answer depends on the information our agents need to access.
We would prefer to use 0-information agents when the information changes
from one interaction to another. When the information remains constant
between interactions, it would be simpler to code the information into the
agent (i.e., use an n-information agent), rather than to apply the agent to the
same information repeatedly. In cases where an agent needs to know both
variable as well as constant information, we combine the two approaches.

3 Fixed-Point Combinators

A fixed-point combinator is a combinator Φ with the property that for any
λ-expression f , the following equality holds:

(Φ f) = (f (Φ f))

It is usually a simple matter to verify that an expression is indeed a fixed-
point combinator (See Theorem 3.4.1); it is not as simple to actually derive
one from the above equational specification.

As we establish in 3.2.4, any fixed-point combinator can be described in
terms of a non-trivial interaction of agents. We offer below the derivation
and analysis of the two best known fixed-point combinators.

3.1 Curry’s and Turing’s Fixed-Point Combinators

3.1.1 Example: Curry’s Y-Combinator. Pick f . We want to find an
agent uf that satisfies the single rule 〈〈uf , uf〉, f, 〈uf , uf〉〉, which specifies

5

that (uf uf) = (f (uf uf)). So:

A = {uf}
R = {〈〈uf , uf〉, f, 〈uf , uf〉〉}

We notice that the right-hand side of the equation can be written in terms
of the argument to uf by abstracting over it. We can now derive a definition
for uf from the underlined and double-underlined expressions: λu.(f (u u)).
The application (uf uf) is a fixed-point of f . In order to get Curry’s fixed-
point combinator we need only abstract over f :

YCurry = λf.(uf uf)
= λf.((λu.(f (u u)))

(λu.(f (u u))))

The approach taken in constructing Curry’s fixed-point combinator is to
let uf “know” about f , i.e. to let f be a free variable in the definition of uf :
When YCurry gets applied to f , uf becomes specialised for this particular f .
In order to generate a new interaction, uf needs to have access to its own
definition, which is then passed on to its single argument in its interaction.
3.1.2 Example: Turing’s Y-Combinator. Pick f . We start with the
system

A = {u, f, P}
R = {〈〈u, u, f〉, I, 〈P, u, f〉〉}

where P is the proper combinator λuf.(f (u u f)), and is used to per-
mute the agents. We have only a single rule to satisfy, so that (u u f) =
(I (P u f)) = (P u f) = (f (u u f)). We therefore need to have P ≡
λuf.(f (u u f)). This last equation specifies, as was the case with Curry’s
Y-Combinator, a definition for u:

u = λuf.(I (P u f))

= λuf.(P u f)

= λuf.(f (u u f))

Notice how the underlined and double-underlined expressions in the equation
that defines the interaction correspond respectively to the underlined and

6

double-underlined expressions in the definition of u. Now:

YTuring = λf.(u u f) =η (u u)
= ((λuf.(f (u u f)))

(λuf.(f (u u f))))

In this approach, the active agent u neither knows of its own definition,
nor the definition of f , and receives them both as arguments (recall Ob-
servation 2.2.4). Since f is passed to u, f is treated as an agent, and in
the derivation of YTuring it is indeed included in the set of agents A. It is,
however, explicitly excluded from functioning as an active agent by the one
rule in R.

3.2 Various Fixed-Point Combinators

Let us begin by considering how we derived the fixed-point combinators in
the previous section. The fixed-point of an expression f is an expression of
the form: ϕf −→βη (f (f · · ·)), and has no normal form. To generate an
expression that converts to ϕf we came up with agents that upon interaction
generated an application of f wrapped around an interaction of agents,
which in turn would reduce in a similar way to the first interaction, et cetera.
In order to derive YCurry and YTuring, we defined our agents to generate one
application of f after each interaction. If we were merely interested in
generating a fixed-point combinator, any number of applications of f would
do. Both uf and u need to be able to place f around some interaction, and
so they both need access to f . These observations suggest how to combine
the effects of Curry’s and Turing’s fixed-point combinator.
3.2.1 Example: A Curry-Turing Fixed-Point Combinator. Let us
derive two variations, Φ1 and Φ2, of a third kind of fixed-point combinator,
which combines both Curry- and Turing-style agents, with their different
information-content properties: The Curry-style agent will “know” of the
function f , and will interact with two other agents. The Turing-style agent
will not “know” of f , and will therefore interact with three other agents.
Thus, the pattern of the interactions will be as follows: An application of
three agents reduces to an application of four agents, with f wrapped around
it; The interaction of four agents reduces to an interaction of three agents,
with f wrapped around it, etc. ad infinitum.

