
B
R

IC
S

R
S

-99-10
R

iecke
&

S
andholm

:
A

R
elationalA

ccountofC
all-by-V

alue
S

equentiality

BRICS
Basic Research in Computer Science

A Relational Account of
Call-by-Value Sequentiality

Jon G. Riecke
Anders B. Sandholm

BRICS Report Series RS-99-10

ISSN 0909-0878 March 1999

Copyright c© 1999, Jon G. Riecke & Anders B. Sandholm.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/99/10/

A Relational Account of

Call-by-Value Sequentiality∗

Jon G. Riecke
Bell Laboratories

Lucent Technologies
700 Mountain Avenue

Murray Hill, NJ 07974, USA

Anders Sandholm
BRICS†, Department of Computer Science

University of Aarhus
Ny Munkegade, Bldg. 540

DK-8000 Aarhus C, Denmark

March, 1999

Abstract

We construct a model for FPC, a purely functional, sequential, call-
by-value language. The model is built from partial continuous functions,
in the style of Plotkin, further constrained to be uniform with respect to
a class of logical relations. We prove that the model is fully abstract.

1 Introduction

The problem of finding an abstract description of sequential functional compu-
tation has been one of the most enduring problems of semantics. The problem
dates from a seminal paper of Plotkin (1977), who pointed out that certain
elements in Scott models are not definable. In Plotkin’s example, the function

por(x, y) =

true if x or y = true
false if x and y = false
⊥ otherwise

where ⊥ denotes divergence, cannot be programmed in the language PCF, a
purely functional, sequential, call-by-name language with booleans and num-
bers as base types. The problem is called the “sequentiality problem” because,

∗A preliminary version of this paper appeared in Proceedings, Twelfth Annual IEEE Sym-
posium on Logic in Computer Science, pages 258–267. IEEE Computer Society Press, 1997.
†Basic Research in Computer Science, Centre of the Danish National Research Foundation.

1

intuitively, the only way to program por involves evaluating boolean expres-
sions in parallel. Of course, there are other elements in the Scott model of PCF
that cannot be programmed: the domains have uncountably many elements.
Nevertheless, the por function causes problems for reasoning about programs:
it causes two terms in the language PCF to be distinct denotationally even
though the terms cannot be distinguished by any program.

The problem of modelling sequentiality is enduring because it is robust. For
instance, changing the reduction strategy of PCF from call-by-name to call-by-
value makes no difference: versions of the por function reappear in the standard
Scott model (albeit at higher type). Even for languages that lack an explicit
base type, e.g., the polymorphic λ-calculus with recursion, the known Scott
models contain parallel elements that cause a failure of full abstraction.

When examples like por do not exist, the denotational model is said to
be fully abstract. More precisely, full abstraction requires an operational
definition of equivalence (interchangeability in all programs) to match opera-
tional equivalence. Shortly after Plotkin’s paper, Milner proved that there was
exactly one fully abstract model of PCF meeting certain conditions (Milner,
1977). Until recently, all descriptions of this fully abstract model have used
operational semantics (see, for instance, (Mulmuley, 1987; Stoughton, 1988)).
New constructions using logical relations (O’Hearn and Riecke, 1995; Sieber,
1992) have yielded a more abstract understanding of Milner’s model. Game se-
mantics (Abramsky et al., 1994; Hyland and Ong, 1995; Nickau, 1994) has also
been used to give other semantic constructions of fully abstract models of PCF,
even though it is still open whether these models are isomorphic to Milner’s
model.

This paper adapts and extends the logical-relations model for PCF to a
call-by-value setting. More precisely, it constructs a model for a call-by-value,
purely functional, sequential language called FPC. FPC includes a base type
with one convergent value, strict products, strong (categorical) sums, functions,
and recursive types. Full abstraction for FPC is interesting for at least two
reasons. First, FPC can be regarded as the purely functional, non-polymorphic
sublanguage of Standard ML (Milner et al., 1997): recursive types and sums
are the basis of datatype declarations, and both Standard ML and FPC are
call-by-value. By studying FPC, we learn more about programming languages
like Standard ML. Second, FPC can serve as an expressive metalanguage for
denotational semantics (Gunter, 1992; Plotkin, 1985). FPC, for instance, has
enough expressive power to encode a call-by-value version of PCF (the base
type of numbers can be encoded via a recursive type). Given a fully abstract
translation (Riecke, 1993) from a language into FPC, the model of FPC yields
a fully abstract model of the language.

There is another, purely technical reason to be interested in FPC: since
it contains only one trivial base type, we can learn more about the structure
of Sieber’s logical relations by studying FPC. Sieber’s model of PCF, and the
fully abstract model of PCF using Kripke relations (O’Hearn and Riecke, 1995),
begin from a set of n-ary relations (for all n) at a flat base type—i.e., where the
convergent elements of the domain are unordered. PCF thus builds in a limited

2

form of sum type, available only at the base type. When we decompose that
base type into a sum of the primitive base type, we may learn more about the
nature of sequential computation.

As a preview to seeing how our relations decompose Sieber’s, it is helpful to
recall Sieber’s definition. Suppose A ⊆ B ⊆ {1, . . . , n}, and let SnA,B be

{(d1, . . . , dn) | (∀i ∈ A. di 6= ⊥) =⇒ (∀i, j ∈ B. di = dj)}.

Then R is an n-ary sequentiality relation if R is the intersection of relations
of the form SnA,B. Sieber’s sequentiality relations have an elegant semantic
definition: nothing in the definition refers to the terms or operations of PCF.
The relations can be used in simple proofs of the non-definability of elements,
since all PCF terms preserve the sequentiality relations. For instance, it is easy
to show that por does not preserve the sequentiality relation S3

{1,2},{1,2,3}, and
hence it must not be definable. The relations also seem to say something about
sequential computation: if certain elements of a tuple must converge, then other
elements must converge.

On a technical level, Sieber’s definition of “sequentiality relation” seems
limited to flat base types. It is difficult to see how, for instance, to extend the
definition to complex sums such as int⊕(int⇒ int), since it does not make sense
to check for equality at functional type. Instead of directly extending Sieber’s
relations, our relations break down sequentiality relations into two components.
The first captures the sequential behavior of termination: if certain elements in
a tuple in the relation terminate, then certain other elements in the tuple must
terminate. The second captures the behavior of sums: if certain elements in a
tuple lie in one side of a sum type, other components must lie in the same side
of the sum type. This is much like Sieber’s definition in asking for equality of
all B-indexed elements of a tuple in SnA,B. The interesting case comes when
this second component of relations is lifted to types other than sums: when,
for example, the tuple is a tuple of elements in a function type. In essence, the
second component of relations encodes a form of “computation tree,” stating
which subtuples of a tuple form consistent traces of the computation so far.

We begin by introducing the syntax and operational semantics of FPC. We
then describe the form of the relations, showing the decomposition into the
two portions described above. We follow the O’Hearn-Riecke construction for
PCF (O’Hearn and Riecke, 1995) and lift the relations to Kripke relations of
varying arity (Jung and Tiuryn, 1993). We then define a category, in which
the objects have partial-order as well as relational structure, and in which the
morphisms preserve the partial-order and relational structure of objects. A
model of FPC lives inside this category. The Kripke relations are then used to
establish the full abstraction of the model.

2 The Language FPC

FPC is a call-by-value, purely functional language with single base type unit,
sums, products, functions, and recursive types (Gunter, 1992; Plotkin, 1985).

3

Our version of FPC has types given by the grammar

s, t ::= void | unit | (s⊕ t) | (s⊗ t) | (s⇒ t) | α | (rec α. t)

where α ranges over a collection of type variables. This version of FPC has
one more base type, namely void, than the standard version of FPC. The type
void stands for the type with no convergent elements, and can be represented
by the type (rec α. α), but having an explicit name makes some of the notation
simpler. Types are identified up to renaming of type variables bound by rec.
We assume that all types appearing in terms and the typing rules are closed
unless otherwise noted.

The raw terms of FPC are given by the grammar

M,N,P ::= Ω | x | (λx : t. M) | (M N) |
〈〉 | 〈M,N〉 | (proji M) | (inji M) |
(caseM of inj1(x).N or inj2(x).P) |
(introrec α. s M) | (elimrec α. s M)

Ω denotes a divergent term, and only appears in our version of FPC in order to
make the proofs simpler. A typing judgement is a formula of the form Γ `M : t
where M is a term, t a type, and Γ is a typing context, i.e., a finite function
from variables to types. Rules for deriving typing judgements appear in Table 1.

Evaluation rules, written in natural style, for FPC appear in Table 2. In the
rules, we use the notation M [N/x] to denote capture-free substitution of N for
x in M . Notice that function application in FPC is call-by-value: arguments to
functions must be values before they are substituted into bodies of functions.
We write M ⇓ if there is a term V such that M ⇓ V , and M ⇑ if there is no
such V . The operational approximation relation can then be defined as follows:

Definition 2.1 M vFPC N if for any context C[·] such that C[M] and C[N]
are closed, well-typed terms, C[M] ⇓ implies C[N] ⇓.

FPC is a sparse language, but it still has enough computing power for many
applications. For instance, Plotkin (1985) and Gunter (1992) show how to build
recursion operators using recursive types. One can encode a sequencing opera-
tion in FPC: (M ;N) stands for the term ((λx : s. N) M), where x does not occur
free in N . Indeed, the semantics of many programming languages—including
non-functional languages—can be given by translation to FPC. FPC’s main
deficiency as a metalanguage for denotational semantics is a lack of paramet-
ric polymorphism (as in the Girard-Reynolds calculus (Girard, 1971; Reynolds,
1974)), which precludes a good representation of abstract data types.

3 Category of Meanings

This section defines a category suitable for interpreting FPC, and gives vari-
ous constructions for defining the meaning of types and terms. Objects in the

4

Table 1: Type Rules for FPC.

Γ, x : t ` x : t

Γ ` Ω : s

Γ ` 〈〉 : unit

Γ, x : s `M : t
Γ ` (λx : s. M) : (s⇒ t)

Γ `M : (s⇒ t) Γ ` N : s
Γ ` (M N) : t

Γ `M : s Γ ` N : t
Γ ` 〈M,N〉 : (s⊗ t)

Γ `M : (s1 ⊗ s2)
Γ ` (proji M) : si

Γ `M : si
Γ ` (inji M) : (s1 ⊕ s2)

Γ `M : (s1 ⊕ s2) Γ, x : si ` Ni : t
Γ ` (caseM of inj1(x).N1 or inj2(x).N2) : t

Γ `M : s[rec α. s/α]
Γ ` (introrec α. sM) : (rec α. s)

Γ `M : (rec α. s)
Γ ` (elimrec α. sM) : s[rec α. s/α]

5

Table 2: Evaluation Rules for FPC.

〈〉 ⇓ 〈〉

(λx : s. M) ⇓ (λx : s. M)

M ⇓ (λx : s. M ′) N ⇓ V ′ M ′[V ′/x] ⇓ V
(M N) ⇓ V

M1 ⇓ V1 M2 ⇓ V2

〈M1,M2〉 ⇓ 〈V1, V2〉

M ⇓ 〈V1, V2〉
(proji M) ⇓ Vi

M ⇓ V
(inji M) ⇓ (inji V)

M ⇓ (inji V) Ni[V/x] ⇓ R
(caseM of inj1(x).N1 or inj2(x).N2) ⇓ R

M ⇓ V
(introrec α. s M) ⇓ (introrec α. s V)

M ⇓ (introrec α. s V)
(elimrec α. s M) ⇓ V

6

category will have both partial-order structure and relational structure. More
precisely, the objects are composed of dcpo’s, i.e., directed-complete posets
not necessarily possessing a least element, and relations on those dcpo’s. The
morphisms of the category preserve the dcpo structure (i.e., are partial, con-
tinuous functions), and preserve the relational structure (a property we call
uniformity). The formal definitions of dcpo and continuity may be found
elsewhere (Gunter and Scott, 1990; Plotkin, 1985).

The construction consists of five main parts:

1. Definition of the relational structures (Sections 3.2-3.3).

2. Definition of the category, and the verification that it is a dcpo-enriched
category (Section 3.4).

3. Definitions of meanings for void, unit as objects in the category, and of
tensor product ⊗, coproduct ⊕, and function space ⇒ as functors, and
verification that they satisfy certain conditions (Sections 3.5-3.6).

4. Verification that the category is “partial cartesian closed” (defined below),
and hence a model of FPC without recursive types (Section 3.7).

5. Construction of colimits, and verification that the colimits produce objects
in the category (Section 3.8).

Most of the proofs are straightforward and follow well-established patterns from
category theory.

3.1 Preliminaries

Given two sets X,Y , the set (X ⊕ Y) is the disjoint union, (X × Y) is the
cartesian product, [X →t Y] is the set of total functions from X to Y , and
[X →p Y] is the set of partial functions from X to Y . The identity function
on a set X is denoted idX , and (h; f) denotes the diagrammatic composition of
two functions h and f . The functions inj i : Xi → (X1 ⊕X2) are the injection
functions into the disjoint sum, and proj i : (X1 ×X2)→ Xi are the projection
functions from the cartesian product. For products, we abuse notation and
use 〈x, y〉 for elements of X × Y and 〈f, g〉 for functions W → (X × Y) when
f : W → X and g : W → Y .

