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Deciding Regularity in Process Algebras

Antońın Kučera∗

email: tony@informatics.muni.cz

Abstract

We consider the problem of deciding regularity of normed BPP
and normed BPA processes. A process is regular if it is bisimilar to a
process with finitely many states. We show, that regularity of normed
BPP processes is decidable and we provide a constructive regularity
test. We also show, that the same result can be obtained for the class
of normed BPA processes.

Regularity can be defined also w.r.t. other behavioural equiva-
lences. We define notions of strong regularity and finite character-
isation and we examine their relationship with notions of regularity
and finite representation. The introduced notion of the finite charac-
terisation is especially interesting from the point of view of possible
verification of concurrent systems.

In the last section we present some negative results. If we extend
the BPP algebra with the operator of restriction, regularity becomes
undecidable and similar results can be obtained also for other process
algebras.

∗Presented results were obtained during the author’s stay at BRICS (Basic Research
in Computer Science), Department of Computer Science, University of Aarhus. The stay
was supported by The Danish Ministry of Education.
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1 Introduction

One of the most popular models for concurrency are process algebras like
CCS, CSP or ACP. Various properties of these models have beed studied in
the last decades. This paper belongs to the bunch which could be labeled
“decidability results”. The dominating subject in this area is the problem of
deciding various behavioural equivalences in certain subclasses of mentioned
algebras.

Milner in [1] has shown that bisimulation equivalence is decidable in
the class of regular (finite-state) process. In [3] Baeten, Bergstra and Klop
proved that bisimulation equivalence is decidable in the class of normed BPA
processes. It was the first result, showing that bisimulation equivalence can
remain decidable in a class of processes, in which the language equivalence
is undecidable. Much simpler proof of this was later given by Caucal [4]
and Groote [5]. In [6] Hüttel and Stirling used a tableau decision method
and gave also sound and complete equational theory for the class of normed
BPA processes.

This result was later extended to the whole class of BPA processes by
Christensen, Hüttel and Stirling [7]. Another class of processes, BPP, is
examined in [8]. Christensen, Hirsfeld and Moller proved that bisimulation
equivalence is decidable in this class, using a tableau technique similar to
[6].

An open problem was the question whether it is decidable if a given
process is regular (i.e. it is bisimilar to a process with finitely many states).
This natural problem is generally undecidable (see [11]), but Mauw and
Mulder showed in [2], that regularity is decidable in the class of BPA systems.

In this paper we prove that regularity is decidable in the class of normed
BPP processes. Moreover, if the tested process is regular then our algorithm
outputs also the normal form of this regular process. We also show, that
the result of [2] can serve as a constructive regularity test for the class of
normed BPA processes.

The notion of regularity can be defined also w.r.t. other behavioural
equivalences. Regular processes have finite representations (see [11]), but a
finite representation of a process ∆ generally does not express the behaviour
of reachable states of ∆. We introduce the notion of strong regularity, which
in many cases guarantees an existence of a finite characterisation, which
describes a process as a whole. We also study the relationship between
finite representations and finite characterisations.

In the last section we present some negative results, stating that regu-
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larity and strong regularity are undecidable in some process classes. First
we consider a calculus, obtained by extending BPP with the rectriction op-
erator and we prove that regularity and strong regularity are undecidable.
This result is obtained via a simple reduction, which can be applied also to
other process algebras.

2 Basic definitions

2.1 Subclasses of CCS - BPA, BPP, BPPτ

Let Act = Λ ∪ Λ ∪ {τ} be a set of atomic actions, where Λ = {a, b, c, . . .}
is a countably infinite set of labels, Λ = {a, b, c, . . .} is a countably infinite
set of co-labels with the convention a = a and τ is a distinguished element
which does not belong to Λ ∪ Λ. Let V ar be a countably infinite set of
variables, V ar = {X, Y, Z, . . .}. The classes of recursive BPA, BPP and
BPPτ expressions are defined by the following abstract syntax equations:

EBPA ::= a | X | EBPA.EBPA | EBPA +EBPA
EBPP ::= a | X | a.EBPP | EBPP‖EBPP | EBPP +EBPP
EBPPτ ::= a | X | a.EBPPτ | EBPPτ |EBPPτ | EBPPτ +EBPPτ

Here a ranges over Act and X ranges over V ar. We also let greek letters
α, β, . . . to range over process expressions. The symbol Act∗ denotes the
set of all finite strings over Act and the symbol Act+ denotes the set of
all nonempty finite strings over Act. The parallel operator “‖” of BPP is
sometimes called the merge operator, and the operator “|” of BPPτ is called
the full parallel operator because it allows synchronizations

As usual, we restrict our attention to guarded expressions. A process
expression (BPA, BPP or BPPτ ) is guarded iff every variable occurence is
within the scope of an atomic action.

A guarded process (BPA, BPP or BPPτ ) is defined by a finite family ∆
of recursive process equations

∆ = {Xi
def= Ei | 1 ≤ i ≤ n}

where Xi are distinct, and the Ei are guarded expressions (BPA, BPP or
BPPτ ), containing the variables from {X1, . . . , Xn}. The set of variables,
which appear in ∆, is denoted by V ar(∆).

Variable X1 plays a special role (X1 is sometimes called the “leading
variable”) - it is a root of a labelled transition system, defined by the process
∆ and following rules (ε denotes empty expression):
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a
a→ ε

E
a→ E ′

E.F
a→ E ′.F

E
a→ E ′

E + F
a→ E ′

F
a→ F ′

E + F
a→ F ′

E
a→ E ′

E|F a→ E ′|F
F

a→ F ′

E|F a→ E|F ′

E
a→ E ′ F

a→ F ′

E|F τ→ E ′|F ′
E

a→ E ′

E‖F a→ E ′‖F
F

a→ F ′

E‖F a→ E‖F ′

E
a→ E ′

X
a→ E ′

(X
def
= E ∈ ∆)

Nodes of the transition system generated by ∆ are process expressions, which
are often called states of ∆, or just “states” when ∆ is understood from the
context. The transitive closure of “→” is denoted by “→+”, the reflexive
and transitive closure by “→∗”. Given two states α, β, we say that β is
reachable from α, if α w→∗β for some w ∈ Act∗. States of ∆, which are
reachable from X1 are said to be reachable.

Remark 1 Processes are often identified with their leading variables. Fur-
thermore, if we assume a fixed process ∆, we can view any variable Y ∈
V ar(∆) as a process too; we simply change the order of defining equations
so that Y becomes the leading variable of the process. Similarly, any guarded
expression α, containing variables from V ar(∆) denotes a process - we sim-
ply define a new system ∆′, which is identical to ∆ with one exception - it
has a new leading variable N and the equation N

def
= α. All notions origi-

nally defined for processes can be used for variables and process expressions
in this sense too.

Remark 2 Guarded processes generate finitely branching transition graphs,
that is, the set {β | α a→ β} is finite for each state α. It is easy to show,
that it would not be true if we allowed unguarded expressions.

2.2 Normed processes

An important subclass of processes can be obtained by an extra restriction
of normedness. A variable X ∈ V ar(∆) is normed iff there is w ∈ Act∗ such
that X w→ ε. In that case we define the norm of X , [X ], to be the length
of the shortest such w, counting the length of “τ” as two; all other actions
have the length one. Thus [X ] = min{length(w) | X w→ ε}. A process ∆ is
normed, if all variables of V ar(∆) are normed. The norm of the process is
then defined to be the norm of X1.
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As normed processes are intensively studied in this paper, we emphasize
some properties of norm:

• The norm of a normed process is easy to compute:
[a] = 1, [α + β] = min{[α], [β]}, [α.β] = [α] + [β], [α‖β] = [α] +

[β], [α|β] = [α] + [β], and if Xi
def
= Ei and [Ei] = n, then [Xi] = n.

• For each normed BPA, BPP or BPPτ process α there are a ∈ Act and
α′, such that α a→ α′ and [α] = [α′] + 1

• Bisimilar processes (see section 2.3) must have the same norm.

2.3 Bisimulation

The equivalence between process expressions (states) we are here interested
in is bisimilarity [1], defined as follows:

Definition 1 A binary relation R over process expressions is a bisimulation
if whenever αRβ then for each a ∈ Act

• if α a→ α′, then β
a→ β′ for some β′ such that α′Rβ′

• if β a→ β′, then α
a→ α′ for some α′ such that α′Rβ′

Processes ∆ and ∆′ are bisimilar, written ∆ ∼ ∆′, if their leading variables
are related by some bisimulation.