7

Pick f . We want to construct a set of agents A = {u, vf , f, P} for the
set of rules

R = {〈〈u, u, vf , f〉, I, 〈P, u, vf, f〉,
〈〈vf , u, vf〉, f, 〈u, u, vf, f〉〉}

where P = λuvf.(f (v u v)) is a proper combinator we use to permute
the agents in one of the interactions. We now have:

(u u vf f) = (f (vf u vf))

(vf u vf) = (f (u u vf f))

We can now define u and vf accordingly, as follows:

u ≡ λuvf.(f (v u v))

vf ≡ λuv.(f (u u v f))

As usual now, the underlined and double-underlined expressions in the set of
equations correspond to the underlined and double-underlined expressions
in the definitions of the agents u and vf . Finally, we can define two fixed-
point combinators, the first initially passing control to the agent u and the
second initially passing control to the agent vf :

Φ1 ≡ λf.(u u vf f)
≡ λf.((λuvf.(f (v u v)))

(λuvf.(f (v u v)))
(λuv.(f (u u v f))) f)

Φ2 ≡ λf.(vf u vf)
≡ λf.((λuv.(f (u u v f)))

(λuvf.(f (v u v)))
(λuv.(f (u u v f))))

3.2.2 Example: Klop’s Fixed-Point Combinator. The following problem
is given in [Barendregt 85, Problem 6.8.14, Page 149] and is due to Klop.
Given:

£ = λabcdefghijklmnopqstuvwxyzr.r(thisisafixedpointcombinator)
$ = ££££££££££££££££££££££££££︸ ︷︷ ︸

26 times

Show that $ is a fixed-point combinator.
It is not difficult to verify that $ is indeed a fixed-point combinator, and

to duplicate such an example. Let us put Klop’s problem in the light of our
theory of agents.

8

It should be clear from the Example 3.2.1, that our interactions can be
of any size, and that the active agent can interact with several copies of
itself. In that case, it has some choice as to which of its arguments to use in
constructing the next interaction. The $ combinator is in fact, a Turing-style
fixed-point combinator, in which the active agent not only interacts with the
function $ is fixing (look at the position of r in the expression of £), but
also with 25 copies of itself, represented by {a, . . . , z}−{r}. The application
thisisafixedpointcombinator is nothing more than an application of the active
agent t to 25 copies of itself (look at how $ is defined) followed by the function
r, which is what we would expect of a Turing-style fixed-point combinator.
It is not a coincidence that r appears only in the last position of this is a
fixed point combinator because otherwise we would have to guarantee that
the above permutation of letters didn’t result in r becoming an active agent.

Finally, Klop was able to write $ as an application containing only £
through an η-reduction similar to what was used in Example 3.1.2. This
would not be possible in Curry-style fixed-point combinators, where any
one of the agents could function as an active agent.

It should be clear now how similar fixed-point combinators of either the
Curry or the Turing style are possible.