Partial functions require some special notation. We write f(d) ↓ when a
partial function f is defined on argument d, and f(d)↑ when f(d) is undefined.
Kleene equality takes definedness between mathematical expressions into ac-
count: we write exp1 ' exp2 if, whenever one side is defined, both sides are
defined and equal. Similarly, we extend an ordering relation v to @∼ as follows:
exp1 @∼ exp2 if, when exp1 is defined and equal to e1, then exp2 is defined and
equal to some e2 and e1 v e2.

Following Jung and Tiuryn, we often represent the elements of relations as
finite, total functions from indices to values instead of tuples of values; this
simplifies some of the definitions and proofs (Jung and Tiuryn, 1993; O’Hearn
and Riecke, 1995).

7

3.2 Termination and path theories

There are two kinds of relations in the model, termination relations and
computational relations.

The first kind of relation uses subsets of indices generated from simple impli-
cational theories. If w is a finite set of indices, then a w-termination theory
is a set of implications of the form (w′ ` d) where d ∈ w and w′ is a subset of w.
Intuitively, each implication states a property similar to the Sieber’s sequential-
ity relations: if a function halts on the indices in the premise, it must halt on
the index in the conclusion. Indeed, the termination part of Sieber’s relations
SnA,B can be encoded using implications:

if A ⊆ B ⊆ w = {1, . . . , n} and B \A = {d1, . . . , dk},
then SwA,B corresponds to the implications (A ` d1), . . . , (A ` dk).

The subsets of w that validate the implications in the theory are the building
blocks of termination relations. Suppose w′ ⊆ w; then we say that w′ validates
(w′′ ` d), written w′ |= (w′′ ` d), if w′′ ⊆ w′ implies d ∈ w′. If T is a w-
termination theory, we say that w′ ⊆ w is a T -model if w′ |= ψ for all ψ ∈ T .

There is an alternative characterization of T -models that can be helpful
in proving facts about termination relations. Suppose w is a finite set and
X ⊆ P(w). Then X is a closure system if w ∈ X and X is closed under
intersection. A closure system determines a w-termination theory:

Proposition 3.1 Suppose w is a finite set. Then X ⊆ P(w) is a closure system
iff there is a w-termination theory T such that X is the set of T -models.

Proof: (⇐) Suppose T is a w-theory. Then obviously w is a T -model. To see
closure under intersection, suppose w1, w2 are T -models. Suppose (w′ ` d) ∈ T ,
and w′ ⊆ w1 ∩w2. Then d ∈ w1 and d ∈ w2, hence d ∈ w1 ∩w2. Thus, w1 ∩w2

is also a T -model.
(⇒) Suppose X is a closure system. Define the theory T by

(w′′ ` d) ∈ T iff for all w′ ∈ X , w′ |= (w′′ ` d).

Let Y = {w′ | w′ is a T -model}; we want to show that X = Y . It is obvious
that X ⊆ Y : if w′ ∈ X , then by construction it validates all the formulas in T
and hence is a T -model. Conversely, suppose w′ 6∈ X . Let

w0 =
⋂
{w1 ∈ X | w′ ⊆ w1}.

Since X is closed under finite intersections, and the set above is finite because
w is, w0 must be in X . But since w′ 6∈ X and w′ ⊆ w0, it must be the case that
there is a d ∈ w0 such that d 6∈ w′. Now consider the formula (w′ ` d). Note
that (w′ ` d) ∈ T , and w′ 6|= (w′ ` d). Thus, w′ 6∈ Y , completing the proof.

(See (Wechler, 1992), page 22 for the same proof.) The proof is similar to a
part of Sieber’s proof that the sequentiality relations are precisely those that
are closed under the operations of PCF (Sieber, 1992).

8

The second kind of relation is built from sets of sets of T -models. If T is a w-
termination theory, define a path set to be a set {w1, . . . , wn} of nonempty, dis-
joint T -models. (The reason for the name “path set” will become clear shortly.)
By convention, when we write a path set we assume there are no duplicates.
For example, when we write the path set {w1, . . . , wn}, each wi differs from the
others. A T -path theory S is a set of path sets that satisfies the following
conditions:

• {} ∈ S (using the alternative notation for the empty set);

• If w′ is a nonempty T -model, then {w′} ∈ S;

• If X = {w1, . . . , wk} andX ′ = {w′1, . . . , w′l} are in S, and wi,j = (wi∩w′j),
then X uX ′ = {wi,j | wi,j is nonempty} ∈ S; and

• If {w1, . . . , wk} and {w′1, . . . , w′l} are in S, and for some j and all i,
w′i ⊆ wj , then

{w1, . . . , wj−1, w
′
1, . . . , w

′
l, wj+1, . . . , wk} ∈ S.

This definition appears to be related to the notion of a Grothendieck topol-
ogy (Fiore and Simpson, 1999).

3.3 Relations

Termination theories are the building blocks of the first kind of relations, the
termination relations. Let T be a w-termination theory, and D be a dcpo. A
T -termination relation on D is a set of the form

R ⊆
⋃

w′ is a T -model

[w′ →t D],

such that the following properties hold:

1. Directed completeness: R is directed complete, where f v g iff f and
g have the same domain w′, and for all d ∈ w′, f(d) v g(d) in D.

2. Downward closure: For any f ∈ R with domain w′ and T -model
w′′ ⊆ w′, (λd ∈ w′′. f(d)) ∈ R.

Here, (λd ∈ w′′. f(d)) stands for the function with domain w′′, whose return
value is f(d); thus, an element of a termination relation R is a function from
a subset of indices to elements of the dcpo. To get some intuition, it is again
helpful to think of indices as possible arguments to a function, and the elements
as the return values of the function. An element of R then represents a “related”
set of values returned by a function.

There is a subtle point in the definition of the v relation: only elements of
R that have the same domain can be related. One might imagine a different
definition, with “tuples” in the relations being partial functions whose domains

9

are T -models. Under this alternative definition, two tuples might be related by
v even if they had different domains. The definition of ⊗ on relations does not
produce a directed complete relation, however, using this alternative definition.

The second form of relations, computational relations, is built from path
theories. These relations lift a termination relation to a partial function on
indices. Suppose S is a T -path theory and R is a T -termination relation on D.
The computational relation RS is defined by

RS = { f ∈ [w →p D] | there exists {w1, . . . , wk} ∈ S such that f(d)↓ iff
d ∈ wi for some i, and for all i, (λd ∈ wi. f(d)) ∈ R }

In this case, the order relation on elements of RS is defined in the usual way:

f v g if whenever f(d)↓, then g(d)↓ and f(d) v g(d).

The computational relations are reminiscent of Moggi’s analysis of call-by-value
via monads (Moggi, 1991), and they will play a similar role in the semantics
below.

These definitions have a common intuition of “tests” that one can apply to
a function, with the tests designed so that only sequential functions will pass
all tests. In this case, a test consists of a number of simultaneous applications
of the function to arguments, where the arguments must also pass the test.
Termination theories are used to test the termination behavior of functions;
path theories are used to test the consistency of the branching structure of
functions.

For example, let bool denote the FPC type (unit⊕ unit) and true,false
denote the terms (inj1〈〉), (inj2〈〉), and consider the term

f = (λx : bool. if x then false else true).

Suppose we pick the termination theory {1, 2 ` 3}. For the function f to pass a
test determined by this termination theory, we must apply it to three arguments
themselves satisfy the test. Such a test of three arguments might be, for instance,
the tuple true, true, true. When the function is applied to three arguments,
the result is false, false, false. All three answers terminate, so this test of the
function succeeds. The test true, true,Ω does not yield a successful test: the
function returns false, false, and diverges respectively. Fortunately, however,
the arguments themselves do not pass the test themselves, so the function need
not satisfy this test.

Tests of the branching behavior of functions using the path theories are sim-
ilar. A computation branches based on its inputs and returns some final results
at the end. Each set in {w1, . . . , wn} represents a path in that computational
tree; the answers returned at the end of a path must be consistent, hence the
restriction of the function to (λd ∈ wi. f(d)) must be in R. For example, sup-
pose the termination theory is as above, and that the path theory contains the
set {{1}, {2}, {3}}. Then the function need not return consistent results given
three arguments, but the function must halt on all three arguments.

10

We can now see from where the four conditions on path theories come. The
first condition says that the empty set is a valid test; the second says that a
potential path set that does no branching is a valid path set; the third says
path sets can be combined; the fourth says that an element of a path set may
be replaced by finer-grain path set, which amounts to adding a set of branches
to a non-branching part of the computation.

3.4 Definition of the category

One could build a category from termination and path theories, but the result
would probably not contain a fully abstract model of FPC (see the discussion
in Section 7). Instead, we extend the relations to Kripke relations of varying
arity (Jung and Tiuryn, 1993). Kripke relations of this kind begin from an
index category whose objects are finite sets and whose morphisms are total
functions (not necessarily all of them). Suppose C is an index category. A C-
termination theory T is an Ob(C)-indexed family of w-termination theories

Tw such that, for any ϕ : v
C−→ w, if w′ is a Tw-model, then ϕ−1(w′) is a

T v-model, where ϕ−1(w′) = {d ∈ v | ϕ(d) ∈ w′}. A Kripke relation is a set of
termination relations that must fit together. Let C be an index category, T be
a C-termination theory, and D be a dcpo. A family R is a C, T -termination
relation on D if R is an Ob(C)-indexed family of Tw-termination relations Rw

on D satisfying the

Kripke monotonicity condition: For any f ∈ Rw with domain w′ and

ϕ : v
C−→ w, then (λd ∈ v′. f(ϕ(d))) ∈ Rv, where v′ = ϕ−1(w′).

Path theories also extend straightforwardly to the Kripke case. Let C be an index
category and T be a C-termination theory. Then S is a C, T -path theory if
S is a family, indexed by objects w of C, of Tw-path theories. If S is a C, T -
path theory and R is a C, T -termination relation on D, we let RwS denote the
computational relation built from Rw and Sw.

We now have enough machinery to build the category RCPO (for dcpo’s with
relational structure).

• Objects. An object A consists of a dcpo |A| and a C, T -termination
relation A(T, S) on |A| for each index category C, C-termination theory
T , and C, T -path theory S. Objects must also satisfy the

Concreteness Condition: For any a ∈ |A|, (λd ∈ w. a) ∈ A(T, S)w.

• Morphisms. A morphism f : A → B is a partial continuous function
f : |A| →p |B| satisfying the

Uniformity Condition: For all C, C-termination theories T , C, T -
path theories S, and h ∈ A(T, S)w, (h; f) ∈ B(T, S)wS .

The definitions of composition and identities are the same as on partial continu-
ous functions. It is straightforward to check that RCPO is indeed a category; the

11

only non-obvious step is checking that composition produces uniform functions,
which follows from

Lemma 3.2 If f ∈ A(T, S)wS and g : A→ B, then (f ; g) ∈ B(T, S)wS .

Proof: By definition, there exists a path set {w1, . . . , wn} such that f(d)↓ iff
d ∈ wi for some i and (λd ∈ wi. f(d)) ∈ A(T, S)w for all i. By the uniformity
of g, for all i, hi = ((λd ∈ wi. f(d)); g) ∈ B(T, S)wS . Thus, for all i, there exists
a path set {wi,1, . . . , wi,ki} such that

• hi(d)↓ iff d ∈ wi,j for some j; and

• (λd ∈ wi,j . hi(d)) ∈ B(T, S)w for all j.

Note that each wi,j ⊆ wi, since the domain of hi is a subset of wi. Thus, by the
properties of path sets, {w1,1, . . . , wn,kn} is a path set. Note also that g(f(d))↓
iff d ∈ wi,j for some i, j, and (λd ∈ wi,j . g(f(d))) ∈ B(T, S)w for all i, j. Thus,
(f ; g) ∈ B(T, S)wS .

Moreover, the category is dcpo-enriched, i.e., under the usual pointwise ordering
of morphisms with f v g iff for any a ∈ |A|, f(a) @∼ g(a), the set of morphisms
from A to B HomRCPO(A,B) is a dcpo. The proof of this fact, stated precisely
as Proposition 3.5 below, requires two lemmas:

Lemma 3.3 Suppose f ∈ A(T, S)wS with path set W = {w1, . . . , wk}. Sup-
pse W ′ = {w′1, . . . , w′l} ∈ S, and

⋃
W =

⋃
W ′. Then W u W ′ = W ′′ =

{w′′1 , . . . , w′′m} is also a path set for f . That is, d ∈ w′′i iff f(d)↓ and for all i,
(λd ∈ w′′i . f(d)) ∈ A(T, S)w.

Proof: It is easy to see that
⋃
W ′′ =

⋃
W , and hence it follows that

d ∈ w′′i ∈W ′′ iff f(d)↓.