2.4 Greibach normal form

Any BPA process ∆ can be effectively presented in so-called 3-Greibach
normal form (see [3]):

Definition 2 A BPA process ∆ is said to be in Greibach normal form
(GNF) if all its equations are of the form

Xi
def
=

ni∑
j=1

aijαij

where 1 ≤ i ≤ n, ni ∈ N , aij ∈ Act and αij ∈ V ar(∆)∗. If length(αij) ≤
2, then ∆ is said to be in 3-GNF. (V ar(∆)∗ denotes the set of all finite
sequences of variables from V ar(∆)).
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A similar result holds for BPP, resp. BPPτ (see [10]). Any BPP resp. BPPτ
process ∆′ can be effectively represented in the normal form, which is very
similar to the 3-GNF of BPA - hence it is called 3-GNF too. Before its
presentation we need to introduce the set V ar(∆′)⊗ of all finite multisets
over V ar(∆′). Each multiset of V ar(∆′)⊗ denotes a BPP resp. BPPτ
expression by combining its elements in parallel using the merge, resp. the
full parallel operator.

Definition 3 A BPP, resp. BPPτ process ∆′ is said to be in Greibach
normal form (GNF) if all its equations are of the form

Xi
def
=

ni∑
j=1

aijαij

where 1 ≤ i ≤ n, ni ∈ N , aij ∈ Act and αij ∈ V ar(∆′)⊗. If card(αij) ≤ 2,
then ∆′ is said to be in 3-GNF. (card(αij) denotes the cardinality of αij).

From now on we assume, that all BPA, BPP and BPPτ processes we are
working with are presented in 3-GNF. This justifies also the assumption,
that all reachable states of a BPA process ∆ are elements of V ar(∆)∗ and
all reachable states of a BPP or BPPτ process ∆′ are elements of V ar(∆′)⊗.
Furthermore, all variables of a normed BPA, BPP or BPPτ process in 3-
GNF have norm at least one. Occasionally we will also use the notation αi,
where α is a state of some BPA, BPP or BPPτ process, i ∈ N . The notation
has the following meaning:

αi = α.α. . . .α︸ ︷︷ ︸
i

if α is a state of some BPA process

αi = α‖α‖ . . .‖α︸ ︷︷ ︸
i

if α is a state of some BPP process

αi = α|α| . . . |α︸ ︷︷ ︸
i

if α is a state of some BPPτ process

2.5 Regularity of processes

The main question considered in this paper is, whether the behaviour of a
given process is regular, i.e. whether it is bisimilar to a process with finitely
many states.

Definition 4 A process ∆ is regular if there is a process ∆′ with finitely
many states, such that ∆ ∼ ∆′.
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It is easy to show that a process is regular iff it can reach only finitely many
states up to bisimilarity. In [1] it is shown, that regular processes can be
represented in the following normal form:

Definition 5 A regular process ∆ is said to be in normal form if all its
equations are of the form

Xi
def=

ni∑
j=1

aijXij

where 1 ≤ i ≤ n, ni ∈ N , aij ∈ Act and Xij ∈ V ar(∆).

Thus a process ∆ is regular iff there is a regular process ∆′ in normal form,
such that ∆ ∼ ∆′.

3 The constructive test of regularity for normed
BPP processes

3.1 The inheritence tree

Let ∆ be a BPP process in 3-GNF, given by the set of equations

Xi
def=

ni∑
j=1

aijαij

where 1 ≤ i ≤ n. With each αi,j we associate some linear ordering �i,j on
αi,j. We define a partial function Lbl : N ×N ×N → V ar(∆):

Lbl(i, j, k) =


kth element of αi,j w.r.t. �i,j if 1 ≤ i ≤ n ∧ 1 ≤ j ≤ ni

∧ k ≤ card(αi,j)

⊥ otherwise

Now letX1 = β0
a0→ β1

a1→ β2
a2→ β3

a3→ . . . be an infinite path. Each transition
βi

ai→ βi+1 is due to some variable Xr ∈ βi, which emits the action ai and
enters the state αr,s, where aiαr,s is a summand in the defining equation of
Xr in ∆. We say, that Xr is the active variable of βi and αr,s is the step
of βi. Generally, Xri denotes the active variable of βi and αri,si denotes
the step of βi for each i ∈ N ∪ {0}. To be able to examine properties of

8



such an infinite path, we define the associated inheritence tree. Nodes of the
inheritence tree are formed by a subset of (N ∪ {0})× (N ∪ {0}):

Nodes =
∞⋃
i=0
{[i, j] | 0 ≤ j < card(βi)}

Furthermore, we define the function Label : Nodes → V ar(∆):

Label([0, 0]) = X1

Label([i+ 1, j]) =

=


Label([i, j]) if 0 ≤ j < ki
Lbl(ri, si, j − ki + 1) if ki ≤ j < ki + card(αri,si)
Label([i, j− card(αri,si) + 1]) if ki + card(αri,si) ≤ j < card(βi+1)

where ki = max{j ∈ N ∪ {0} | 0 ≤ j < card(βi) ∧ Label[i, j] = Xri}

The way how ki is chosen is not crucial in fact. There is no need to distin-
guish between multiple occurence of the same variable within a single state,
but we want to keep our construction of the inheritence tree deterministic.
Finally, we define the binary relation Edges on Nodes:

[i, j] Edges [l, m] def⇐⇒ l = i+ 1 and one of the following conditions holds:

1. 0 ≤ j < ki ∧ j = m
2. j = ki ∧ ki ≤ m < ki + card(αri,si)
3. ki < j < card(βi) ∧ m = j + card(αri,si)− 1

The inheritence tree associated with the path X1 = β0
a0→ β1

a1→ β2
a2→ β3

a3→
. . . is a triple [Nodes, Edges, [0, 0]]. We also need some further notions:

Definition 6 Let ∆ be a normed BPP process, X1 = β0
a0→ β1

a1→ β2
a2→

β3
a3→ . . . be an infinite path and let IT be the inheritence tree associated

with this path.

A node [i, j] is a son of a node [k, l] iff [[k, l], [i, j]] ∈ Edges. Moreover, if
[i, j] is a son of [k, l], then [k, l] is said to be the father of [i, j]. Note that
each node may have 0,1 or 2 sons, but each node except [0, 0] has exactly
one father.

Similarly, [i, j] is a descendant of [k, l] iff there exists a path from [k, l] to
[i, j] in IT. Finally, a node [i, j] is branching iff it has two different sons.
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Example 1 Let ∆ be a process given by the following set of equations:

X
def
= a(Y ‖Z)

Y
def
= b + c(T‖U)

Z
def
= b + cT + a(Y ‖T )

T
def
= a + a(U‖U)

U
def
= b(Z‖T ) + a(X‖Z)

Process ∆ is normed and its leading variable is X . The linear order-
ing �i,j is determined by the position of variables in αi,j , e.g. �0,0=

{[Y, Y ], [Z, Z], [Y,Z]}, that is Y �0,0 Z. Let X a→ Y ‖Z c→ Y ‖T b→ T
a→

U‖U b→ U‖Z‖T . . . be an infinite path. If we draw a fragment of the asso-
ciated inheritence tree and replace each [i, j] with Label([i, j]), we get the
following picture (active variables are placed in a box):

X
��	 @@R

Y Z

? ?
Y T

?
T
��	 @@R

U U

? ?
HHHj

U Z T
....

....
....
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3.2 Decidability of regularity for normed BPP processes

Definition 7 Let ∆ be a normed BPP process. We define the binary rela-
tion “;” on V ar(∆):

X ; Y
def⇐⇒ ∃ w ∈ Act+, γ ∈ V ar(∆)⊗, such that X w→+Y ‖γ ∧ γ 6= ∅

A variable Y ∈ V ar(∆) is said to be growing iff Y ; Y

We show, that “;” is the least fixed-point of a function, which represents
an iterative procedure. We also show, that this fixed-point must be reached
after a finite number of iterations. We need several definitions:

Definition 8 Let ∆ be a normed BPP process. We define the binary rela-
tion “↪→” on V ar(∆):

X ↪→ Y
def⇐⇒ there is a summand aijαij in the defining equation of X ,

such that Y ∈ αij .

The symbol “↪→∗” denotes the reflexive and transitive closure of “↪→”.

It is a standard result that for any binary relation R on a finite set, the
reflexive and transitive closure of R can be effectively constructed. Hence
there is an algorithm, which constructs “↪→∗”.