Let us consider a more challenging example:
3.2.3 Example: Finding a Fixed Point of an Implicit Function. We
would like to define a combinator Φ, which takes f and g and returns the
fixed-point (f (g (f (g2 (f (g3 · · ·)))))). Our agent needs to know of both f
and g, which both remain constant, as well as the exponent of g, which will
be represented as a Church numeral (recall: (pnq g) −→β gn), and which
will be incremented from interaction to interaction. Therefore, our agent
“knows” of f and g and is passed the exponent of g with each interaction.
We define our interactions as follows:

A = {uf,g} ∪ {pnq : n ∈ N}
R = {〈 xn = 〈uf,g, uf,g, pnq〉,

fn = λx.(f (pnq g x)),
yn = 〈uf,g, uf,g, pn + 1q〉〉 : n ∈ N}

where R implies

(uf,g uf,g pnq) = (fn (uf,g uf,g pn + 1q))
= (f (pnq g (uf,g uf,g pn + 1q)))

−→β (f (gn (uf,g uf,g pn + 1q)))

9

As usual, we derive a definition for uf,g by joining the underlined and double-
underlined expressions in the above equation:

uf,g = λun.(f (n g (u u (S+ n))))

Finally we now define Φ in terms of uf,g as follows:

Φ ≡ λfg.(uf,g uf,g p1q)
≡ λfg.((λun.(f (n g (u u (S+ n)))))

(λun.(f (n g (u u (S+ n)))))
p1q)

Using a pre-existing fixed-point combinator, we would have had to begin
with an explicit definition for the function being fixed and then apply to it
this fixed-point combinator. Using agents, we simply capture the behaviour
we are interested in, without ever bothering to have an explicit definition
for the function we’re fixing.

Finally, we extend our derivation of the above fixed-point combinators
to all fixed-point combinators.
3.2.4 Theorem: Any fixed-point combinator can be characterised in
terms of the behaviour of application-surviving agents.

Proof: Pick a fixed-point combinator Φ. We know that for all g ∈ Λ
we have (Φ g) = (g (Φ g)). From the left-hand side of the equation we
know: Φ =βη λf.Mf . Because of the Böhm tree of Φ (See [Barendregt 85,
Page 217]) we know Mg =β,η (gn (P Q g)) for some integer n and some
P, Q ∈ Λ. We construct our set of agents as follows: Let A = {P, Q, g},
R = {〈x = 〈P, Q, g〉, f = gn, y = 〈P, Q, g〉〉}. Our theorem follows. �

3.3 Mutual Fixed-Point Combinators

3.3.1 Definition: Mutual Fixed-Point Combinators. The λ-expressions
Φ1, . . . , Φn are said to be mutual fixed-point combinators if for any λ-expressions
x1, . . . , xn we have:

(Φj x1 · · ·xn) = (xj (Φ1 x1 · · ·xn) · · · (Φn x1 · · ·xn)) for all j ∈ {1, . . . , n}

Multiple fixed-point combinators can be used to express mutual recursion:
3.3.2 Example: Defining the Predicates even?, odd? with Mutual
Fixed-Point Combinators. Let Φ1, Φ2 be mutual fixed-point combinators.
Let

E = λeon.(zero? n T (o (P− n)))
O = λeon.(zero? n F (e (P− n)))

10

We can now define

even? = (Φ1 E O)
odd? = (Φ2 E O)

Mutual, or multiple fixed-point combinators1 are derived in much the
same way as we derived YCurry and YTuring, and similar consideration can be
given to the information content of the agents involved. We can thus design
agents for solving for mutual fixed-points which are of the Curry-style, the
Turing-style, or any hybrid of these two approaches, as in Example 3.3.2.1.
We offer below a derivation of a Curry-style multiple (n-ary) fixed-point
combinator.
3.3.3 Example: Deriving n Curry-style Mutual Fixed-Point Combina-
tors. Pick n λ-expressions x1, . . . , xn. We need to find n agents u~x,1, . . . , u~x,n

that satisfy the interaction schema:

R = {〈〈u~x,j, u~x,1, . . . , u~x,n〉, I, 〈Pj, u~x,1, . . . , u~x,n〉 : j ∈ {1, . . . , n}}

where Pj is given by

Pj = λxju1 · · ·un.(xj (u1 u1 · · ·un) · · · (un u1 · · ·un))

so that

(u~x,j u~x,1 · · ·u~x,n) = (Pj u~x,1 · · ·u~x,n)

= (xj (u~x,1 u~x,1 · · ·u~x,n) · · · (u~x,n u~x,1 · · ·u~x,n))

As usual, we now derive a definition for u~x,j by joining the underlined and
double-underlined parts of the previous equation:

u~x,j = λu1 · · ·un.(xj (u1 u1 · · ·un) · · · (un u1 · · ·un))

Finally, we define the j’th mutual fixed-point combinator as follows:

Φj = λx1 · · ·xn.(u~x,j u~x,1 · · ·u~x,n)

1See [Barendregt 85, 6§5] for a complete treatment of mutual fixed-points.