Lemma 3.4 If A(T, S) is a C, T -relation on A, then A(T, S)wS is directed com-
plete.

Proof: Suppose X = {fi | i ∈ I} is directed in A(T, S)wS , and f = (
⊔
X).

Then for all i, there exists a path set σi = {wi,1, . . . , wi,ki} such that fi(d) ↓
iff d ∈ wi,j for some j, and (λd ∈ wi,j . fi(d)) ∈ A(T, S)w for all j. Note that if
fi, fj ∈ X , then there is an fl such that fi, fj v fl (by directedness), and hence⋃
σi,
⋃
σj ⊆

⋃
σl. Since each

⋃
σi is a subset of the finite set w, there is a k

such that for all fi w fk,
⋃
σi =

⋃
σk.

Let w′ =
⋃
σk. It is easy to see that d ∈ w′ iff f(d) ↓. What we need to

show is that w′ can be subdivided into a set of disjoint sets that forms a path
set, and that this path set “witnesses” the membership of f in A(T, S)wS . There
are only finitely many distinct path sets W1, . . . ,Wk for the fi’s above fk such
that for all i,

⋃
Wi = w′. Define

W = W1 uW2 u . . . uWk.

12

By Lemma 3.3, W is a path set for f . Now, note that

f =
⋃
{
⊔
{(λd ∈ wj . fi(d)) | fi w fk} | wj ∈W}

By the directed completeness of A(T, S)w, for any wj ∈W ,⊔
{(λd ∈ wj . fi(d)) | fi w fk} ∈ A(T, S)w.

Thus, f ∈ A(T, S)wS .

Proposition 3.5 HomRCPO(A,B) is a dcpo.

Proof: Suppose X = {fi | i ∈ I} ⊆ HomRCPO(A,B) is directed. We need to
show that (

⊔
X) is uniform; it is routine to show that it is continuous. Suppose

h ∈ A(T, S)w. By the uniformity of each fi, (h; fi) ∈ B(T, S)wS . It is easy to see
that { (h; fi) | i ∈ I } is directed. Thus, by Lemma 3.4, (h; (

⊔
X)) ∈ B(T, S)wS .

3.5 Tensor products and coproducts

The category admits certain standard constructions. For instance, it is easy to
show that void and unit , defined by

|void | = ∅ |unit | = {>}
void (T, S)w = ∅ unit(T, S)w = { (λd ∈ w′.>) | w′ is a Tw-model }

are objects in the category. The relational component of unit captures much
of the intuition embedded in termination relations: elements in the termination
relation are functions which terminate precisely on elements in a Tw-model.

The category has a notion of tensor product. Suppose A,B are objects, and
f : A→ B and g : C → D are morphisms. Define

|A⊗B| = |A| × |B| (cartesian product)

(A⊗B)(T, S)w = {〈g, h〉 | g ∈ A(T, S)w, h ∈ B(T, S)w,
and g, h have the same domain}

(f ⊗ g)〈x, y〉 = 〈f(x), g(y)〉

Proposition 3.6 (–⊗–) is a bifunctor on RCPO, covariant in both arguments.

Proof: The only non-obvious part is checking that the relations generated by
⊗ is directed complete. Suppose X = {fi | i ∈ I} ⊆ (A⊗B)(T, S)w is directed.
Then all of the elements of X have the same domain, say w′ (which is a Tw-
model). Note that there exist gi ∈ A(T, S)w and hi ∈ B(T, S)w such that
fi = 〈gi, hi〉. Therefore, it must be the case that the sets

X1 = {gi | i ∈ I} X2 = {hi | i ∈ I}

are directed. By hypothesis,
⊔
X1 ∈ A(T, S)w and

⊔
X2 ∈ B(T, S)w. Since

(
⊔
X) = 〈

⊔
X1,

⊔
X2〉, (

⊔
X) ∈ (A⊗B)(T, S)w.

13

The proof of Proposition 3.6 requires that directed sets in (A⊗B)(T, S)w have
the same domain, which explains the definition earlier of the order on elements
of termination relations.

The category also has coproducts in the usual sense. Suppose A,B are
objects, and f : A→ B and g : C → D are morphisms. Define

|A⊕B| = |A| ⊕ |B| (disjoint union)

(A⊕B)(T, S)w = { (g; inj 1) | g ∈ A(T, S)w } ∪ { (g; inj 2) | g ∈ B(T, S)w }

(f ⊕ g)(x : A⊕ C) =

{
f(y) if x = inj 1(y)
g(y) if x = inj 2(y)

This definition yields the coproduct in the category, as the following proposition
shows.

Proposition 3.7 RCPO has coproducts.

Proof: It is not hard to prove that ⊕ is a bifunctor on RCPO. To finish the
proof that ⊕ yields the coproduct in the category, suppose f : A → C and
g : B → C are morphisms. Define

[f, g](d) =

 f(a) if d = inj 1(a) and f(a)↓
g(b) if d = inj 2(b) and g(b)↓
undefined otherwise

We need to show that inj 1 : A → (A ⊕ B), inj 2 : B → (A ⊕ B), and [f, g] :
(A ⊕ B) → C are morphisms in the category, and that [f, g] is the unique
morphism making the diagram

A
inj 1//

f
##GGGGGGGGGG (A⊕B)

[f,g]

��

B
inj 2oo

g
{{wwwwwwwwww

C

commute.
To see that the injections are morphisms, consider the case of inj 1. It is

obvious that inj 1 is a partial continuous function, so we only need to verify
that inj 1 satisfies the uniformity condition. Suppose h ∈ A(T, S)w with domain
w′ ⊆ w. We need to show (h; inj 1) ∈ (A ⊕ B)(T, S)wS . Since w′ is a Tw-
model, {w′} is itself a path set. It is then easy to see that (h; inj 1)(d) ↓ iff
d ∈ w′, and (λd ∈ w′. (h; inj 1)(d)) = (h; inj 1) ∈ (A ⊕ B)(T, S)w (by definition
of (A⊕B)(T, S)w). Thus (h; inj 1) ∈ (A⊕B)(T, S)wS .

To see that [f, g] is a morphism, it is easy to check that [f, g] is a partial
continuous function. We need only verify the uniformity condition. Suppose
h ∈ (A⊕B)(T, S)w; we want to show that (h; [f, g]) ∈ C(T, S)wS . By definition,
either h = (h1; inj 1) for h1 ∈ A(T, S)w or h = (h2; inj 2) for h2 ∈ B(T, S)w.
Consider the first case (the second case is analogous). Then (h; [f, g]) = (h1; f).
By uniformity, (h1; f) ∈ C(T, S)wS . Thus, (h; [f, g]) ∈ C(T, S)wS .

14

What remains to be shown is that [f, g] makes the diagram commute, and
that [f, g] is the unique such morphism. We consider the left triangle (the
right triangle is analogous). So suppose a ∈ |A|. Observe that f(a) ↓ iff
(inj 1; [f, g])(a)↓, so if f(a)↓, then

(inj 1; [f, g])(a) = f(a)

and hence the triangle commutes. To see the uniqueness of [f, g], suppose that
h : (A ⊕ B) → C is such that the diagram commutes, i.e., f = (inj 1;h) and
g = (inj 2;h). Since the injection functions are total functions, the domain of h
must be

{d ∈ |A⊕B| | (d = inj 1(a) and f(a)↓) or (d = inj 2(b) and f(b)↓)}.

Thus [f, g] and h have the same domain.
Now suppose h(d) ↓. Suppose d = inj 1(a) (the other case is analogous).

Then

h(d) = (inj 1;h)(a) = f(a) = [f, g](d).

That is, h = [f, g].

3.6 Function space

The category also has an operation associated with a space of functions. Suppose
A,B are objects, and f : A→ B and g : C → D are morphisms. Define

|A⇒ B| = HomRCPO(A,B)

(A⇒ B)(T, S)w = { f | ∀ϕ : v
C−→ w, g ∈ A(T, S)v.

(λd ∈ v. (f(ϕ(d)) (g(d)))) ∈ B(T, S)vS}
(f ⇒ g)(h : B → C) = (f ;h; g) : A→ D

The definition of function space on relations is the same as the one for Kripke
relations (Jung and Tiuryn, 1993; O’Hearn and Riecke, 1995), except that the
result of applying related arguments to related results must be in the compu-
tational relation, not the termination relation. Again, this is reminiscent of the
monad style of semantics (Moggi, 1991).

We must verify that ⇒ is a bifunctor, contravariant in the first argument
and covariant in the second. The proof is divided into two parts:

Proposition 3.8 (A⇒ B) is an object.

Proof: By Proposition 3.5, we know that |A ⇒ B| is directed complete. Sup-
pose C is an index category, T is a C-termination theory, and S is a C, T -path
theory. We need to show that (A⇒ B)(T, S) is a C, T -termination relation and
the concreteness condition holds.

First, we must show that (A ⇒ B)(T, S) is a C, T -termination relation. To
see directed completeness, suppose X = {fi | i ∈ I} ⊆ (A ⇒ B)(T, S)w is

15

directed. Then all of the elements of X have the same domain, say w′ (which

is a Tw-model). To see (
⊔
X) ∈ (A ⇒ B)(T, S)w, suppose ϕ : v

C−→ w and
h ∈ A(T, S)v. Then for all i ∈ I, gi = (λj ∈ v. fi (ϕ(j)) (h(j))) ∈ B(T, S)vS .
Since {gi | i ∈ I} is directed, by Lemma 3.4

⊔
gi ∈ B(T, S)vS . Thus,

(λj ∈ v. (
⊔
X) (ϕ(j)) (h(j))) ∈ B(T, S)vS

as needed.
The difficulty lies in showing downward closure and Kripke monotonicity.

Suppose f ∈ (A ⇒ B)(T, S)w with domain w′, and suppose w′′ is a Tw-model
with w′′ ⊆ w′. Let f ′ = (λd ∈ w′′. f(d)). To see that f ′ ∈ (A ⇒ B)(T, S)w,

suppose ϕ : v
C−→ w and g ∈ A(T, S)v. Then we know that

h = (λd ∈ v. f (ϕ(d)) (g(d))) ∈ B(T, S)vS .

Thus, there is some path set {v1, . . . , vn} such that h(d)↓ iff d ∈ vi for some i,
and for all i,

(λd ∈ vi. f (ϕ(d)) (g(d))) ∈ B(T, S)v.

Let h′ = (λd ∈ v. f ′ (ϕ(d)) (g(d))). We need to show that h′ ∈ B(T, S)vS . First,
we need to build up the right path set. Notice that v′′ = ϕ−1(w′′) is a T v-
model by the definition of C-termination theories. Since X = {v1, . . . , vn} and
X ′′ = {v′′} are path sets, X u X ′′ = {v′1, . . . , v′k} is a path set (recall that
X uX ′′ is the set of all (v∩v′′), with v ∈ X and v′′ ∈ X ′′, that are non-empty).
It is clear that h′(d) ↓ iff d ∈ v′i for some i. Also, since each v′i ⊆ vj for some
j, it follows by downward closure that (λd ∈ v′i. f (ϕ(d)) (g(d))) ∈ B(T, S)v for
any i. Because (λd ∈ v′i. f (ϕ(d)) (g(d))) = (λd ∈ v′i. f ′ (ϕ(d)) (g(d))), it follows
that

(λd ∈ v′i. f ′ (ϕ(d)) (g(d))) ∈ B(T, S)v.

Thus, h′ ∈ B(T, S)vS as desired.

To see Kripke monotonicity, suppose ϕ : v
C−→ w and f ∈ (A ⇒ B)(T, S)w

with domain w′. Let v′ = ϕ−1(w′); we know that v′ is a T v-model since T is a
C-termination theory. We want

(λd ∈ v′. f(ϕ(d))) ∈ (A⇒ B)(T, S)v.

So suppose ψ : u
C−→ v and g ∈ A(T, S)u. Then

(λd ∈ u. (λe ∈ v′. f(ϕ(e))) (ψ d) (g(d))) = (λd ∈ u. f(ϕ(ψ(d))) (g(d)))

∈ B(T, S)uS

by the fact that (ψ;ϕ) : u
C−→ w. Thus, (λd ∈ v′. f(ϕ(d))) ∈ (A⇒ B)(T, S)v.

Finally, to show concreteness, suppose f ∈ |A ⇒ B|; we need to show that
(λi ∈ w. f) ∈ (A ⇒ B)(T, S)w. From the definition, we must show that, for

ϕ : v
C−→ w and h ∈ A(T, S)v, (λj ∈ v. ((λi ∈ w. f) (ϕ(j))) (h(j))) ∈ B(T, S)vS .

But this reduces to (λj ∈ v. f (h(j))) ∈ B(T, S)vS , which is the uniformity con-
dition on RCPO-morphisms.

16

Proposition 3.9 (–⇒ –) is a bifunctor on RCPO that is contravariant in the
first argument and covariant in the second.