Definition 9 Let ∆ be a normed BPP process. We define the function F
over subsets of V ar(∆) × V ar(∆) as follows. If M ⊆ V ar(∆)× V ar(∆),

then [X, Y ] ∈ F(M)
def⇐⇒ one of the following conditions holds:

• [X, Y ] ∈M
• ∃ Z ∈ V ar(∆), such that [X,Z] ∈M ∧ Z ↪→∗ Y
• ∃ Z ∈ V ar(∆), such that [Z, Y ] ∈M ∧ X ↪→∗ Z

Definition 10 Let ∆ be a normed BPP process. For each i ∈ N ∪ {0} we
define the binary relation “;i” over V ar(∆):

;0 = {[X, Y ] | there is a summand aijαij in the defining equation
of X , such that Y ∈ αij ∧ card(αij) = 2}

;i+1 = F(;i)
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Now it is easy to see, that the relation “;” is exactly the least fixed-point
of F , which belongs to the set {;i | i ∈ N ∪ {0}}:

; = ;k, where k = min{i ∈ N ∪ {0} | ;i = F(;i)}

As V ar(∆) × V ar(∆) is finite and ;i ⊆ ;i+1 for each i ∈ N ∪ {0}, the
least fixed-point must be reached in a finite number of steps.

Definition 11 Let ∆ be a normed BPP process. A variable Y ∈ V ar(∆)
is said to be accessible iff there is a reachable state α ∈ V ar(∆)⊗, such that
Y ∈ α.

Again, it is easy to define a function, such that the set of all accessible
variables of V ar(∆) is the least fixed-point of this function. So we have the
following lemma:

Lemma 1 Let ∆ be a normed BPP process. It is decidable, whether the set
V ar(∆) contains an accessible growing variable.

Lemma 2 Let ∆ be a normed BPP process and let α, β ∈ V ar(∆)⊗ be its
states. If β is reachable from α, then for each variable Y ∈ β the state {Y }
is reachable from α.

Proof: Since β is reachable from α, there is v ∈ Act∗, such that α v→
β. Suppose β = Y ‖A1‖ . . .‖An. As ∆ is normed, each of the variables
A1, . . . , An is normed. Hence for each i, 1 ≤ i ≤ n, there is wi ∈ Act+, such
that Ai

wi→+ε. Let w denotes the concatenation of wi, 1 ≤ i ≤ n. The state
{Y } is reachable from α, because α v→∗Y ‖A1‖ . . .‖An w→+Y .

2

We have emphasized this trivial property of normed BPP processes, because
this becomes a crucial point when we start to think about possible extension
of the presented result to the whole class of BPP processes.

Lemma 3 A process ∆ is not regular iff there is an infinite path, X1 =
β0

a0→ β1
a1→ β2

a2→ β3
a3→ . . ., such that βi 6∼ βj for i 6= j.

Proof:
“⇐:” Obvious - ∆ can reach infinitely many pairwise non-bisimilar states.
“⇒:” Let TS(∆) be a transition system generated by ∆. If we identify

12



bisimilar nodes in TS(∆), we get a transition system TS(∆)/ ∼, which is
bisimilar to TS(∆) and all its states are pairwise non-bisimilar. The set of
reachable states of TS(∆)/ ∼ is infinite and TS(∆)/ ∼ is finitely branch-
ing (see Remark 2). Hence due to König lemma there must be an infinite

path
∼
X1

a0→
∼
β1

a1→
∼
β2

a2→
∼
β3

a3→ . . . , where
∼
βi denotes the equivalence class

containing βi. Using this path (whose elements are pairwise non-bisimilar),
we can construct the required path in TS(∆) - just by taking a suitable

representative of
∼
βi.

2

Lemma 4 Let ∆ be a normed BPP process, X1 = β0
a0→ β1

a1→ β2
a2→ β3

a3→
. . . be an infinite path, such that βi 6∼ βj for i 6= j. Then there is a path in
the corresponding inheritence tree, which contains infinitely many branching
nodes.

Proof: First we show that the inheritence tree contains infinitely many
branching nodes. It suffices to prove that for any i ∈ N there exists a
branching node [j, p], such that j > i. Assume the opposite - then there is
k ∈ N , such that [j, p] is branching ⇒ j < k. But then there is no way
how the number of variables in βq, q > k, could increase - each βq, q > k
contains at most card(βk) variables. As ∆ has only finitely many variables,
the set of all multisets over V ar(∆), whose cardinality is at most card(βk),
is finite. Therefore there must be r 6= s such that βr = βs; hence βr ∼ βs,
so we have a contradiction.

It remains to find a path containing infinitely many branching nodes.
To do this, we first construct the branching tree: Nodes of the branching
tree are branching nodes of the inheritence tree. Edges are determined as
follows: [[i, j], [k, l]] is an egde in the branching tree iff there is a path from
[i, j] to [k, l] in the inheritence tree, which does not contain any branching
nodes except [i, j] and [k, l]. The root of the branching tree is the branching
node [i, j], such that all other branching nodes are its descendants (there is
just one node of this property). We have already proved that the branching
tree is infinite. As each node which is not leaf has exactly two successors,
we can use König lemma and conclude that the branching tree contains an
infinite path. This path corresponds to an infinite path in the inheritence
tree, which contains infinitely many branching nodes (realize that each edge
of the branching tree represents a finite path in the inheritence tree).

2
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Now we are ready to prove the main result of this section:

Theorem 1 A normed BPP process ∆ is regular iff V ar(∆) does not con-
tain any accessible growing variable.

Proof:
“⇒:” Assume there is an accessible growing variable Y ∈ V ar(∆). Then
X1

w→∗Y for some w ∈ Act∗ and Y
v→+Y ‖γ, where v ∈ Act+, γ ∈ V ar(∆)⊕

and γ 6= ∅. But then each state of the form Y ‖γi, i ∈ N is reachable.
Furthemore, Y ‖γi 6∼ Y ‖γj for i 6= j, as these two states have different
norms. Hence ∆ is not regular, as it can reach infinitely many pairwise
non-bisimilar states.
“⇐:” Assume ∆ is not regular. We show, that then V ar(∆) contains an
accessible growing variable. As ∆ is not regular, there is an infinite sequence
X1 = β0

a0→ β1
a1→ β2

a2→ β3
a3→ . . ., whose elements are pairwise non-bisimilar.

Now we examine the corresponding inheritence tree. With each node [i, j]
we associate the set Seek([i, j])⊆ V ar(∆) in the following way:

Seek([0, 0]) = ∅

Seek([i+ 1, k]) =


Seek(Father([i+ 1, k])) if Father([i+ 1, k])

is not branching.

Seek(Father([i+ 1, k])) if Father([i+ 1, k])
∪{Label(Father([i+ 1, k]))} is branching.

Father([i + 1, k]) denotes the father of [i + 1, k]. Seek([i, j]) contains in
fact accessible variables, which are potential candidates to be growing - if
we find a node [i, j], such that Label([i, j]) ∈ Seek([i, j]), we can conclude
that Label([i, j]) is an accessible growing variable. This is due to the follow-
ing consideration: As Label([i, j]) ∈ Seek([i, j]), there is a branching node
[p, k], p < i, such that Label([p, k]) = Label([i, j]) and [i, j] is a descendant
of [p, k]. Since [p, k] is branching, it has two sons [p+ 1, l], [p+ 1, l+ 1], thus

Label([p, k])
ap→ Label([p+ 1, l]) ‖ Label([p+ 1, l+ 1]),

where ap ∈ Act. As [i, j] is a descendant of [p, k], one of these four possibil-
ities holds:

1. [p+ 1, l] = [i, j]

2. [p+ 1, l+ 1] = [i, j]
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3. [i, j] is a descendant of [p+ 1, l]

4. [i, j] is a descendant of [p+ 1, l+ 1]

In the first two cases we immediately get that Label([i, j]) ( = Label([p, k]))
is an accessible growing variable. If [i, j] is a descendant of [p + 1, l], then
due to Lemma 1:

Label([p+ 1, l]) w→+ Label([i, j])

for some w ∈ Act+, hence

Label([p, k])
ap→ Label([p+ 1, l]) ‖ Label([p+ 1, l+ 1]) w→+

Label([i, j]) ‖ Label([p+ 1, l+ 1])

so the variable Label([p, k]) is again accessible and growing. Possibility 4 is
handled in a similar way.

Due to Lemma 4 we know, that our inheritence tree contains a path with
infinitely many branching nodes. Going down this path, labels of branch-
ing nodes are successively added to the Seek set. As V ar(∆) is finite, we
must find a branching node [i, j], such that Label([i, j]) ∈ Seek([i, j]), thus
Label([i, j]) is the desired accessible growing variable.

2

3.3 The constructive algorithm

Each regular process can be represented in normal form (see Section 2). In
this section we provide an algorithm, which inputs a normed BPP process
∆ in 3-GNF and outputs YES iff ∆ is regular and NO otherwise. In the
first case our algorithm also constructs a regular process ∆′ in normal form,
such that ∆ ∼ ∆′. During the construction of ∆′ we take advantage of the
fact, that bisimilarity is known to be decidable in the class of normed BPP
processes (see [8]).