11

3.4 Böhm-style Fixed-Point Combinators

A fixed point x of an expression M must satisfy, by definition, (M x) = x.
The equality predicate is normally taken to be =βη and so what the above
fixed-point equation means is that there exists an expression y, and two
finite ordinals m, n, such that y is m βη-reductions away from (M x) and n
βη-reductions away from x:

(M x) x

ym

βη
JJJJJJJJ%%

n

βη

||yy
y
y
y
y
y

The finiteness of m and n is built into our notion of equality. This finite-
ness carries on to the λ-acceptability of the set of all fixed-point combinators:
3.4.1 Theorem: The set of all fixed-point combinators is λ-acceptable.

Hint of Proof: Pick a fixed-point combinator Φ. We know that for any
λ-expression x we have (Φ x) = (x (Φ x)). So Φ = λx.(x (Φ x)) (by rule ξ
followed by rule η). We know there exist finite ordinals m, n such that

Φ λx.(x (Φ x))

ym

βη
E
E
EE
E
E
E""

n

βη

wwppp
pp
pp
pp
p

By enumerating all pairs of ordinals, and for each pair 〈mj, nj〉 reducing
Φ and λx.(x (Φ x)) mj and nj β-reductions respectively, and comparing the
two (possibly very large) respective sets of λ-expressions, we can arrive at
the particular 〈m, n〉 for which syntactic equality holds. It follows that the
set of all fixed-point combinators is λ-acceptable. �

If we remove the restriction that m, n be finite, our equality predicate
becomes the =η,Böhm predicate which is satisfied when two expressions have
the same Böhm tree modulo any number of η-reductions. What we lose by
relaxing this requirement that m and n must be finite is the λ-acceptability
of the set of fixed-point combinators, which is not needed for the purpose of
doing general recursion.

In the following example, we construct YBöhm,Curry, a semantic but not
syntactic fixed-point combinator of the Curry-style. YBöhm,Curry will not sat-
isfy the equation (YBöhm,Curry x) = (x (YBöhm,Curry x)), however (YBöhm,Curry x)
and (x (YBöhm,Curry x)) have the same Böhm tree. YBöhm,Curry is sufficient for
expressing general recursion.

12

3.4.2 Example: The Construction of a Curry-Böhm-Style Fixed-Point
Combinator. In all the previous examples of fixed-point combinators, the
interaction of agents resulted in an identical interaction. One way to make
sure that a Böhm-style fixed-point combinator Φ fails to satisfy (Φ M) =
(M (Φ M)), i.e. that there is no λ-expression N such that (Φ M) −→m

βη N
and (M (Φ M)) −→n

βη N , for any integers m and n, is to guarantee that the
agent interactions always reduce to a different interaction. One approach is
to select agents satisfying the following interaction schema:

(u u pnq) = (pnq f (u u pn + 1q))

Our set of agents is defined as A = {u} ∪ {pnq : n ∈ N}, and our rule
schema is defined as R = {〈〈u, u, pnq〉, fn, 〈u, u, pn+ 1q〉〉 : n ∈ N}. We
now need to define u to satisfy the above schema:

λun.(pnq f (u u (S+ n)))

And accordingly:
YBöhm,Curry = λf.((λun.(pnq f (u u (S+ n))))

(λun.(pnq f (u u (S+ n))))
p1q)

It is clear that many other Böhm-style fixed-point combinators are ob-
tainable through simple variations on this scheme. For example, the follow-
ing is a Turing-Böhm-style fixed-point combinator:

YBöhm,Turing = ((λunf.(pnq f (u u (S+ n) f)))
(λunf.(pnq f (u u (S+ n) f)))
p1q)

It should also be clear that the set of all Böhm-style fixed-point combi-
nators is not λ-acceptable.