Proof: By Proposition 3.8, if A,B are objects, then |A⇒ B| is too. To check
the functor part, suppose f : A′ → A and g : B → B′ in RCPO. The uniformity
condition is preserved by composition (see Lemma 3.2), as is relevant domain-
theoretic structure, so we may conclude that for any h, (f ;h; g) ∈ |A′ ⇒ B′|.
To see that (f ⇒ g) as a function satisfies the uniformity condition, consider
m ∈ (A⇒ B)(T, S)w: we need to show that

(λd ∈ w. f ;m(d); g) ∈ (A′ ⇒ B′)(T, S)wS .

If we can show that h′ = (λd ∈ w′. λa. g(m d f(a))) ∈ (A′ ⇒ B′)(T, S)w, where
w′ is the domain of m, then we will be done—the required path set will be {w′}.
So suppose ϕ : v

C−→ w and h ∈ A′(T, S)v and let

h′′ = (λd ∈ v. h′(ϕ(d))(h(d)))

= (λd ∈ v. g(m(ϕ(d))(f(h(d))))).

We then need to show that h′′ ∈ B′(T, S)vS. By the uniformity of f , we get
(h; f) ∈ A(T, S)vS . Thus, there exists a path set {v1, . . . , vn} such that f(h(d))↓
iff d ∈ vi for some i, and fi = (λd ∈ vi. f(h(d))) ∈ A(T, S)v for all i. Thus, for
each fi,

hi = (λd ∈ vi. m (ϕ(d)) (fi(d))) ∈ B(T, S)vS

Therefore, for each i, there exists a path set {vi,1, . . . , vi,ki} such that

• hi(d)↓ iff d ∈ vi,j for some j; and

• hi,j = (λd ∈ vi,j . m (ϕ(d)) (fi(d))) ∈ B(T, S)v for all j.

Note as well that each vi,j ⊆ vi. By the uniformity of g, (hi,j ; g) ∈ B′(T, S)vS .
Thus, for each i, j, there exists a path set {vi,j,1, . . . , vi,j,li,j} such that

• hi,j(d)↓ iff d ∈ vi,j,k for some k; and

• hi,j,k = (λd ∈ vi,j,k. g(m (ϕ(d)) (fi(d)))) ∈ B′(T, S)v for all k.

Again, all of the vi,j,k ⊆ vi,j . Thus {v1,1,1, . . . , vn,kn,ln,kn} is a path set and

• h′′(d)↓ iff d ∈ vi,j,k for some i, j and k; and

• (λd ∈ vi,j,k. h′′(d)) = hi,j,k ∈ B′(T, S)v for all i, j and k.

It follows that h′′ ∈ B′(T, S)vS and thus h′ ∈ (A′ ⇒ B′)(T, S)w as desired.

17

3.7 Partial CCC

RCPO is a partial cartesian closed category (Curien and Obtu lowicz, 1989).
Since there are a number of conditions to check, we break the proof up into three
parts: RCPO is a category of partial morphisms, it is partial cartesian, and it
is partial cartesian closed.

A category of partial morphisms is a category with a notion of “total”
morphisms and a “restriction relation” 6 on morphisms. Moreover, the iden-
tities must be total, and composition must preserve totality and be monotonic
with respect to 6. In RCPO, the total morphisms are simply the total functions.
If f and f ′ are morphisms from A to B, then f 6 f ′ iff

f(a)↓ implies f(a) = f ′(a), for all a ∈ |A|.

It is thus easy to see that

Proposition 3.10 RCPO is a category of partial morphisms.

A category of partial morphisms is cartesian if it has an object U—called
a domain classifier—with a map ©A : A→ U for any object A. There must
also be a morphism f ∩ g : A → U for every f, g : A → U , and the following
properties must hold:

• If f : A→ U , then f 6©A.

• The total arrows are exactly those arrows f : A→ B such that
f ;©B =©A.

• If f, f ′, g : A→ B are such that f, f ′ 6 g and f ;©B 6 f ′;©B, then
f 6 f ′.

• If g : B → U and h, h′ : A→ B are such that h 6 h′, then
(h; g) = (h′; g) ∩ (h;©B).

Furthermore, for a category of partial morphisms to be cartesian it must have,
for any pair of objects A,B, a partial product given by an object A⊗B, projec-
tion arrows proj 1 : A⊗B → A and proj 2 : A⊗B → B, and a pairing operation,
associating 〈f, g〉 : A → B ⊗ C with f : A → B, g : A → C such that the
following properties hold:

• proj 1 and proj 2 are total.

• Pairing is monotonic with respect to 6 in both arguments.

• For any h : A→ (B ⊗ C), 〈h; proj 1, h; proj 2〉 = h

• If f : A→ B and g : A→ C, then (〈f, g〉; proj 1) 6 f and
(〈f, g〉; proj 2) 6 g.

• If f : A→ B and g : A→ C, then for all h : D → A we have
(h; 〈f, g〉) = 〈(h; f), (h; g)〉.

18

• If f : A→ B and g : A→ C, then (〈f, g〉;©B⊗C) = (f ;©B) ∩ (g;©C).

Proposition 3.11 RCPO is a partial cartesian category.

Proof: The domain classifier is the object unit ; for every object A, we pick the
morphism ©A : A → unit to be the unique morphism mapping all elements of
A to >. Also, define

(f ∩ f ′)(a) =

{
> if f(a)↓ and f ′(a)↓
undefined otherwise.

The partial product is the tensor product defined previously, and the projection
arrows and pairing operation the obvious ones. It is easy to see that these maps
exist, and that the above properties hold.

Let (A →T B) denote the set of total morphisms between objects A,B in
RCPO. A partial cartesian category is a partial cartesian closed category
if there exists a binary operation ⇒ of partial exponentiation on objects such
that for any objects A,B,C there exist natural transformations curry(–) from
(A⊗B)→ C onto A→T (B ⇒ C), and uncurry(–) from A→T (B ⇒ C) onto
(A ⊗ B) → C, uncurry(curry(f)) = f and curry(uncurry(g)) = g, and for any
f ′ : D → A,

(f ′; curry(f)) 6 curry(〈proj 1; f ′, proj 2〉; f).

Proposition 3.12 RCPO is a partial cartesian closed category.

Proof: The partial exponentiation is the function space ⇒ defined previously.
For f : (A⊗ B)→ C and g : A→T (B ⇒ C), define

curry(f) = (λa ∈ |A|. λb ∈ |B|. f 〈a, b〉)
uncurry(g) = (λ〈a, b〉 ∈ |A⊗B|. g(a)(b)).

We first need to show that the maps are well-defined, and that they satisfy
the uniformity conditions. To see that curry(f) is a well-defined total function
from |A| to |B ⇒ C|, suppose a ∈ |A| and h ∈ B(T, S)w; we need to show
(h; curry(f)(a)) ∈ C(T, S)wS .

By the concreteness condition h′ = (λd ∈ w′. a) ∈ A(T, S)w, where w′ is the
domain of h. Then 〈h′, h〉 ∈ (A ⊗ B)(T, S)w and by uniformity of f we get
(〈h′, h〉; f) ∈ C(T, S)wS . Since (〈h′, h〉; f) = (h; curry(f)(a)), we are done.

To see the uniformity of curry(f), suppose hA ∈ A(T, S)w; we need to
show (hA; curry(f)) ∈ (B ⇒ C)(T, S)wS . Let w′ be the domain of hA. Since
(λd ∈ w′. curry(f)(hA(d))) = (hA; curry(f)) and {w′} is a path set, it suffices
to prove (hA; curry(f)) ∈ (B ⇒ C)(T, S)w. Now, given ϕ : v → w and
hB ∈ B(T, S)v we must prove (λd ∈ v. (hA; curry(f))(ϕ(d))(hB (d))) ∈ C(T, S)vS.
By Kripke Monotonicity of A(T, S)w, h′A = (ϕ;hA) ∈ A(T, S)v. Let v1 be the
domain of h′A and v2 be the domain of hB, and v′ = (v1 ∩ v2). By downward
closure,

19

h′′A = (λd ∈ v′. h′A(d)) ∈ A(T, S)v

h′′B = (λd ∈ v′. hB(d)) ∈ B(T, S)v

Therefore 〈h′′A, h′′B〉 ∈ (A⊗B)(T, S)v. By the uniformity of f ,

(λd ∈ v. (hA; curry(f))(ϕ(d))(hB(d))) = (λd ∈ v. curry(f)(h′′A(d))(h′′B(d)))

= (λd ∈ v. (〈h′′A, h′′B〉; f)(d))

∈ C(T, S)vS

as desired.
Similarly, we need to show that uncurry(g) is a well-defined partial func-

tion from |A ⊗ B| to |C| and that it satisfies the uniformity condition. Well-
definedness follows immediately from definition. Now for uniformity, suppose
h ∈ (A ⊗ B)(T, S)w; we need to show (h; uncurry(g)) ∈ C(T, S)wS . Notice that
h has the form h = 〈hA, hB〉, where hA ∈ A(T, S)w and hB ∈ B(T, S)w. By
uniformity of g, (hA; g) ∈ (B ⇒ C)(T, S)wS . This means that there exists a path
set {w1, . . . , wn} such that

• (hA; g)(d)↓ iff d ∈ wi for some i; and

• (λd ∈ wi. (hA; g)(d)) ∈ (B ⇒ C)(T, S)w for all i.

Now, since hB ∈ B(T, S)w and idw (the identity) is a morphism in C, we have

gi = (λd ∈ w. (λe ∈ wi. (hA; g)(e))(d)(hB(d))) ∈ C(T, S)wS .

Thus there exist path sets {wi,1, . . . , wi,ki} such that

• gi(d)↓ iff d ∈ wi,j for some i, j; and

• (λd ∈ wi,j . gi(d)) ∈ C(T, S)w for all i, j.

¿From the observation that wi ⊇ wi,j , it follows that {w1,1, . . . , wn,kn} is a path
set. Furthermore, for

g′ = (λd ∈ w. g(hA(d))(hB(d))),

we have that

• g′(d)↓ iff d ∈ wi,j for some i, j; and

• (λd ∈ wi,j . g′(d)) ∈ C(T, S)w for all i, j.

Since g′ = (h; uncurry(g)), we are done.
It is not hard to prove that curry(–) and uncurry(–) are natural transforma-

tions, and that they form an isomorphism pair. Thus, suppose f ′ : D → A; we
need to show that

(f ′; curry(f)) 6 curry(〈proj 1; f ′, proj 2〉; f).

20

Given d ∈ |D|, if f ′(d)↑ then (f ′; curry(f))(d) is not defined either and there is
nothing to show. So suppose f ′(d)↓. Then it suffices to show

(f ′; curry(f))(d) = curry(〈proj 1; f ′, proj 2〉; f)(d).

Now, if f〈f ′(d), b〉↑, then both the left and right hand side functions above are
undefined at b as well. If on the other hand f〈f ′(d), b〉↓ then both of the above
functions will equal that value on b.

3.8 Colimits

Coproducts and the partial cartesian closed structure give most of the structure
necessary to interpret FPC types. The only part left is the interpretation of
recursive types. To this end, we rework the standard colimit construction from
domain theory (Abramsky and Jung, 1994; Gunter, 1992; Plotkin, 1985).

The basis of the colimit construction is embedding-projection pairs. Given
objects A,B, then f is an embedding-projection pair (ep-pair for short) if
f = 〈fe : A→ B, fp : B → A〉, (fe; fp) = idA, and (fp; fe) v idB. We abuse
notation and write f : A→ B when f is an ep-pair from A to B, and id : A→ A
for the ep-pair 〈id , id〉. The composition of ep-pairs is pointwise: if f : A→ B
and g : B → C, then (f ; g) = 〈f e; ge, gp; fp〉 : A→ C.

Colimits are formed from chains of objects connected by ep-pairs. Formally,
an expanding sequence is a tuple

({Dn | n ≥ 0}, {fn | fn : Dn → Dn+1 is an ep-pair}).

When n ≤ m, we write fmn : Dn → Dm for the ep-pair defined by induction as
follows:

fnn = id

f(m+1)n = fmn; fm.

Given an expanding sequence, define D by

|D| = {g ∈ [N→p

⋃
Di] | g(i)↓ implies g(i) ∈ Di, and

for all n ≤ m, g(n) ' fpmn(g(m))}
D(T, S)w = {h ∈ [w′ →t D] | w′ is a Tw-model, and

for all ϕ : v
C−→ w and n ∈ N,

(λd ∈ v. h (ϕ(d)) (n)) ∈ Dn(T, S)vS}

where ordering on |D| is pointwise ordering on the functions. The ep-pairs
〈µem : Dm → D,µpm : D → Dm〉, defined by

µpm(x) ' x(m)

µem(x)(l) '
⊔

k≥m,l
(fpkl(f

e
km(x)))

make D into a colimit of the expanding sequence, as the next two lemmas show.

21

Lemma 3.13 D is an object in RCPO.