The algorithm first checks, whether V ar(∆) contains any accessible
growing variable. If so, it outputs NO and terminates. Otherwise it ini-
tiates ∆′ to be ∆ and starts to remove the multisets αi,j , card(αi,j) > 1
from the defining equations of ∆′. Note this is the only thing which has to
be done to obtain normal form of ∆′.

Each such αi,j is first compared with elements of V ar(∆′). If we find a
variable Y ∈ V ar(∆′), such that Y ∼ αi,j, we simply replace αi,j with Y .
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Otherwise we introduce a new variable P ∈ V ar, P 6∈ V ar(∆′) and a new
equation

P
def
= αi,j

But this equation cannot be immediately added to ∆′, as it is not of the
form, which is prescribed by GNF (αi,j is even not guarded). To obtain the
desired form of this equation, we have to apply the CCS expansion law (see
[1]):

A1‖ . . .‖An =
∑
{ a(A1‖ . . .‖αi‖ . . .‖An) : Ai

a→ αi, a ∈ Act}

After the application of the expansion law we get an equation, which is of
the form of GNF (not necessarly 3-GNF), thus it can be added to ∆′.

We go on in this fashion, until all multisets αi,j, card(αi,j) > 1 are
removed. The construction must terminate, because otherwise the process
∆′ could reach infinitely many pairwise non-bisimilar states (realize that
newly added variables are reachable and pairwise non-bisimilar states of ∆′).
As ∆′ remains bisimilar to ∆ after the processing of each αi,j, it contradicts
the regularity of ∆.

We also describe this algorithm formally, using a Pascal-like pseudocode.
The form is very simple in order to keep the description as short as possible:

Algorithm: The constructive regularity test for normed BPP processes
Input: A normed BPP process ∆ in 3-GNF
Output: YES and a regular process ∆′ in normal form, such that

∆ ∼ ∆′ if ∆ is regular;

NO otherwise;
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IF V ar(∆) contains an accessible growing variable
THEN output:=NO;

ELSE BEGIN
∆′ := ∆;
WHILE (∆′ contains αi,j, such that card(αi,j) > 1) DO

BEGIN
I:=TRUE;
FOR each V ∈ V ar(∆′) DO

IF (V ∼ αi,j)
THEN BEGIN I:=FALSE;

replace αi,j with V;
EXITFOR;

END;
IF(I=TRUE)

THEN BEGIN N:=newvariable(∆′);

∆′ := ∆′ ∪ {N def
= expand(αi,j)};

END;
END;
output:=YES;

END;

The function expand applies the CCS expansion law on its argument and re-
turns the expanded expression. The function newvariable returns a variable
from V ar, which is not in V ar(∆). Here is an example:

Example 2: Let ∆ be a normed BPP process in 3-GNF, given by the
following set of equations:

X
def
= bC + a(B‖C)

A
def
= a

B
def= b

C
def= b(B‖A)

D
def= aB + bA

The set V ar(∆) does not contain any accessible growing variable, hence our
algorithm can be applied. We show, how ∆′ changes its form after each pass
through the WHILE loop:
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X
def
= bC + aE

A
def
= a

B
def
= b

C
def
= b(B‖A)

D
def
= aB + bA

E
def
= expand(B‖C) = bC + b(B‖B‖A)

X
def
= bC + aE

A
def
= a

B
def
= b

C
def
= bD

D
def
= aB + bA

E
def
= bC + b(B‖B‖A)

X
def
= bC + aE

A
def
= a

B
def
= b

C
def
= bD

D
def= aB + bA

E
def= bC + bF

F
def
= expand(B‖B‖A) = a(B‖B) + b(A‖B)

X
def
= bC + aE

A
def= a

B
def= b

C
def
= bD

D
def
= aB + bA

E
def
= bC + bF

F
def
= aG + b(A‖B)

G
def
= expand(B‖B) = bB
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X
def
= bC + aE

A
def
= a

B
def= b

C
def= bD

D
def
= aB + bA

E
def
= bC + bF

F
def
= aG + bD

G
def
= bB

3.4 Replacing merge with the full parallel operator

A natural question is, whether our algorithm still works if we replace the
merge operator with the full parallel operator and thus move to the class
BPPτ . The answer is positive, but some modifications of definitions and
proofs are needed. We could in fact start the Section 3 directly with this
version of our algorithm, but the main idea is more or less the same - there-
fore we have given the simplified version first and now we show what has to
be changed to obtain the full result.

We begin with a new version of the inheritence tree (we denote it ITτ).
Let ∆ be a normed BPPτ process and let X1 = β0

a0→ β1
a1→ β2

a2→ β3
a3→ . . .

be an infinite sequence of transitions. Each transition βi
ai→ βi+1 is either

due to a single variable Xri , which emits the action ai and enters the state
αri,si , or due to a communication between two variables Xri and Xti , which
emit the complementary actions b, b ∈ Act (hence producing τ) and enter
states αri,si and αti,ui . In the latter case we say that the transition βi

ai→ βi+1
is synchronized, variables Xri and Xti are communicating and αri,si , αti,ui
are steps of communication. Nodes of ITτ are defined as previously:

Nodesτ =
∞⋃
i=0

{[i, j] | 0 ≤ j < card(βi)}

Now we introduce a new version of the function Label, denoted Labelτ :

Labelτ([0, 0]) = X1

Labelτ([i+ 1, j]) =

{
Label([i+ 1, j]) if βi

ai→ βi+1 is not synchronized
Label2([i+ 1, j]) if βi

ai→ βi+1 is synchronized
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where the function Label2 : Nodesτ → V ar(∆) is defined as follows:

Label2([i+ 1, j]) =

=



Labelτ([i, j]) if 0 ≤ j < ki
Lbl(ri, si, j − ki + 1) if ki ≤ j < ki + C1
Labelτ([i, j − C1 + 1]) if ki + C1 ≤ j < li +C1 − 1
Lbl(ti, ui, j − li −C1 + 2) if li +C1 − 1 ≤ j < li + C1 +C2 − 1
Labelτ([i, j − C1 −C2 + 2]) if li +C1 +C2 − 1 ≤ j < card(βi+1)

where

ki = max{j ∈ N ∪ {0} | 0 ≤ j < card(βi) ∧ Labelτ [i, j] = Xri}

li =

{
max{j ∈ N ∪ {0} | 0 ≤ j < card(βi) ∧ Labelτ [i, j] = Xti} if Xri 6= Xti

max{j ∈ N ∪ {0} | 0 ≤ j < ki ∧ Labelτ [i, j] = Xti} if Xri = Xti

where Xri and Xti are communicating variables and αri,si , αti,ui are cor-
responding steps of communication. We can assume w.l.o.g., that ki < li
(otherwise we change their roles). Constants C1, C2 are just abbreviations:

C1 = card(αri,si)
C2 = card(αti,ui)

Finally, we define the edges of ITτ :

[i, j] Edgesτ [l, m]
def⇐⇒ l = i+ 1 and one of these two conditions holds:

1. βi
ai→ βi+1 is not synchronized and [i, j] Edges [l, m]

2. βi
ai→ βi+1 is synchronized and one of the following conditions holds:

• 0 ≤ j < ki ∧ m = j
• j = ki ∧ ki ≤ m < ki + C1
• ki < j < li ∧ m = j +C1 − 1
• j = li ∧ li + C1 − 1 ≤ m < li + C1 +C2 − 1
• li < j < card(βi) ∧ m = j +C1 + C2 − 2

The inheritence tree associated with the sequence X1 = β0
a0→ β1

a1→ β2
a2→

β3
a3→ . . . is a triple ITτ = [Nodesτ , Edgesτ , [0, 0]]. We can keep previ-

ously defined notions of the son, father, descendant and branching node.
Lemmas 1, 2 and 3 are still valid. Theorem 1 holds too, but the proof has
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to be done more carefully. Seek sets are associated with nodes of the in-
heritence tree in the same way. Again, if we find a node [i, j], such that
Labelτ([i, j]) ∈ Seek([i, j]), we can conclude that Labelτ([i, j]) is an accessi-
ble growing variable. The consideration is similar to the previous one, but
the crucial thing is to realize that whenever X |Y |γ τ→ α|β|γ, where X, Y
are communicating variables and α, β are steps of communication, then also

X |Y |γ b→ α|Y |γ and X |Y |γ b→ X |β|γ, where b, b ∈ Act are complementary
actions - there is no way how to force synchronizations. The proof is now
easy to complete.