4 Conclusion

While results on fixed points abound, little is known about how these results
were obtained. It is trivial to verify that YCurry and YTuring are indeed fixed-
point combinators, but mere verification leaves one unsatisfied: How does
one come up with such expressions on one’s own?

The theory of application survival [Goldberg 95] provides us with a uni-
fied approach to reasoning about fixed-points: Not only can we derive the

13

classical, well-known fixed-point combinators, but we can also construct new
ones. Application survival can be used to characterise any fixed-point com-
binator in terms of how it accesses the information it needs, how it sets up
new interactions, and what function gets applied in the interaction. This
characterisation is specified equationally. It not only allows us to study the
differences between various fixed-point combinators, but also to derive any
specific fixed-point combinators.

Acknowledgements

I am grateful to BRICS2 for hosting me this summer and for providing a
stimulating environment. Thanks are also due to Olivier Danvy, Daniel P.
Friedman, and Larry Moss for their comments and encouragement.

The diagrams of Section 3 were drawn with Kristoffer Rose’s XY-pic
package.

References

[Barendregt 85] Hendrik P. Barendregt. The Lambda Calculus, Its Syntax
and Semantics. North-Holland, 1985.

[Church 41] Alonzo Church. The Calculi of Lambda-Conversion. Princeton
University Press, 1941.

[Goldberg 95] [Forthcoming] Mayer Goldberg. Recursive Application-
Survival in the λ-Calculus. Ph.D. Thesis, Department of Computer
Science, Indiana University, December 1995.

[Stoy 77] Joseph Stoy. Denotational Semantics: The Scott-Strachey Ap-
proach to Programming Language Theory. MIT Press, 1977.

2Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

14

Recent Publications in the BRICS Report Series

RS-95-35 Mayer Goldberg.Constructing Fixed-Point Combinators
Using Application Survival. June 1995. 14 pp.

RS-95-34 Jens Palsberg.Type Inference with Selftype. June 1995.
22 pp.

RS-95-33 Jens Palsberg, Mitchell Wand, and Patrick O'Keefe.Type
Inference with Non-structural Subtyping. June 1995. 22
pp.

RS-95-32 Jens Palsberg.Efficient Inference of Object Types. June
1995. 32 pp. To appear inInformation and Computa-
tion. Preliminary version appears inNinth Annual IEEE
Symposium on Logic in Computer Science, LICS '94 Pro-
ceedings, pages 186–195.

RS-95-31 Jens Palsberg and Peter Ørbæk.Trust in theλ-calculus.
June 1995. 32 pp. To appear inStatic Analysis: 2nd
International Symposium, SAS '95 Proceedings, 1995.

RS-95-30 Franck van Breugel. From Branching to Linear Met-
ric Domains (and back). June 1995. 30 pp. Abstract
appeared in Engberg, Larsen, and Mosses, editors,6th
Nordic Workshop on Programming Theory, NWPT '6 Pro-
ceedings, 1994, pages 444-447.

RS-95-29 Nils Klarlund. An n logn Algorithm for Online BDD
Refinement. May 1995. 20 pp.

RS-95-28 Luca Aceto and Jan Friso Groote.A Complete Equational
Axiomatization for MPA with String Iteration. May 1995.
39 pp.

RS-95-27 David Janin and Igor Walukiewicz.Automata for theµ-
calculus and Related Results. May 1995. 11 pp. To appear
in Mathematical Foundations of Computer Science: 20th
Int. Symposium, MFCS '95 Proceedings, LNCS, 1995.

RS-95-26 Faith Fich and Peter Bro Miltersen. Tables should be
sorted (on random access machines). May 1995. 11 pp. To
appear in Algorithms and Data Structures: 4th Workshop,
WADS '95 Proceedings, LNCS, 1995.

RS-95-25 Søren B. Lassen.Basic Action Theory. May 1995. 47 pp.