Proof: It is easy to show that |D| is directed complete. To see that D(T, S)w is
a w-termination relation, we check directed completeness and leave the straight-
forward checks of downward closure, Kripke monotonicity, and concreteness to
the reader. Suppose that {hi | i ∈ I} ⊆ D(T, S)w is directed, where each hi has
domain w′. Let h be the least upper bound of the hi’s; we need to show that
h ∈ D(T, S)w. To show this, consider any ϕ : v → w and n ∈ N. Then

(λd ∈ v. h (ϕ(d)) (n)) =
⊔
i∈I

(λd ∈ v. hi (ϕ(d)) (n)) ∈ Dn(T, S)wS

by the directed completeness of the Dn(T, S)wS ’s. Thus,

(λd ∈ v. h (ϕ(d)) (n)) ∈ Dn(T, S)wS

as required.

Lemma 3.14 For all m, µem : Dm → D and µpm : D → Dm are morphisms.
Moreover, (µpm;µem) v idD, (µem;µpm) = idDm , and⊔

m≥0

µpm;µem = idD

Proof: The only difficult part of the proof lies in showing that µem and µpm sat-
isfy the uniformity property. To see that µpm is uniform, suppose h ∈ D(T, S)w.
Then (h;µpm) = (λd ∈ w. h (d) (m)) ∈ Dm(T, S)wS , which is what we needed to
show.

The proof of the uniformity of µem is more involved. Suppose h ∈ Dm(T, S)w,
and consider g = (h;µem). We show that g ∈ D(T, S)w, which will show that
g ∈ D(T, S)wS . Note that g has the same domain as h, so consider any given

ϕ : v
C−→ w and n ∈ N. Note that

(λd ∈ v. g (ϕ(d)) (n)) = (λd ∈ v. µem (h (ϕ(d))) n) =
⊔

k≥m,n
(ϕ;h; fekm; fpkn)

By the uniformity of fpkn and fekm, we know that (ϕ;h; fekn; fpkm) ∈ Dn(T, S)vS .
Thus, by the directed completeness of Dn(T, S)wS ,

(λd ∈ v. g (ϕ(d)) (n)) ∈ Dn(T, S)vS

as required.

4 Interpretation of FPC

The constructions in the category RCPO in Section 3 can now be used to build
a model of FPC (Gunter, 1992; Riecke and Subrahmanyam, 1997). A model has

22

both a meaning for types and for terms. Types denote objects in the category,
and terms denote morphisms.

The meaning of a closed type is clear except for the meanings of recursive
types, which necessitates describing the meaning of an open type expression. For
this reason, the meaning of a type is a functor from its free type variables to
the category RCPO. In making this precise, most of the difficulty lies in finding
the right category of free type variables. To this end, define a pre-ep-pair to
be a pair f = 〈fe, fp〉 of morphisms fe : D → E and fp : E → D in RCPO;
we write f : D ↪→ E as shorthand for saying that f is such a pre-ep-pair. Note
that a pre-ep-pair is just like an ep-pair, but without the requirements that
(fe; fp) = id and (fp; fe) v id. The use of pre-ep-pairs instead of ep-pairs
makes certain theorems (particularly those in Appendix B) easier to prove.

A type environment η is a function from type variables to objects of
RCPO, and a type environment map π : η → η′ is a function from type
variables to pre-ep-pairs such that π(α) : η(α) ↪→ η′(α) for all α. The category
E has type environments as objects, and type environment maps as morphisms.
It is simple to check that E is a category.

The meaning of a type s, then, is a functor [[s]] : E→ RCPO. The definition
on objects of E—except in the case of recursive types—is

[[α]]η = η(α)

[[unit]]η = unit

[[s⊕ t]]η = ([[s]]η ⊕ [[t]]η)

[[s⊗ t]]η = ([[s]]η ⊗ [[t]]η)

[[s⇒ t]]η = ([[s]]η ⇒ [[t]]η)

The operation on morphisms of [[s]]π—except for recursive types—is

[[α]]π = π(α)

[[unit]]π = 〈id unit , idunit 〉
[[s⊕ t]]π = ([[s]]π ⊕ [[t]]π)

[[s⊗ t]]π = ([[s]]π ⊗ [[t]]π)

[[s⇒ t]]π = ([[s]]π ⇒ [[t]]π)

where, abusing notation, ⊕, ⊗, and ⇒ work on pre-ep-pairs as follows:

([[s]]π ⊕ [[t]]π) = 〈([[s]]π)e ⊕ ([[t]]π)e, ([[s]]π)p ⊕ ([[t]]π)p〉
([[s]]π ⊗ [[t]]π) = 〈([[s]]π)e ⊗ ([[t]]π)e, ([[s]]π)p ⊗ ([[t]]π)p〉

([[s]]π ⇒ [[t]]π) = 〈([[s]]π)p ⇒ ([[t]]π)e, ([[s]]π)e ⇒ ([[t]]π)p〉

(Recall the actions of ⊕, ⊗, and ⇒ on morphisms from Section 3.)
The case of recursive types requires more work. Suppose s = (rec α. t). Let〈

T is,η, f
i
s,η | i ≥ 0

〉
be the expanding sequence given by

T 0
s,η = void f0

s,η = !T 1
s,η

T n+1
s,η = [[t]](η[α 7→ T ns,η]) fn+1

s,η = [[t]](id [α 7→ fns,η])

23

T 0
s,η1

p0
s,π

��

f0
s,η1 // T 1

s,η1

p1
s,π

��

f1
s,η1 // T 2

s,η1

p2
s,π

��

f2
s,η1 // · · · [[s]]η1

[[s]]π

��
T 0
s,η2

f0
s,η2 // T 1

s,η2

f1
s,η2 // T 2

s,η2

f2
s,η2 // · · · [[s]]η2

Figure 1: Colimits and definition of [[s]](π), where s = (rec α. t).

where !D is the unique ep-pair (not just pre-ep-pair) from void to D. This is an
expanding sequence because the maps fns,η’s are ep-pairs (by a simple induction
on the definition). If D is the colimit of the expanding sequence, then define
[[s]]η = D. Moreover, define the morphisms intros,η : [[t[s/α]]]η → [[s]]η and
elims,η : [[t[s/α]]]η → [[s]]η and

intros,η =
⊔
n≥0

[[t]]id [α 7→ µns,η]
p
;µn+1,e
s,η

elims,η =
⊔
n≥0

µn+1,p
s,η ; [[t]]id [α 7→ µns,η]

e

These maps will be used to give meaning to intro and elim.
For the morphism part of the functor in the case of recursive types, con-

sider the diagram in Figure 1. Given π : η1 → η2, consider the expanding
sequences

〈
T is,η1

, f is,η1
| i ≥ 0

〉
, and

〈
T is,η2

, f is,η2
| i ≥ 0

〉
, with colimiting cocones〈

[[s]]η1, µ
i
s,η1
| i ≥ 0

〉
and

〈
[[s]]η2, µ

i
s,η2
| i ≥ 0

〉
, respectively. Define the family of

pre-ep-pairs pns,π, where pns,π is a pre-ep-pair from T ns,η1
to T ns,η2

by

p0
s,π = !void

pk+1
s,π = [[t]](π[α 7→ pks,π])

A simple induction argument shows that the diagram in Figure 1 commutes
(assuming that [[·]] is a functor, which holds by construction). From this fact, it
is clear that 〈

[[s]]η2, µ
n
s,η2
◦ pns,π | n ≥ 0

〉
is a cocone for the expanding sequence

〈
T is,η1

, f is,η1
| i ≥ 0

〉
. Define [[s]]π to be the

unique mediating map from [[s]]η1 to [[s]]η2, which must exist by the colimiting
properties.

The meaning of terms can now be given using the combinators of the cate-
gory. If Γ = x1 : t1, ..., xn : tn, define [[Γ]] = [[t1]]⊗ . . .⊗ [[tn]]. (If Γ is empty, [[Γ]]
is the object unit). Elements of |[[Γ]]| are called environments. For an envi-
ronment ρ ∈ |[[Γ]]|, we write ρ(x) for projection to the component corresponding

24

to variable x. The meaning of a judgement Γ ` M : t is an RCPO-morphism
[[Γ `M : t]] : [[Γ]]→ [[t]]. The definition is by induction on the structure of terms:

[[Γ, x : t ` x : t]]ρ = ρ(x) [[Γ ` 〈〉 : unit]]ρ = >

[[Γ ` (λx : s. M) : (s⇒ t)]]ρ = f, where f(d) ' [[Γ, x : s `M : t]]ρ[x 7→ d]

[[Γ ` (M N) : t]]ρ ' ([[Γ `M : (s⇒ t)]]ρ) ([[Γ ` N : s]]ρ)

[[Γ ` (introrec α. s M) : (rec α. s)]]ρ ' intro([[Γ `M : s[rec α. s/α]]]ρ)

[[Γ ` (elimrec α. s M) : s[rec α. s/α]]]ρ ' elim([[Γ `M : (rec α. s)]]ρ)

[[Γ ` 〈M,N〉 : (t1 ⊗ t2)]]ρ ' 〈[[Γ `M : t1]]ρ, [[Γ ` N : t2]]ρ〉

[[Γ ` (proji M) : ti]]ρ ' proj i([[Γ `M : (t1 ⊗ t2)]]ρ)

[[Γ ` (inji M) : (t1 ⊕ t2)]]ρ ' inj i([[Γ `M : ti]]ρ)

[[Γ ` (caseM of inj1(x).N1 or inj2(x).N2) : t]]ρ '{
[[Γ, x : si ` Ni : t]]ρ[x 7→ d] if [[Γ `M : (s1 ⊕ s2)]]ρ = inj i(d)
undefined otherwise

Here, the notation ρ[x 7→ d] denotes the environment in which the x component
is extended (or overwritten) to d. For notational convenience, if ∅ ` M : s, we
write [[M]] for the corresponding element [[∅ `M : s]]> ∈ [[s]].

The model is adequate:

Theorem 4.1 (Adequacy) Suppose M is a closed FPC term of type s. Then
M ⇓ V iff [[M]]↓.

The proof appears in the Appendix.

Corollary 4.2 For closed terms M and N of type s,

if [[M]] @∼ [[N]], then M vFPC N .

Proof: Suppose [[M]] @∼ [[N]]. To show M vFPC N , suppose C[·] is a context
such that C[M] ⇓. By the Adequacy Theorem 4.1, [[C[M]]]↓. By the hypothesis,
it follows that [[C[N]]]↓ and thus C[N] ⇓.

5 Examples

Even though the semantic category RCPO is arguably complicated, it does sup-
port simple reasoning about definability of FPC terms. This section gives two
examples of non-definability proofs, with non-sequential functions drawn from
the literature.

25

5.1 Parallel convergence testing is not definable

Consider the partial continuous function

f : (unit ⇒ unit)⊗ (unit ⇒ unit)→ unit

defined

f〈g, h〉 =

{
> if g(>)↓ or h(>)↓
undefined otherwise.

The function f appears to need to do its calculation “in parallel.” We would
like to prove that f is not a morphism in the category, which will immediately
imply that f is not definable.

The argument follows the proof of Sieber that por is not definable (also due
to Plotkin, see (Astesiano and Costa, 1980)). In this case, we need to exhibit an
index category C, a choice of C-termination theory T , and a C, T -path theory S.
Pick C to be the category with just one index set w = {1, 2, 3} and the identity
map, Tw to be the theory with just one implication (1, 2 ` 3), and Sw to be
the set { { }, {w′} | w′ is a Tw-model }. Let h : unit → unit be the identity
function, and h′ : unit → unit be the empty partial function. Also, let

g1 = 〈h, h′〉, g2 = 〈h′, h〉, g3 = 〈h′, h′〉.

Returning to standard tuple notation for relations, we claim

(g1, g2, g3) ∈ ((unit ⇒ unit)⊗ (unit ⇒ unit))(T, S)w.

To prove the claim, we must show that h1 = (h, h′, h′) and h2 = (h′, h, h′) are
both in (unit ⇒ unit)(T, S)w; this will show that (g1, g2, g3) = 〈h1, h2〉 is in
((unit ⇒ unit)⊗ (unit ⇒ unit))(T, S)w.

We show the claim for the case of h1 and leave the analogous case of h2

to the reader. Pick any u ∈ unit(T, S)w, and let u′ = (λd ∈ w. h1(d)(u(d))).
We must show u′ ∈ unit(T, S)wS . By choice of Tw, the domain of u is either
∅, {1}, {2}, {3}, {1, 3}, {2, 3}, or {1, 2, 3}. We verify the fact for the cases {} and
{1, 2, 3}. The remaining cases are very similar and omitted here. First, consider
the case of ∅. By definition, the domain of u′ is ∅ as well and the existence of
the path set {} justifies u′ ∈ unit(T, S)wS . For the case of dom(u) = {1, 2, 3}
we get dom(u′) = {1} since h1 = (h, h′, h′). Thus, via the path set {{1}}, we
conclude that u′ ∈ unit(T, S)wS .

However, since f(g1) = >, f(g2) = >, and f(g3) is undefined,

(f(g1), f(g2), f(g3)) 6∈ unit(T, S)wS ,

so f is not uniform. Thus, f cannot be a morphism, and hence it cannot be
definable.