The constructive algorithm described in the previous section also requires
a small modification - we need a more general version of the CCS expansion
law, which reflects the new possibility of synchronizations (see [1]):

A1| . . . |An =
∑
{ a(A1| . . . |αi| . . . |An) : Ai

a→ αi, a ∈ Act}

+
∑
{ τ(A1| . . . |αi| . . . |αj| . . . |An) : Ai

b→ αi, Aj
b→ αj, b, b ∈ Act}

Now we can finish this section with the following theorem:

Theorem 2 There is a constructive regularity test for the class of normed
BPPτ processes.

4 The constructive test of regularity for normed
BPA processes

In [2] Mauw and Mulder presented a constructive regularity test for BPA
systems. Their notion of the BPA system is exactly what we call the BPA
process here. But we keep this notion, because the regularity of BPA systems
is defined differently from the regularity of processes:

Definition 12 Let ∆ be a BPA process in GNF. A variable Y ∈ V ar(∆) is
said to be accessible if ∃ w ∈ Act∗, γ ∈ V ar(∆)∗, such that X1

w→∗Y γ.

Definition 13 A BPA system ∆ is regular iff each accessible variable Y ∈
V ar(∆) is a regular process.

Remember that if we have a BPA system ∆, each of its variables can be
seen as a process (see Remark 1).

Each regular BPA system is a regular BPA process. The following ex-
ample shows, that there is a regular BPA process, which is not a regular
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BPA system (this example is also due to [2]):

Example 3: Let ∆ be a BPA process given by the following set of equations:

X
def
= aY Z

Y
def
= bY C + d

Z
def
= cZ

C
def
= c

It is easy to check that ∆ is a regular process, but it contains an accessible
variable Y, which is not regular (process Y can reach infinitely many pair-
wise non-bisimilar states). Hence ∆ is not a regular BPA system.

Furthermore, the result of [2] is constructive - it not only checks the regu-
larity of BPA systems, but if the answer is positive, it also outputs a regular
process in the normal form, which is bisimilar to the original one. In this
section we prove, that if we restrict out attention to the class of normed
BPA processes, then the result of [2] can serve as a constructive regularity
test for processes of this class. The following lemma is due to D. Caucal [4]:

Lemma 5 (Cancelation) Let ∆ be a normed BPA process in GNF,
α, β, γ ∈ V ar(∆)∗. If αγ ∼ βγ, then also α ∼ β.

Proof: The set {[δ1, δ2] | δ1, δ2 ∈ V ar(∆)∗, δ1γ ∼ δ2γ} is a bisimulation
containing the pair [α, β].

2

Now it is possible to prove the promised result:

Lemma 6 A normed BPA process ∆ is regular iff all accessible variables of
V ar(∆) are regular processes.

Proof:
“⇐:” trivial.
“⇒:” Let Y be an accessible variable, which is not a regular process. Due to
Lemma 2 there must be an infinite sequence Y = α0

a0→ α1
a1→ α2

a2→ α3 . . .,
such that αi 6∼ αj for i 6= j. As Y is accessible, there exists w ∈ Act∗,
such that X1

w→∗Y β. But then the states α0β, α1β, α2β, . . . are reachable.
As ∆ is regular, it cannot have infinitely many reachable states, which are
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pairwise non-bisimilar. Thus there are i, j ∈ N, i 6= j, such that αiβ ∼ αjβ.
But now we can use the Lemma 5 and conclude αi ∼ αj, so we have a
contradiction.

2

We present here also the main theorem of [2] (in a slightly different form):

Definition 14 Let ∆ be a BPA system. A variable Y ∈ V ar(∆) is said to
be growing iff ∃w ∈ Act+, α ∈ V ar(∆)∗, such that Y w→ Y α and Y α is a
normed state.

Theorem 3 Let ∆ be a BPA system. System ∆ is regular iff V ar(∆) does
not contain any accessible growing variable.

Proof: can be found in [2].

2

As a consequence of Theorem 3 and Lemma 6 we get the following:

Theorem 4 Let ∆ be a normed BPA process. Process ∆ is regular iff
V ar(∆) does not contain any accessible growing variable.

5 Deciding regularity w.r.t. other behavioural
equivalences

Bisimilarity is not the only behavioural equivalence which appeared in the
literarure. In certain situations it may be advantageous to define the notion
of “sameness” in another way. R. van Glabbeek presented in [13] various
equivalences in a uniform way, relating them w.r.t. their coarseness, i.e.
how many identifications they make:
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The order is determined by the relation “makes strictly more identifications
than”. Definitions of these equivalences can be found in Appendix A.

The notion of regularity can be defined also w.r.t. these equivalences
in the same way as in the case of bisimilarity. In this section we examine
properties of these equivalences. We introduce notions of strong regular-
ity and finite characterisation and then we describe their relationship with
regularity and finite representations.

As we want to keep this section general, we abstract from the concrete
model of process algebras and assume that all behavioural equivalences are
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binary relations over the class of transition systems:

Definition 15 A transition system is a 4-tuple (N,L,→,r) consisting of a
set of nodes N, a set of labels L, a transition relation →⊆ N × L×N and
a distinguished element r ∈ N called root.

As usual we write A a→ B if [A, a, B] ∈→ and we extend this notation also
to elements of L∗ in an obvious way. A node A ∈ N is reachable if there is
w ∈ L∗ such that r w→ A. The class of all transition systems is denoted by
T .

Remark 3 Each node A of the transition system T = [N,L,→, r] deter-
mines a unique transition system T (A) = [N,L,→, A]. All notions origi-
nally defined for transition systems can be used for their nodes in this sense
too.

Definition 16 Let↔ be an equivalence over T . A transition system T ∈ T
is said to be regular w.r.t. ↔ if there is a finite system T ′ ∈ T , such that
T ↔ T ′.

The transition system T ′ from the previous definition can be seen as a finite
representation of T , because it represents the behaviour of the process which
is associated with the root of T . As we will see, representations generally
do not say much about the behaviour of reachable nodes of T . We need
another notion:

Definition 17 Let T ∈ T be a transition system and let↔ be an equivalence
over T . T has a finite characterisation w.r.t. ↔ if there is a finite T ′ ∈ T ,
whose nodes are pairwise non-equivalent w.r.t. ↔, T ↔ T ′ and for each
reachable node n of T there is a reachable node n′ of T ′ with n↔ n′.

A finite characterisation T ′ of T describes the system T as a whole - for
each reachable node of T there is its finite characterisation within T ′. An
existence of a finite characterisation is especially interesting from the point
of view of possible verification of concurrent systems.

Now we examine the question when finite characterisations exist and
what is their relationship with representations. First we need to introduce
further notions:

Definition 18 Let T ∈ T be a transition system and let↔ be an equivalence
over T . T is strongly regular w.r.t. ↔ if each reachable node of T is regular
and T can reach only finitely many nodes up to ↔.
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Definition 19 Let ↔ be an equivalence over T . For each T ∈ T we define
the transition system T/ ↔: Nodes of T/ ↔ are equivalence classes of ↔,
root is the class [r] and transitions are determined as follows: if n a→ n′ is
a transition in T , then [n] a→ [n′] is a transition in T/↔.

The equivalence↔ is said to have quotients if for any T ∈ T the natural
projection p : T −→ T/ ↔, assigning to each node n of T the node [n] of
T/↔, is a part of ↔ (i.e. n↔ [n] for each node n of T).

Lemma 7 Let T ∈ T and let ↔ be an equivalence over T which has quo-
tients. Then T has a finite characterisation w.r.t. ↔ iff T is strongly regular
w.r.t. ↔.

Proof:
“⇒” Let T ′ be a finite characterisation of T . Each reachable node n of T
is regular, because it is equivalent to some node n′ of T ′ and T ′ is finite.
Assume that T can reach infinitely many pairwise non-equivalent nodes
ni, i ∈ N . Each ni is equivalent to some node n′i of T ′. As T ′ is finite, there
are i, j ∈ N, i 6= j such that n′i ↔ n′j. Hence also ni ↔ nj and we have a
contradiction.
“⇐” As T is strongly regular and ↔ has quotients, the transition system
T/↔ is a finite characterisation of T .

2

The first theorem of this section shows, that the requirement of “having
quotients” of the previous lemma is not too restrictive in fact. There are
many reasonable equivalences, which fulfil this condition.

Lemma 8 Equivalences =tr, =ct, =f , =r, =ft, =rt, =pf have quotients.

Proof: We will not give a separate proof for each of these equivalences,
because the main idea is always the same. It corresponds to the fact, that
all these equivalences are defined in a similar way. The crucial thing is
to realize, that in spite of the fact that none of these equivalences is a
congruence w.r.t. the transition relation, equivalent nodes have always the
same sets of initial actions (see Appendix A). We present here a full proof
for failure equivalence. The other proofs should be easy to complete using
the same kind of argument.

Let T ∈ T be a transition system and let n ∈ N be a node of T . We
show that F (n) = F ([n]), where [n] denotes the equivalence class of T/ =f
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containing the node n:

“⊆”: Let [w,Φ] ∈ L∗ × P(L) be a failure pair of n (see Appendix A). By
definition, there is a node n′ ∈ N such that n w→ n′ ∧ I(n′) ∩ Φ = ∅.
But then also [n] w→ [n′]. The set I([n′]) is the union of all I(p), such that
p ∈ [n′]. As p =f q implies I(p) = I(q), we can conclude that I([n′]) = I(n′),
hence I([n′]) ∩Φ = ∅, thus [w,Φ] ∈ F ([n]).

“⊇”: Let [w,Φ] ∈ L∗×P(L) be a failure pair of [n] and let w = akak−1 . . .a1.
By definition, there is a sequence [nk]

ak→ [nk−1]
ak−1→ . . .

a1→ [n0] in T/ =f ,
such that n ∈ [nk] and I([n0]) ∩ Φ = ∅. We show, that for each node m of
T such that m ∈ [ni], where i ∈ {0, . . . , k}, the pair [ai . . . a1,Φ] belongs to
F (m). We proceed by induction on i:

• i = 0: as I(m) = I([n0]), the pair [ε,Φ] ∈ F (m).

• induction step: as [ni]
ai→ [ni−1], there are nodes p, q of T , such that

p
ai→ q, p ∈ [ni] and q ∈ [ni−1]. By induction hypothesis, the pair

[ai−1 . . . a1,Φ] ∈ F (q), hence [ai . . .a1,Φ] ∈ F (p). As m =f p, the pair
[ai . . . a1,Φ] belongs to F (m).

2

Lemma 9 Simulation equivalence, ready simulation equivalence and 2-
nested simulation equivalence have quotients.

Proof: Let T ∈ T be a transition system and let n ∈ N be a node of T .
First we show that n =s [n], where [n] denotes the equivalence class of T/ =s.
By definition, two simulations R, S, such that [n, [n]] ∈ R, [[n], n] ∈ S
have to be defined. The simulation R is exactly the natural projection
p : T → T/ =s:

R = {[k, [k]] : k ∈ N}

It is easy to check, that R is indeed a simulation. The way how S is defined
is more complicated:

[[p], q] ∈ S iff there exists a derivation scheme for [[p], q].

The derivation scheme for [[p], q] consists of:

• a path [m0] a1→ [m1] a2→ . . .
ak→ [mk] in T/ =s, k ≥ 0

• a set of nodes {p0, . . . , pk−1} ⊆ N, if k > 0
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• a set of nodes {qi,j | 0 ≤ i ≤ k, i ≤ j ≤ k} ⊆ N

• a set of simulations {S0, . . . , Sk−1}, if k > 0

such that:

• n = q0,0, q = q0,k, n ∈ [m0], p ∈ [mk]

• pi ∈ [mi] for i ∈ {0, . . . , k− 1}, qi,i ∈ [mi] for i ∈ {0, . . . , k}

• pi
ai+1→ qi+1,i+1 for i ∈ {0, . . . , k− 1}

• qi,j
ai+1→ qi,j+1 for 0 ≤ i ≤ k − 1, i ≤ j < k − 1

• [pi, qi,i] ∈ Si for i ∈ {0, . . . , k − 1}

• [qi+1,j, qi,j] ∈ Si for 0 ≤ i ≤ k − 1, i < j ≤ k

The following picture could be helpful:
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Relation S is a simulation - whenever [[p], q] ∈ S and [p] a→ [p′], then there
is a q′, such that q a→ q′ and [[p′], q′] ∈ S. This is due to the existence of a
derivation scheme for the pair [[p], q]. We can simply add a new “layer” to
the scheme and construct a derivation scheme for the pair [[p′], q′]. The way
how it is done is obvious. Moreover, S contains the pair [[n], n].
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This construction can be used also for ready simulation equivalence.
The simulation R becomes a ready simulation. It follows directly from
the fact that two nodes, which are ready simulation equivalent, have the
same sets of initial actions. The notion of the derivation scheme has to
be modified slightly - we now require {S0, . . . , Sk−1} to be a set of ready
simulations. Then S is also a ready simulation: assume that [[p], q] ∈ S.
Then I([p]) = I(q) because qk,k ∈ [p] and the simulations S0, . . . , Sk−1 are
ready simulations now.

In the case of 2-nested simulation equivalence the construction can be
used too. The simulation R becomes a 2-nested simulation, because we
have already proved that n =s [n] for each node n of T . The notion of the
derivation scheme has to be modified again - {S0, . . . , Sk−1} are 2-nested
simulations now. We prove that S is a 2-nested simulation. Let [[p], q] ∈ S.
We need to show that [p] =s q. By definition, two simulations P,Q such
that [[p], q] ∈ P and [q, [p]] ∈ Q have to be constructed. Clearly S is a
simulation which contains the pair [[p], q], hence we can choose P = S. The
construction of Q is slightly more complicated. As [[p], q] ∈ S, there is a
derivation scheme for [[p], q]. Now S0, . . . , Sk−1 are not only simulations,
but 2-nested simulations, hence qk,k =s q. Therefore there is a simulation T
containing the pair [q, qk,k]. It is easy to check thatQ = {[u, [v]] : [u, v] ∈ T}
is a simulation. Moreover, [q, [p]] ∈ Q because qk,k ∈ [p].

2

We have proved the first theorem of this section:

Theorem 5 Each equivalence in van Glabbeek hierarchy has quotients.

There are also other well-known equivalences which have quotients - e.g.
weak bisimilarity (see [1]) or branching bisimilarity (see [14]). But this prop-
erty is naturally not general; there are also equivalences which do not have
quotients. A simple example is language equivalence. Two transition sys-
tems are language equivalent if their roots have the same completed traces
(realize that language equivalence is different from completed trace equiva-
lence and is even incomparable with trace equivalence). A counterexample
is easy to find.

We have seen that in many cases the condition of strong regularity be-
comes sufficient and necessary for the existence of a finite characterisation.
An interesting question is, what is the exact relationship between conditions
of regularity and strong regularity (the first one guarantees the existence of
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a finite representation, the other guarantees the existence of a finite charac-
terisation). Strong regularity always implies regularity, but the converse is
not generally true.

Definition 20 An equivance ↔ over T is safe if whenever T ↔ T ′ then:

• for each reachable node n of T there is a reachable node n′ of T ′ such
that n↔ n′

• for each reachable node n′ of T ′ there is a reachable node n of T such
that n↔ n′

Lemma 10 Let↔ be a safe equivalence over T . Then T is strongly regular
w.r.t. ↔ iff T is regular w.r.t. ↔

Proof:
“⇒” Obvious.
“⇐” The arguments of Lemma 7 can be used.

2

An immediate consequence of Lemma 7 and Lemma 8 is:

Lemma 11 Let ↔ be a safe equivalence over T which has quotients. Then
∀T ∈ T : T has a finite representation iff T has a finite characterisation.

Thus in the case of a safe equivalence which has quotients the notions of
regularity and strong regularity coincide. We have already mentioned some
examples - bisimilarity, weak bisimilarity and branching bisimilarity are safe
and have quotients. But there are also equivalences, for which these two
notions are really different.

Lemma 12 For each behavioural equivalence↔ which lies under ready sim-
ulation equivalence in van Glabbeek hierarchy (including this relation) there
is a transition system T ∈ T , such that T is regular w.r.t. ↔ and T is not
strongly regular w.r.t. ↔.

Proof: Let T1 = [N1, L1,→1, r1], T2 = [N2, L2,→2, r2] be transition sys-
tems, where N1 ⊆ N ∪ {0} ×N ∪ {0}:

N1 =
∞⋃
i=0

{[i, j] | 0 ≤ j ≤ i+ 1}
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L1 = {a}

→1 =
∞⋃
i=0
{ [[i, j], a, [i, j+ 1]] | j ∈ {0, . . . , i}} ∪ {[[0, 0], a, [0, 0]]}

∪ { [[i, 0], a, [i+ 1, 0]] | i ∈ N ∪ {0}}
r1 = [0, 0]

N2 = {A,B}
L2 = {a}
→2 = {[A, a, A], [A, a,B]}
r2 = A

If we draw these transition systems, we obtain the following pictures:
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System T1 is not strongly regular w.r.t. trace equivalence, because
tr([i, 1]) ⊂ tr([i + 1, 1]) for each i ∈ N ∪ {0}, thus T1 contains infinitely
many states w.r.t. trace equivalence. Therefore T1 is not strongly regular
w.r.t. any equivalence in van Glabbeek hierarchy.