26

5.2 Sieber’s example is not definable

The second example is also due to Sieber (1992), a modified example due
to Curien (1986). Let bool be the object (unit ⊕ unit), and

A = (unit ⇒ bool)⊗ (unit ⇒ bool).

Let true denote inj 1(>) ∈ bool and false denote inj 2(>) ∈ bool. Consider the
morphisms g1, g2, g3, g4 : A→ unit defined by

g1〈h1, h2〉 '

> if h2(>) = true
> if h1(>) = true and

h2(>) = false
undefined otherwise

g2〈h1, h2〉 '
{
> if h1(>) = false
undefined otherwise

g3〈h1, h2〉 '
{
> if h2(>) = false
undefined otherwise

g4〈h1, h2〉 ' undefined

We claim that any f : (A⇒ unit)→ unit satisfying

f(g1) = >, f(g2) = >, f(g3) = >, f(g4)↑

is not definable in FPC.
The proof of nondefinability requires a nontrivial use of path sets. Pick C

to be the trivial index category C with object w = {1, 2, 3, 4}. Let Tw be the
termination theory Tw with just one implication (1, 2, 3 ` 4). Let S be the set
of path sets {w1, . . . , wn} such that

• If 1 ∈ wi and 2 ∈ wj , then i = j; and

• If 1 ∈ wi and 3 ∈ wj , then i = j.

It is not hard to prove that this is a C, T -path theory, and that

(g1, g2, g3, g4) ∈ (A⇒ unit)(T, S)w.

However, it is evident that

(f(g1), f(g2), f(g3), f(g4)) 6∈ unit(T, S)wS

because of the conditions on the path sets. Thus, there is no such definable f .

6 Full Abstraction

We prove full abstraction for FPC in two steps. Let Finite FPC be the sub-
language of FPC with no recursive types. First, we reduce the full abstraction

27

problem to the problem of showing that all elements in Finite FPC types are de-
finable. The reduction uses techniques from (Riecke and Subrahmanyam, 1997),
and we give the basic outline of the proof. Second, we prove that all elements
in Finite FPC types are definable by terms. The proof follows the structure of
the proof of full abstraction for PCF (O’Hearn and Riecke, 1995).

6.1 Reduction to definability for Finite FPC

Define the unwinding of all type recursions to depth n by

αn = α (s⊕ t)n = (sn ⊕ tn)
voidn = void (s⊗ t)n = (sn ⊗ tn)
unitn = unit (s→ t)n = (sn → tn)

(rec α. t)n = tn[tn[. . . [tn︸ ︷︷ ︸
n

[void/α]/α] . . .]/α]/α

In Appendix B, we construct terms clmps,n : s → sn and clmes,n : sn → s
that, intuitively, denote a sequence of “colimiting” maps. The terms satisfy the
following property:

Lemma 6.1
⊔
n≥0([[clmps,n]]; [[clmes,n]]) = id [[s]].

The construction uses the techniques in (Riecke and Subrahmanyam, 1997),
although we repeat the salient details in the Appendix for completeness. These
terms allow us to reduce the problem to definability for Finite FPC.

Theorem 6.2 Suppose for all Finite FPC types s, all elements of [[s]] are de-
finable by closed terms. Let M,N be closed FPC terms of type s. If [[M]] 6@∼ [[N]],
then M 6vFPC N .

Proof: We claim that it is enough to prove the theorem for all Finite FPC
types s. To see this, suppose s is a general FPC type. We know by Lemma 6.1
that [[clmps,n M]] 6@∼ [[clmps,n N]] for some n. Both of the terms M ′ = (clmps,n M)
and N ′ = (clmps,n N) have a Finite FPC type s. Thus, if we can find a context
C[·] distinguishing M ′ from N ′, then the context C[clmps,n [·]] distinguishes M
and N .

We now prove the theorem for all Finite FPC types s by induction on s,
giving two of the five cases and leaving the others to the reader. In the first
case, suppose s = (t⊕ t′). There are three subcases:

• [[M]]↓ and [[N]]↑. Then, by Adequacy, the context [·] distinguishes M and
N .

• [[M]] = inj i(d) and [[N]] = inj j(e), where i 6= j. By Adequacy, we get that
M ⇓ (inji V) and N ⇓ (injj V

′). Suppose i = 1 (the other case is analo-
gous); then the context (case [·] of inj1(x).x or inj2(x).Ω) distinguishes
M and N .

28

• [[M]] = inj i(d) and [[N]] = inj i(e). By Adequacy, M ⇓ (inji V) and
N ⇓ (inji V

′). Note that V 6vFPC V ′. Suppose i = 1 (the other case is
analogous), and the context distinguishing V, V ′ is C[·]. Then the context
(case [·] of inj1(x).C[x] or inj2(x).Ω) distinguishes M and N .

In the second case, suppose s = (t → t′). If [[M]]↓ and [[N]]↑, then the context
[·] distinguishes M and N . If both are defined, on the other hand, by Adequacy,
M ⇓ (λx : t. M ′) and N ⇓ (λx : t. N ′). Since [[M]] 6v [[N]], there must be an
argument d ∈ [[t]] such that [[M]](d) 6@∼ [[N]](d). By hypothesis, there is a closed
Finite FPC term P such that d = [[P]]. Thus, [[M P]] 6@∼ [[N P]]. By induction,
there is a context C[·] distinguishing (M P) and (N P). Thus, the context
C[[·] P] distinguishes M and N .

6.2 Definability of elements of Finite FPC types

To prove that all elements of Finite FPC type are representable by terms, we
will consider a particular index category C, particular C-termination theory T ,
and particular C, T -path theory S. Define the index category to be the set of
sets of the form

[s1, . . . , sn] = |[[s1]]⊗ . . .⊗ [[sn]]|.

where [] = unit . Morphisms are the projections [s1, . . . , sn+k] → [s1, . . . , sn].
For any object w = [s1, . . . , sn] of C, let s = (s1 ⊗ . . .⊗ sn) and

Xw = {w′ ⊆ w | there is a closed M : (s⇒ unit) . [[M]](d)↓ iff d ∈ w′ }.

The path sets in Sw are defined as follows. {w1, . . . , wk} is a path set if:

• w1, . . . , wk ∈ Xw; and

• there is an M : (s⇒ k̄) such that [[M]](d) = i iff d ∈ wi, where

n̄ = (unit⊕ . . .⊕ unit)︸ ︷︷ ︸
n

and 1 = inj 1(>), 2 = inj 2(inj 1(>)), and so on.

In the following, we use if-then-else and other notation in terms when working
with the types n̄; these are just shorthand for Finite FPC terms.

Using the alternative characterization of T -models given by Proposition 3.1,
it is not hard to establish the following

Lemma 6.3 The set X = {Xw | w ∈ Obj(C) } defines a C-termination theory
T by taking Xw to be a set of models.

Proof: Let ϕ : v
C−→ w and

w = [s1, . . . , sn] s = (s1 ⊗ . . .⊗ sn)
v = [s1, . . . , sn, . . . , sn+k] s′ = (s1 ⊗ . . .⊗ sn ⊗ . . .⊗ sn+k)

29

First, we establish that each Xw ∈ X is a closure system; by Proposition 3.1, it
will then be clear that each Tw is a w-theory. Note that w ∈ Xw (the requisite
term is (λx : s. 〈〉) of type (s ⇒ unit)). So suppose w1, w2 ∈ Xw. Then there
exist M1,M2 with [[Mi]](d)↓ iff d ∈ wi. Consider the term

M = (λx : s. (M1 x); (M2 x)).

Then it is clear that [[M]](d)↓ iff d ∈ w1 ∩ w2. Thus, (w1 ∩ w2) ∈ Xw.
Second, suppose w′ is a Tw-model. Then by definition, there is a term

N : (s⇒ unit) such that [[N]](d)↓ iff d ∈ w′. Let v′ = ϕ−1(w′), and

M = (λx : s′. N 〈x1, . . . , xn〉)

where xi is shorthand for the ith projection of the term x. Then [[M]](d) ↓
iff d ∈ v′, so v′ is a T v-model as required. We conclude that T is indeed a
C-termination theory.

Lemma 6.4 S is a C, T -path theory.

Proof: We need to show Sw satisfies four properties. Suppose w′ is a Tw-model
and X = {w1, . . . , wk} and X ′ = {w′1, . . . , w′l} are path sets in Sw. Then there
exists a term M defining w′, and terms N and P defining these path sets.

• The term (λx : s.Ω) defines the path set {}.

• The term (λx : s. (M x); 1) defines the path set {w′}.

• If X uX ′ = {wi1 ∩wj1 , . . . , win ∩ wjn}, then the term

(λx : s. if ((N x) = i1) ∧ ((P x) = j1) then 1 else . . .

if ((N x) = in) ∧ ((P x) = jn) then (in ∗ jn) else Ω)

defines the path set X uX ′.

• Suppose there is a j such that for all i, w′i ⊆ wj . Then the term

(λx : s. if (N x) < j then (N x) else

if (N x) > j then(N x) + l− 1 else (P x) + j − 1)

defines the path set {w1, . . . , wj−1, w
′
1, . . . , w

′
l, wj+1, . . . , wk}.

This completes the proof.

The next lemma is the main one needed for full abstraction. It shows that
every element of the computational relations is represented by a term in Finite
FPC.

Lemma 6.5 Suppose w = [s1, . . . , sn] and s = (s1⊗. . .⊗sn). Then g ∈ [[t]](T, S)wS
iff there exists a closed, Finite FPC term M : (s⇒ t) such that g = [[M]].

30

Proof: By induction on t.

• t = void. If g ∈ [[t]](T, S)wS , then the term M = (λx : s.Ω) defines g. The
converse is also trivial.

• t = unit. For (⇐), suppose M : (s ⇒ unit). By definition, M defines a
Tw-model w′ via

[[M]](d)↓ iff d ∈ w′.

Thus, [[M]] ∈ [[unit]](T, S)wS . For (⇒), suppose g ∈ [[unit]](T, S)wS . Thus,
there exists a path set {w1, . . . , wk} such that

– g(d)↓ iff d ∈ wi for some i; and

– (λd ∈ wi. g(d)) ∈ [[unit]](T, S)w.

(Of course, in this particular case of unit, the second clause is redundant.)
By the definition of path sets, there is a P : (s⇒ k̄) such that [[P]](d) = i
iff d ∈ wi, and undefined otherwise. Let

M = (λx : s. (P x); 〈〉).

It is not hard to see that [[M]] = g as needed.

• t = (t1⊕t2). For (⇐), suppose M : (s⇒ (t1⊕t2)). Consider the following
two terms:

N1 = (λx : s. case (M x) of inj1(y).y or inj2(y).Ω) : (s⇒ t1)

N2 = (λx : s. case (M x) of inj1(y).Ω or inj2(y).y) : (s⇒ t2)

By induction (⇐), [[Ni]] ∈ [[ti]](T, S)wS . Thus, we have for some path sets
X = {w1, . . . , wk} and X ′ = {w′1, . . . , w′l},

– [[N1]](d)↓ iff d ∈ wi for some i;

– (λd ∈ wi. [[N1]](d)) ∈ [[t1]](T, S)w for all i;

– [[N2]](d)↓ iff d ∈ w′i for some i; and

– (λd ∈ w′i. [[N2]](d)) ∈ [[t2]](T, S)w for all i.

Note that for any i, j, wi and w′j are disjoint: if d ∈ wi, then [[N1]](d) ↓,
so [[M]](d) = inj 1(a), so [[N2]](d) ↑, so d 6∈ w′j . Note also that the set
{w1, . . . , wk, w

′
1, . . . , w

′
l} is a legal path set via the term

(λx : s. case (M x) of inj1(y).(P1 x) or inj2(y).(P2 x) + k)

if P1 is the term for X and P2 is the term for X ′. Finally, note that

– [[M]](d)↓ iff d ∈ wi or w′i for some i; and

31

– For the first set of Tw-models,

(λd ∈ wi. [[M]](d)) = ((λd ∈ wi. [[N1]](d)); inj 1) ∈ [[t1 ⊕ t2]](T, S)w

and for the second set,

(λd ∈ w′i. [[M]](d)) = ((λd ∈ w′i. [[N2]](d)); inj 2) ∈ [[t1 ⊕ t2]](T, S)w.

Therefore, [[M]] ∈ [[t]](T, S)wS .

For (⇒), suppose g ∈ [[t1 ⊕ t2]](T, S)wS . By definition, there exists a path
set {w1, . . . , wk} such that

– g(d)↓ iff d ∈ wi for some i; and

– gi = (λd ∈ wi. g(d)) ∈ [[t1 ⊕ t2]](T, S)w for all i.

Then by definition, gi = (hi; inj ji) for some hi ∈ [[tji]](T, S)w. Since {wi}
itself is a path set we get that hi ∈ [[tji]](T, S)wS , and thus by induction
(⇒), there exists an Ni : (s⇒ tji) such that

d ∈ wi iff [[Ni]](d)↓, and hi = (λd ∈ wi. [[Ni]](d)).