Now we show that T1 =rs T2. By definition, two ready simulations R, S,
such that r1Rr2 and r2Sr1 have to be constructed:

R =
∞⋃
i=0

{ [[i, j], A] : 0 ≤ j ≤ i} ∪
∞⋃
i=0

{ [[i, i+ 1], B] }

S = { [A, [0, 0]], [B, [0, 1]] }
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It is easy to check that R, S are ready simulations. Moreover, [0, 0] =
r1 R r2 = A and A = r2 S r1 = [0, 0].

As T1 =rs T2, transition systems T1, T2 are equivalent w.r.t. any be-
havioural equivalence which lies under ready simulation equivalence in van
Glabbeek hierarchy. As T2 is finite, the system T1 is regular w.r.t. each of
these equivalences.

2

Lemma 13 There is a transition system T ∈ T , such that T is regular
w.r.t. possible-futures equivalence and 2-nested simulation equivalence, but
T is not strongly regular w.r.t. these equivalences.

Proof: Let T1 = [N1, L1,→1, r1], T2 = [N2, L2,→2, r2] be transition sys-
tems, where:

N1 = N ∪ {0}
L1 = {a}
→1 = { [i, i+ 1] | i ∈ N} ∪ { [i, i− 1] | i ∈ N}
r1 = 1

N2 = {A,B, C}
L2 = {a}
→2 = { [A, a, B], [A, a,C], [C, a,A] }
r2 = A

Systems T1, T2 can be depicted as follows:
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We show that T1 has infinitely many nodes w.r.t. =pf and =2. Let i, j ∈
N, i < j be nodes of T1. The node i has a possible future [ai, ∅]. Clearly
[ai, ∅] 6∈ PF (j), hence i 6=pf j. As 2-nested simulation equivalence is above
possible-futures equivalence in van Glabbeek hierarchy, the system T1 has
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infinitely many states also w.r.t. =2, thus T1 is not strongly regular w.r.t.
=2 and =pf .

It remains to prove that T1 is regular w.r.t. =2 and =pf . We show, that
T1 =2 T2. First we have to classify which nodes of T1 and T2 are simulation
equivalent. Clearly 0 =s B. If i ∈ N is odd then i =s A, and if i ∈ N is
even then i =s C. Following relations are the required simulations:

Ri = { [k, A] | k ∈ N ∧ k is odd} ∪ { [k, C] | k ∈ N ∪ {0} ∧ k is even}
Si = { [A, i], [B, i+ 1], [C, i+ 1] }

Now we can define two 2-nested simulations, which relate roots of T1 and
T2:

R = { [i, A] | i ∈ N ∧ i is odd} ∪ { [i, C] | k ∈ N ∧ i is even} ∪ {[0, B]}
S = { [A, 1], [B, 0], [C, 2] }

Elements of R, S are pairs of simulation equivalent nodes. Now it is easy
to check that R, S are 2-nested simulations. As [1, A] ∈ R ∧ [A, 1] ∈ S,
transition systems T1, T2 are 2-nested simulation equivalent.

As T1 =2 T2 and possible-futures equivalence lies under 2-nested sim-
ulation equivalence in van Glabbeek hierarchy, systems T1 and T2 are also
possible-futures equivalent. Thus T1 is regular w.r.t. =2 and =pf

2

We have just proved the following theorem:

Theorem 6 Let ↔ be an equivalence in van Glabbeek hierarchy, which lies
under bisimilarity. Then there is T ∈ T , such that T is regular w.r.t. ↔
and T is not strongly regular w.r.t. ↔

An open problem is, whether the notions of regularity and strong regular-
ity have different features w.r.t. their decidability. In the next section we
present some negative results, stating that both regularity and strong reg-
ularity can be undecidable in certain process algebras. From the practical
point of view it would be much more interesting to obtain some positive
results, but this area seems to be quite unexplored. Recently, Jančar and
Moller presented in [15] an interesting result, stating that trace, simulation
and bisimulation equivalence are decidable for pairs of Petri nets, such that
one member of this pair is a bounded Petri net (i.e. a finite-state process).
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6 Negative results

In this section we present some negative results, stating that regularity and
strong regularity are undecidable in some process algebras. This area was
first examined by Taubner in [11]. We generalize these results using a simple
reduction of the halting problem of Minsky machine.

6.1 The Minsky machine

A Minsky machine (denoted here by M) is equipped with two counters
C1, C2, which can store non-negative integers. The behaviour of M is deter-
mined by a finite-state program, composed of m ∈ N labelled statements:

l1 : s1
l2 : s2
...
lm−1 : sm−1
lm : HALT

where for each i, 1 ≤ i < m the statement si has one of the two forms:

si =

{
Cj = Cj + 1; goto lk

if Cj = 0 then goto lk else Cj = Cj − 1; goto ln;

where j ∈ {1, 2}. The machine M starts its execution (with given input
values on C1, C2) from the command with the label l1. M halts if it reaches
the command HALT in a finite number of steps, and diverges otherwise. Nat-
urally, the halting problem of Minsky machine is undecidable (see [12]).

6.2 Extending BPPτ with the operator of restriction

In this section we explore a calculus obtained by extending BPPτ with the
restriction operator. In [11] Taubner proved that there is no algorithm
which, for some process ∆ of this class as input, outputs a regular process
∆′ in normal form with ∆ ∼ ∆′ if such a ∆′ exists, and which outputs “no”
otherwise. We extend this result also for other equivalences and for the
notion of strong regularity, which was introduced in the previous section. All
negative results are proved in a uniform way using a very simple technique.

We begin by formally introducing the restriction operator. Let L be a
subset of Act, such that τ 6∈ L. The restriction operator, denoted by “\L”,
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has the following meaning:

E
a→ E ′

E\L a→ E ′\L
(a 6∈ L ∪ L)

It is mainly used as a tool for forcing synchronizations on certain actions.
If we extend BPPτ expressions with the restriction operator, we get a new
class of processes, denoted by BPPRτ .

Processes of BPPRτ are able to simulate the execution of an arbitrary
Minsky machine M (see [11]). The simulating process can be automaticly
constructed and has the following form:

S = (K1|K2|P1)\L

Processes K1, K2 simulate counters. We will not describe the way how they
are defined - it is not important for our purposes (see [11] or [10] for details).
Process P1 simulates the program of M and L contains all visible actions of
K1, K2 and P1, forcing the three components to cooperate.

The program of M is simulated by P1, which consists of m defining equa-
tions containing variables from {P1, . . . , Pm}. Each equation is determined
as follows:

1. Pi
def
= ijPlk

if si is of the form Cj = Cj + 1; goto lk;

2. Pi
def
= zjPlk + djPln

if si is of the form if Cj = 0 then goto lk else Cj = Cj − 1; goto ln;

3. Pi
def
= 0

if si = HALT

Actions ij, dj, zj, j ∈ {1, 2} represent operations on counters and have their
complements in K1 and K2. The expression 0 denotes a process which
does nothing (it is an explicit name for the empty process expression). The
execution of M is thus simulated by communications among K1, K2 and P1.
Machine M diverges iff S ∼ X , where X

def
= τX .

Lemma 14 There is a BPPRτ process Y , which is not regular w.r.t. trace
equivalence.
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Proof: Let Y
def
= (a.(A|C))\{b}, A

def
= a.(A|C) + b, C

def
= b.c.b. Process

Y is normed, hence its traces are just prefixes of its completed traces. The
set ct(Y ) = {ak(τc)k | k ∈ N}. Assume that there is a finite process Y ′ with
n states, such that Y and Y ′ are trace equivalent. As an+1(τc)n+1 ∈ ct(Y ),
this sequence of actions is also a trace of Y ′. As Y ′ has only n states, there
is a state ϕ of Y ′ such that

Y ′
ak→ ϕ

al→ ϕ
am→ ψ

(τc)n+1

→ χ

where ψ, χ are states of Y ′, k + l +m = n+ 1 and l > 0. But then also

Y ′
ak→ ϕ

am→ ψ
(τc)n+1

→ χ

thus akam(τc)n+1 is a trace of Y ′. But this sequence of actions is not a prefix
of any completed trace of Y , hence akam(τc)n+1 6∈ tr(Y ) and Y 6=tr Y

′.

2

As Y is not regular w.r.t. trace equivalence, it is not (strongly) regular w.r.t.
any equivalence in van Glabbeek hierarchy.

Theorem 7 Regularity w.r.t. any equivalence in van Glabbeek hierarchy is
undecidable in the class BPPRτ .

Proof: Let ↔ be an equivalence in van Glabbeek hierarchy. We define
a new process P ′1 with variables from {P ′1, . . . , P ′m, A, C}. These variables
are defined in the same way as variables of P1 except A,C and P ′i , where
si = HALT (we denote this variable just P ′):

P ′
def
= (a.(A|C))\{b}, A

def
= a.(A|C) + b, C

def
= b.c.b

where a, b, b, c 6∈ L. Let S ′ = (K1|K2|P ′1)\L. If M diverges, then S ′ is regular

w.r.t↔, because S ′ ∼ X where X def= τX , thus also S ′ ↔ X . If S ′ is regular
w.r.t ↔, then it cannot reach a state of the form (K ′1|K ′2|P ′)\L in a finite
number of τ moves. To see this, assume the converse. As (K ′1|K ′2|P ′)\L ∼ P ′
and (K ′1|K ′2|P ′)\L was reached from S ′ under a finite number of τ moves,
we can conclude S ′ ∼ τk.P ′ where k ∈ N (realize that the first k moves of
S ′ are completely deterministic). The process τk.P ′ is clearly non-regular
w.r.t. trace equivalence (arguments of Lemma 10 can be used), hence S ′

is also non-regular w.r.t. trace equivalence (otherwise we can use the fact
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that bisimilarity implies trace equivalence and conclude that τk.P ′ is regular
w.r.t. trace equivalence just by transitivity). As S ′ is not regular w.r.t trace
equivalence, it is not regular w.r.t. ↔ and we have a contradiction.

We have just proved that M diverges iff S ′ is regular w.r.t. ↔. As S ′

can be for any Minsky machine M constructed by an algorithm, we have the
desired reduction.

2

This method can be used also for other equivalences and other process al-
gebras which have a parallel operator and can simulate counters (see [11]).
Moreover, it works also for strong regularity.

7 Conclusions, future work

If we compare the decidability results, obtained for classes of normed BPP
and normed BPA processes, we can observe that they are of a similar form.
This is not surprising if fact - the only difference between BPP and BPA
algebras is the way of binary composition they provide - the parallel com-
position in the case of BPP and the sequential composition in the case of
BPA. But these two operators have similar algebraic properties and it re-
flects in many things - processes of BPP and BPA can be represented in
similar normal forms (GNF), there are similar cancelation properties, the
notion of self-bisimulation, introduced in [4], can be defined in a uniform
way (see [9]) and so on.

An open problem still remains the question of deciding regularity in
the whole classes of BPP and BPA. This problem is at least semi-decidable,
because bisimilarity is known to be decidable in these algebras - hence we can
take a BPA or BPP process ∆ in GNF and start to remove sequences (in the
case of BPA) or multisets (in the case of BPP) of variables, whose cardinality
is greater then one, from defining equations. We have already described the
removal procedure for BPP class (see Section 3.3). The procedure for BPA
is similar, but the right distributivity law (see [3]) has to be used instead of
the expansion law.

Another interesting question mentioned already in the Section 5 is,
whether there are behavioural equivalences, for which conditions of regu-
larity and strong regularity have different decidability properties and this is
the area we would like to examine in the future.
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Appendix A
To keep this report self-contained, we present here also the definitions of
behavioural equivalences in van Glabbeek hierarchy. We adopt here the
definition of the transition system from Section 5 (T = [N,L,→, r]). If
A ∈ N , then I(A) = {a ∈ L | ∃B ∈ N such that A

a→ B} denotes the set
of initial actions (labels) of A. Moreover, if M is a set, then P(M) denotes
the power-set of M .

Definition 21 (Trace equivalence)
Let T ∈ T be a transition system. We define the set of traces of T , denoted
tr(T ), in the following way:

tr(T ) = {w ∈ L∗ | ∃A ∈ N, such that r w→ A}

Transition systems T1, T2 are trace equivalent, notation T1 =tr T2, if
tr(T1) = tr(T2).

Definition 22 (Completed trace equivalence)
Let T ∈ T be a transition system. We define the set of completed traces of
T , denoted ct(T ), in the following way:

ct(T ) = {w ∈ L∗ | ∃A ∈ N, such that r w→ A ∧ A 6 a→ B for any a ∈ Act, B ∈ N}

Transition systems T1, T2 are completed trace equivalent, notation T1 =ct

T2, if tr(T1) = tr(T2) ∧ ct(T1) = ct(T2).

Definition 23 (Failure equivalence)
Let T ∈ T be a transition system. A pair [w,Φ] ∈ L∗ × P(L) is a failure
pair of T , if there is a node A ∈ N such that r w→ A and I(A) ∩Φ = ∅. Let
F (T ) denote the set of all failure pairs of T . Transition systems T1, T2 are
failure equivalent, notation T1 =f T2, if F (T1) = F (T2)

Definition 24 (Readiness equivalence)
Let T ∈ T be a transition system. A pair [w,Φ] ∈ L∗ × P(L) is a ready
pair of T , if there is a node A ∈ N such that r w→ A and I(A) = Φ. Let
R(T ) denote the set of all ready pairs of T . Transition systems T1, T2 are
readiness equivalent, notation T1 =r T2, if R(T1) = R(T2).

Definition 25 (Failure trace equivalence)
Let T ∈ T be a transition system. The refusal relations Φ→ for Φ ∈ P(L)
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are definined by: A
Φ→ B iff A = B ∧ I(A) ∩ Φ = ∅. The failure trace

relations δ→ for δ ∈ (L ∪ P(L))∗ are defined as the reflexive and transitive
closure of both the transition and the refusal relations. δ ∈ (L ∪ P(L))∗ is
a failure trace of T , if there is a node A ∈ N such that r δ→ A. Let FT (T )
denote the set of failure traces of T . Transition systems T1, T2 are failure
trace equivalent, notation T1 =ft T2, if FT (T1) = FT (T2).

Definition 26 (Ready trace equivalence)
Let T ∈ T be a transition system. The ready trace relations δ⇒ for δ ∈
(L ∪ P(L))∗ are defined inductively by:

1. A ε⇒ A for any A ∈ N .

2. A a→ B implies A a⇒ B.

3. A Φ⇒ B with Φ ∈ P(L) whenever A = B and I(A) = Φ.

4. A δ⇒ B
ρ⇒ C implies A

δρ⇒ C.

δ ∈ (L ∪ P(L))∗ is a ready trace of T , if there is a node A ∈ N such that
r

δ⇒ A. Let RT (T ) denote the set of ready traces of T . Transition systems
T1, T2 are ready trace equivalent, notation T1 =rt T2, if RT (T1) = RT (T2).

Definition 27 (Simulation equivalence)
Let T1, T2 ∈ T . A binary relation R ⊆ N1 ×N2 is a simulation if whenever
A1RA2 then

∀a ∈ L1 : A1RA2 ∧ A1
a→ A′1 ⇒ ∃A′2 : A2

a→ A′2 ∧A′1RA′2
Transition systems T1, T2 are simulation equivalent, notation T1 =s T2, if
there exists a simulation R with r1Rr2 and a simulation S with r2Sr1.

Definition 28 (Ready simulation equivalence)
Let T1, T2 ∈ T . A binary relation R ⊆ N1 × N2 is a ready simulation if
whenever A1RA2 then:

• ∀a ∈ L1 : A1RA2 ∧A1
a→ A′1 ⇒ ∃A′2 : A2

a→ A′2 ∧A′1RA′2
• I(A1) = I(A2)

Transition systems T1, T2 are ready simulation equivalent, notation T1 =rs

T2, if there exists a ready simulation R with r1Rr2 and a ready simulation
S with r2Sr1.
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Definition 29 (Possible futures equivalence)
Let T ∈ T be a transition system. A pair [w,Φ] ∈ L∗ ×P(L∗) is a possible
future of T , if there is a node B ∈ N such that A w→ B and tr(B) = Φ. The
set of all possible futures of T is denoted PF (T ). Transition systems T1, T2
are possible-futures equivalent, notation T1 =pf T2, if PF (T1) = PF (T2).

Definition 30 (2-nested simulation equivalence)
Let T1, T2 ∈ T . A binary relation R ⊆ N1 ×N2 is a 2-nested simulation if
whenever A1RA2 then

• ∀a ∈ L1 : A1RA2 ∧A1
a→ A′1 ⇒ ∃A′2 : A2

a→ A′2 ∧A′1RA′2

• A1 =s A2

Transition systems T1, T2 are 2-nested simulation equivalent, notation T1 =2
T2, if there exists a 2-nested simulation R with r1Rr2 and a 2-nested simu-
lation S with r2Sr1.
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