Since {w1, . . . , wk} is a path set, there is a term P : s ⇒ k̄ defining that
path set. Let Mi = (λx : s. injji (Ni x)) and

M = (λx : s. if (P x) = 1 then (M1 x) else . . .

if (P x) = k then (Mk x) else Ω).

Then [[M]] = g.

• t = (t1⊗t2). For (⇐), suppose M : (s⇒ (t1⊗t2)). Consider the following
two terms:

Ni = (λx : s. proji (M x)) : (s⇒ ti).

By induction (⇐), [[Ni]] ∈ [[ti]](T, S)wS . That is, there exists some path sets
X = {w1, . . . , wk} and X ′ = {w′1, . . . , w′l}, such that

– [[N1]](d)↓ iff d ∈ wi for some i;

– (λd ∈ wi. [[N1]](d)) ∈ [[t1]](T, S)w for all i;

– [[N2]](d)↓ iff d ∈ w′i for some i; and

– (λd ∈ w′i. [[N2]](d)) ∈ [[t2]](T, S)w for all i.

Note that X uX ′ = {w′′1 , . . . , w′′m} is a path set, and note that

[[M]](d)↓ iff d ∈ w′′i for some i; and

(λd ∈ w′′i . [[M]](d)) = 〈(λd ∈ w′′i . [[N1]](d)), (λd ∈ w′′i . [[N2]](d))〉
∈ [[t1 ⊗ t2]](T, S)w.

Therefore, [[M]] ∈ [[t]](T, S)wS .

For the converse, suppose g ∈ [[t1 ⊗ t2]](T, S)wS . Then there exists a path
set {w1, . . . , wk} such that

32

– g(d)↓ iff d ∈ wi for some i; and

– gi = (λd ∈ wi. g(d)) ∈ [[t1 ⊗ t2]](T, S)w.

By definition, gi = 〈hi,1, hi,2〉 for some hi,j ∈ [[tj]](T, S)w. By induc-
tion (⇒), there exist Ni,j : (s⇒ tj) such that

d ∈ wi iff [[Ni,j]](d)↓, and hi,j = (λd ∈ wi. [[Ni,j]](d)).

Since we have a path set, there is a term P : s⇒ k̄ defining that path set.
Let Mi = (λx : s. 〈Ni,1 x,Ni,2 x〉) and

M = (λx : s. if (P x) = 1 then (M1 x) else . . .

if (P x) = k then (Mk x) else Ω).

Then [[M]] = g.

• t = (t1 ⇒ t2). For (⇐), suppose M : (s ⇒ (t1 ⇒ t2)). There are two
cases: either [[M]] is undefined on every argument, or [[M]] is defined on
at least one argument. In the first case, since {} is a path set in Sw, it is
not hard to see that [[M]] ∈ [[t1 ⇒ t2]](T, S)wS . In the second case, let

M ′ = (λx : s. (M x); 1).

By the definition of Sw, M ′ defines a path set consisting of one element;
call it {w′}. We use this as our path set.

1. Obviously, [[M]](d)↓ iff d ∈ w′.
2. To see (λd ∈ w′. [[M]](d)) ∈ [[t1 ⇒ t2]](T, S)w, suppose ϕ : v

C−→ w
and g ∈ [[t1]](T, S)v, where v = [s1, . . . , sn+k]. Furthermore, we let
s′ = (s1 ⊗ . . . ⊗ sn+k). Then, by induction (⇒), there is a closed
N : (s′ ⇒ t1) such that

d ∈ v′ iff [[N]](d)↓, and g = (λd ∈ v′. [[N]](d))

where v′ is the domain of g. Consider the term

P = (λx : s′. (M 〈x1, . . . , xn〉) (N x)) : (s′ ⇒ t2)

By induction (⇐), [[P]] ∈ [[t2]](T, S)vS . But note that

[[P]](d) ' (λd ∈ w′. [[M]](d)) (ϕ(d)) (g(d)).

Thus,

(λd ∈ v. (λd ∈ w′. [[M]](d)) (ϕ(d)) (g(d))) ∈ [[t2]](T, S)vS

as required.

For the converse, suppose g ∈ [[t1 ⇒ t2]](T, S)wS . Then there exists a path
set {w1, . . . , wk} such that

33

– g(d)↓ iff d ∈ wi for some i; and

– gi = (λd ∈ wi. g(d)) ∈ [[t1 ⇒ t2]](T, S)w.

Let v = [s1, . . . , sn, t1], ϕ : v → w, and s′ = (s1 ⊗ . . . ⊗ sn ⊗ t1), and
N = (λx : s′. xn+1). By induction (⇐), [[N]] ∈ [[t1]](T, S)vS . But note that
the T v-model that makes [[N]] converge is all of v. Thus, there is a path
set {v1, . . . , vl} ∈ Sv with (v1 ∪ . . . ∪ vl) = v and

hj = (λd ∈ vj . [[N]](d)) ∈ [[t1]](T, S)v

for all j ∈ {1, . . . , l}. Therefore,

hi,j = (λd ∈ v. gi (ϕ(d)) (hj(d))) ∈ [[t2]](T, S)vS .

By induction (⇒), there exist terms Pi,j : (s′ ⇒ t2) such that hi,j = [[Pi,j]].
But note that

[[Pi,j]]〈d1, . . . , dn, d〉 ' (gi 〈d1, . . . , dn〉 d).

Let Q be the term that defines the path set {w1, . . . , wk} and Qj be the
term that defines each vj . Define

Q′i = (λx : s. λy : t1. if Q1 〈x, y〉 then Pi,1 〈x, y〉 else . . .

if Ql 〈x, y〉 then Pi,l 〈x, y〉 else Ω)

and let

M = (λx : s. if (Q x) = 1 then (Q′1 x) else . . .

if (Q x) = k then (Q′k x) else Ω)

Then it is not hard to see that [[M]] = g.

This completes the induction and hence the proof.

Corollary 6.6 All elements of closed Finite FPC types are definable.

Proof: Suppose s is a closed Finite FPC type, and g ∈ [[s]]. By concreteness,

h = (λd ∈ []. g) ∈ [[s]](T, S)
[]
S .

By Lemma 6.5, h = [[N]] for some closed term N of type (unit → s). Then
g = [[N 〈〉]].

6.3 Putting it together

We may now prove the main theorem of the paper.

Theorem 6.7 (Full Abstraction) Suppose M,N are closed terms of type s.
Then [[M]] @∼ [[N]] iff M vFPC N .

Proof: (⇐) is immediate from Theorem 6.2 and Corollary 6.6, and (⇒) is
immediate from Corollary 4.2.

34

7 Discussion

We have shown in this paper how to construct a fully abstract model for
call-by-value FPC using logical relations, generalizing the approach taken for
PCF (O’Hearn and Riecke, 1995; Sieber, 1992). The model supports a simple
form of reasoning for showing that certain values are not definable.

There are other ways to build fully abstract models for FPC. For instance,
Riecke and Viswanathan give a dcpo-based model for call-by-value FPC (Riecke
and Viswanathan, 1993; Riecke and Viswanathan, 1995), using the syntactic
methods of Milner (1977). This construction sheds little light into the structure
of FPC, except that the model validates least fixpoint reasoning. Games seman-
tics has also been applied to full abstraction for FPC by McCusker, who builds
a model of call-by-name FPC (McCusker, 1996; McCusker, 1997). The sums
in this model are separated: applying the injection operations to the mean-
ing of a divergent computation returns a convergent value (on which a case
expression can branch). Game semantics has been recently adapted to the call-
by-value setting (Abramsky and McCusker, 1997; Honda and Yoshida, 1997).
These papers devise models by loosening the restrictions of the original games
semantics (Abramsky et al., 1994; Hyland and Ong, 1995; Nickau, 1994) to in-
clude strategies that start with the opponent’s answer rather than a question.
Intuitively, this means that the value supplied to a call-by-value function is im-
mediately available without interrogation by the player. The basic definitions
are quite different from our logical-relations-based model.

Much of the complexity of our model of FPC lies in the use of Kripke re-
lations. On the one hand, since all examples of reasoning in the model seem
to require only the “base” relations, it would be interesting to determine when
base relations were sufficient. This kind of result might be analogous to Sieber’s
result that sequentiality relations suffice for proving facts about PCF up to
third-order types (Sieber, 1992). On the other hand, recent results of Ralph
Loader suggest that one must go beyond base relations to achieve full abstrac-
tion. We conjecture that the following problem is undecidable: given a type in
Finite FPC, can one decide how many elements there are in the model of that
type? If we remained only with the “base” relations, the problem would be
decidable. The related decision problem for PCF was first pointed out by Jung
and Stoughton (1993); see (Jung et al., 1996; O’Hearn and Riecke, 1995) for a
further discussion. Loader shows that the decision problem for PCF over the
single boolean base type is undecidable (Loader, 1997). We expect that the
proof will carry over to Finite FPC.

The model presented here has some ad hoc features that should be exam-
ined more closely. The construction of path sets, for instance, might be better
expressed in terms of Grothendieck topologies; recent work by Fiore and Simp-
son (1999) may be useful. Other recent work by Marz has defined a more general
category of “sequential domains” that is suitable for call-by-name (Marz, 1998).
Call-by-value can be simulated in Marz’s framework through a lifting operation.
Marz’s conditions on path sets are perhaps easier to understand than our def-
initions, and also do not rely on the intermediate step of termination theories.

35

Such a simplification here would make the model easier to construct. It would
be useful, among all of these definitions, to settle on a single, well-motivated
definition.

We have some hope that the relational account can be adapted to exten-
sions of FPC with other kinds of effects other than simple functional branching,
such as continuation-based control operations. We also believe that there is a
relationship between “single-threading” of state (O’Hearn and Reynolds, 1997;
O’Hearn and Tennent, 1995) and sequentiality; it would be interesting to see if
our model can be adapted to model a single-threaded global state. One strength
of the current model is its clean separation of values and computations. We con-
jecture that only the definition of “path theories” must change to reflect the new
settings.

Other extensions seem more difficult. For instance, we began by trying
to find a similar relation-based model for a linear type system, but ran into
technical difficulties. The extension of FPC with a notion of local state, as in
Idealized Algol (Reynolds, 1981) or Standard ML (Milner et al., 1997), also
seems to be difficult. One interesting, though non-trivial, direction would be
to extend the language with parametric polymorphism. A different kind of
relations would be needed in this instance to model parametricity.

Acknowledgements: The first author thanks Glynn Winskel, the organizer
of the 1995 Full Abstraction Workshop, and the organizers of the Semantics
of Computation program at the Newton Institute for Mathematical Sciences,
Cambridge, UK, where this work was begun. The second author thanks Bell
Laboratories for offering a very stimulating and pleasant environment during his
visit in the summer of 1996. We thank Samson Abramsky, Thomas Hildebrandt,
Kohei Honda, Leonid Libkin, Rona Machlin, Peter O’Hearn, Riccardo Pucella,
Thomas Streicher, and the anonymous referees of LICS 1997 for comments and
encouragement. We also thank the tireless efforts of the referees in improving
the exposition and in correcting the definitions with colimits.

References

Abadi, M. and Fiore, M. P. (1996). Syntactic considerations on recursive
types. In Proceedings, Eleventh Annual IEEE Symposium on Logic in
Computer Science, pages 242–252.

Abramsky, S. and Jung, A. (1994). Domain theory. In Abramsky, S., Gabbay,
D. M., and Maibaum, T. S. E., editors, Handbook of Logic in Computer
Science, volume 3, pages 1–168. Clarendon Press.

Abramsky, S., Malacaria, P., and Jagadeesan, R. (1994). Full abstraction
for PCF (extended abstract). In Hagiya, M. and Mitchell, J., editors,
Theoretical Aspects of Computer Software, number 789 in Lect. Notes in
Computer Sci., pages 1–15. Springer-Verlag.

Abramsky, S. and McCusker, G. (1997). Call-by-value games. In Computer
Science Logic. Submitted for publication.

36

Astesiano, E. and Costa, G. (1980). Nondeterminism and fully abstract mod-
els. RAIRO, 14(4):323–347.

Curien, P.-L. (1986). Categorical Combinators, Sequential Algorithms and
Functional Programming. John Wiley & Sons.

Curien, P.-L. and Obtu lowicz, A. (1989). Partiality, cartesian closedness, and
toposes. Information and Computation, 80:50–95.

Fiore, M. and Simpson, A. (1999). Lambda definability with sums via
Grothendieck logical relations. In Typed Lambda Calculi and Applications,
Lect. Notes in Computer Sci.. Springer-Verlag. To appear.

Girard, J.-Y. (1971). Une extension de l’interprétation de Gödel à l’analyse, et
son application à l’élimination des coupures dans l’analyse et la théorie des
types. In Fenstad, J. E., editor, Proceedings of the Second Scandinavian
Logic Symposium, volume 63 of Studies in Logic and the Foundations of
Mathematics, pages 63–92. North-Holland.

Gunter, C. A. (1992). Semantics of Programming Languages: Structures and
Techniques. MIT Press.

Gunter, C. A. and Scott, D. S. (1990). Semantic domains. In van Leeuwen,
J., editor, Handbook of Theoretical Computer Science, volume B, pages
633–674. Elsevier.

Honda, K. and Yoshida, N. (1997). Game theoretic analysis of call-by-value
computation. In Degano, P., Gorrieri, R., and Marchetti-Spaccamela, A.,
editors, Automata, Languages and Programming: 24 th International Col-
loquium, volume 1256 of Lect. Notes in Computer Sci. Springer-Verlag.

Hyland, J. M. E. and Ong, C.-H. L. (1995). Pi-calculus, dialogue games and
PCF. In 7th Annual ACM Conference on Functional Programming Lan-
guages and Computer Architecture, La Jolla, California.

Jung, A., Fiore, M., Moggi, E., O’Hearn, P. W., Riecke, J. G., Rosolini, G.,
and Stark, I. (1996). Domains and denotational semantics: History, ac-
complishments, and open problems. Bulletin of the European Association
for Theoretical Computer Science, pages 227–256.

Jung, A. and Stoughton, A. (1993). Studying the fully abstract model of
PCF within its continuous function model. In Typed Lambda Calculi and
Applications, volume 664 of Lect. Notes in Computer Sci., pages 230–244.
Springer-Verlag.

Jung, A. and Tiuryn, J. (1993). A new characterization of lambda definability.
In Typed Lambda Calculi and Applications, volume 664 of Lect. Notes in
Computer Sci., pages 245–257. Springer-Verlag.

Loader, R. (1997). Finitary PCF is not decidable. Unpublished manuscript
available from http://www.dcs.ed.ac.uk/~loader.

McCusker, G. (1996). Games and full abstraction for FPC. In Proceedings,
Eleventh Annual IEEE Symposium on Logic in Computer Science, pages
174–183.

37

McCusker, G. (1997). Games and definability for FPC. Bulletin of Symbolic
Logic, 3(3):347–362.

Marz, M. (1998) A fully abstract model for sequential computation. Tech-
nical Report CSR-98-06, Department of Computer Science, University of
Birmingham, 1998.

Meyer, A. R. (1988). Semantical paradigms: Notes for an invited lecture, with
two appendices by Stavros S. Cosmadakis. In Proceedings, Third Annual
Symposium on Logic in Computer Science, pages 236–255. IEEE.

Milner, R. (1977). Fully abstract models of the typed lambda calculus. The-
oretical Computer Sci., 4:1–22.

Milner, R., Tofte, M., Harper, R., and MacQueen, D. (1997). The Definition
of Standard ML (Revised). MIT Press.

Moggi, E. (1991). Notions of computation and monads. Information and Con-
trol, 93:55–92.

Mulmuley, K. (1987). Full Abstraction and Semantic Equivalence. ACM Doc-
toral Dissertation Award 1986. MIT Press.

Nickau, H. (1994). Hereditarily sequential functionals. In Nerode, A. and
Matiyasevich, Y., editors, Proceedings of the Symposium on Logical Foun-
dations of Computer Science: Logic at St. Petersburg, volume 813 of Lect.
Notes in Computer Sci. Springer-Verlag.

O’Hearn, P. W. and Reynolds, J. C. (1997). From Algol to polymor-
phic linear lambda calculus. Unpublished manuscript available from
http://www.dcs.qmw.ac.uk/~ohearn.

O’Hearn, P. W. and Riecke, J. G. (1995). Kripke logical relations and PCF.
Information and Computation, 120(1):107–116.

O’Hearn, P. W. and Tennent, R. D. (1995). Parametricity and local variables.
J. ACM, 42:658–709.

Pitts, A. M. (1996). Relational properties of domains. Information and Com-
putation, 127:66–90.

Plotkin, G. D. (1977). LCF considered as a programming language. Theoret-
ical Computer Sci., 5:223–257.

Plotkin, G. D. (1985). (Towards a) logic for computable functions. Unpub-
lished manuscript, CSLI Summer School Notes.

Reynolds, J. C. (1974). Towards a theory of type structure. In Proceedings
Colloque sur la Programmation, volume 19 of Lecture Notes in Computer
Science, pages 408–425, Berlin. Springer-Verlag.

Reynolds, J. C. (1981). The essence of Algol. In de Bakker, J. W. and
van Vliet, J. C., editors, Algorithmic Languages, pages 345–372. North-
Holland, Amsterdam.

38

Riecke, J. G. (1993). Fully abstract translations between functional languages.
Mathematical Structures in Computer Science, 3:387–415. Preliminary
version appears in Conference Record of the Eighteenth Annual ACM Sym-
posium on Principles of Programming Languages, pages 245–254, ACM,
1991.

Riecke, J. G. and Subrahmanyam, R. (1997). Semantic orthogo-
nality of type disciplines. Unpublished manuscript available from
http://www.cs.bell-labs.com/who/riecke/.

Riecke, J. G. and Viswanathan, R. (1993). Full abstraction for call-by-value
sequential languages. Unpublished manuscript.

Riecke, J. G. and Viswanathan, R. (1995). Isolating side effects in sequen-
tial languages. In Conference Record of the Twenty-Second Annual ACM
Symposium on Principles of Programming Languages, pages 1–12. ACM.

Sieber, K. (1992). Reasoning about sequential functions via logical relations.
In Applications of Categories in Computer Science, volume 177 of London
Mathematical Society Lecture Note Series. Cambridge University Press.

Stoughton, A. (1988). Fully Abstract Models of Programming Languages. Re-
search Notes in Theoretical Computer Science. Pitman/Wiley. Revision
of Ph.D thesis, Dept. of Computer Science, Univ. Edinburgh, Report No.
CST-40-86, 1986.

Wechler, W. (1992). Universal Algebra for Computer Scientists. Number 25 in
EATCS Monographs in Theoretical Computer Science. Springer-Verlag.

A Proof of Adequacy

To establish the adequacy of the model, we follow the proof techniques of (Meyer,
1988; Plotkin, 1985; Riecke and Subrahmanyam, 1997). There are two main
steps. First, we define a notion of an “adequacy relation” between elements of
the model and terms, and show that the meanings of terms and the terms them-
selves are related by any adequacy relation. Second, we construct a particular
adequacy relation. The properties of the adequacy relation allow us to conclude
that the model is adequate. Since the proof is not novel, we omit many of the
details that are easy to check.

A.1 Adequacy relations

Definition A.1 An adequacy relation is a family of relations ≤s, indexed by
closed types, between elements of [[s]] and closed terms of type s. The following
conditions must also hold.

1. d ≤void M holds vacuously (since there is no d ∈ void).

2. > ≤unit M iff M ⇓ 〈〉.

3. (inj i e) ≤s1⊕s2 M iff M ⇓ (inji V) and (e ≤si V).

39

4. 〈e1, e2〉 ≤s1⊗s2 M iff M ⇓ 〈V1, V2〉 and (ei ≤si Vi).

5. f ≤s1⇒s2 M iff M ⇓ (λx : s1. N), and e ≤s1 P implies f(e) .s2 (M P).

6. e ≤rec α. s M iff M ⇓ (intro V) and elim(e) ≤s[rec α. s/α] V .

In the clause for function types, exp .s M means either exp is undefined, or it
is defined and exp ≤s M .

Lemma A.2 Suppose ≤ is an adequacy relation, d ≤s M , M ⇓ V , and N ⇓ V .
Then d ≤s N .

Proof: By a simple case analysis on s.

Lemma A.3 Suppose ≤ is an adequacy relation, ei ≤si Mi, ρ = 〈e1, . . . , en〉,
Γ = (x1 : s1, . . . , xn : sn), and Γ `M : s. Then

[[Γ `M : s]]ρ .s M [M1, . . . ,Mn/x1, . . . , xn].

Proof: By induction on the derivation of Γ `M : s. We give a few of the cases
and leave the others to the reader.

1. Γ ` xi : si. Then [[Γ ` xi : si]]ρ = ρ(xi) ≤si Mi by the hypothesis.

2. Γ ` (N P) : t where Γ ` N : (s → t) and P : s. Follows easily from the
induction hypothesis.

3. Γ ` (λx : s. N) : (s→ t) where Γ, x : s ` N : t. Suppose e ≤s P , and let

M ′ = ((λx : s. N) P)[M1, . . . ,Mn/x1, . . . , xn]

By the induction hypothesis,

d′ = [[Γ, x : s ` N : t]]ρ[x 7→ e] .t N [M1, . . . ,Mn, P/x1, . . . , xn, x] = N ′.

Thus, either d′ is not defined, or it is defined and d′ ≤t N ′. In the first
case, d′ .t M ′. In the second case, N ′ ⇓ V for some V . Note then that
M ′ ⇓ V . By Lemma A.2, d′ ≤t M ′. Thus, by the property of adequacy
relations,

[[Γ ` (λx : s. N) : (s→ t)]]ρ .s→t (λx : s. N)[M1, . . . ,Mn/x1, . . . , xn].

as desired.

4. Γ ` (elim N) : t[rec α. t/α], where Γ ` N : (rec α. t). Follows directly
from the induction hypothesis and the definition of adequacy relations.

5. Γ ` (intro N) : (rec α. t), where Γ ` N : t[rec α. t/α]. By the induction
hypothesis,

[[Γ ` N : t[rec α. t/α]]]ρ .t[rec α. t/α] N [M1, . . . ,Mn/x1, . . . , xn].

40

Suppose the left side is defined (the other case holds easily). Then

N [M1, . . . ,Mn/x1, . . . , xn] ⇓ V for some V,

and hence

(intro N)[M1, . . . ,Mn/x1, . . . , xn] ⇓ (intro V).

Recall that elim ◦ intro = id . Thus, since N [M1, . . . ,Mn/x1, . . . , xn] ⇓ V
and (elim (intro V)) ⇓ V , it follows by Lemma A.2 that

elim([[Γ ` (intro N) : rec α. t]]ρ) ≤t[rec α. t/α] V.

Therefore, by definition of adequacy relations,

[[Γ ` (intro N) : rec α. t]]ρ .rec α. t (intro N)[M1, . . . ,Mn/x1, . . . , xn].

as desired.

This completes the induction and hence the proof.

Definition A.4 Suppose s is a closed type. A relation R between elements of
[[s]] and closed terms of type s is directed complete if for any directed set
{di | i ∈ I} such that for all i ∈ I, di R M , then (tdi) R M .

Definition A.5 Suppose θ is a substitution from type variables to closed types,
and R is a map from type variables to directed-complete relations. We say that
R is compatible with θ if for all α, R(α) is a binary relation between [[θ(α)]]
and closed terms of type θ(α).

Definition A.6 For all open types s, define the family

(≤s,R| R compatible with θ),

where ≤s,R is a relation between elements of [[θ(s)]] and closed terms of type
θ(s), as follows:

1. d ≤α,R M iff d R(α) M .

2. d ≤void,R M holds vacuously.

3. > ≤unit,R M iff M ⇓ 〈〉.

4. (inj i e) ≤s1⊕s2,R M iff M ⇓ (inji V) and (e ≤si,R V).

5. 〈e1, e2〉 ≤s1⊗s2,R M iff M ⇓ 〈V1, V2〉 and (ei ≤si,R Vi).

6. f ≤s1⇒s2,R M iff
M ⇓ (λx : s1. N), and e ≤s1,R P implies f(e) .s2,R (M P).

41

7. If s = (rec α. t), then e ≤s,R M iff for all n ≥ 0, (µn,pθ(s) e) .sn,R M , where

≤sn,R are the relations defined by

e ≤s0,R N ⇐⇒ true

e ≤sn+1,R N ⇐⇒ N ⇓ (intro V ′) and e ≤t,R[α7→≤sn,R] V
′.

(Recall that µnθ(s) are the maps in the colimiting cocone from Section 3.8.)

Lemma A.7 Suppose R is compatible with θ. Then for any type s, ≤s,R is a
directed-complete relation between elements of [[θ(s)]] and closed terms of type
θ(s).

Lemma A.8 ≤t,R[α7→≤s,R]=≤t[s/α],R

Proof: By induction on t. The only difficult case is t = (rec β. u). Let
R′ = R[α 7→≤s,R] and t′ = t[s/α]. Note that ≤t′0,R=≤t0,R′ , and ≤t′n,R=≤tn,R′
implies that ≤t′n+1,R=≤tn+1,R′ using the induction hypothesis. Thus, for all n,

≤t′n,R=≤tn,R′, and hence

d ≤t,R′ M ⇐⇒ d ≤t′,R M

as desired.

Definition A.9 If s is a closed type and R is a relation between elements of
[[s]] and closed terms of type s, we write exp R̃ M if either the expression exp is
undefined, or it is defined and exp R M .

Lemma A.10 Suppose π : η → η′ is a ep-pair environment (i.e., mapping type
variables to ep-pairs, not just pre-ep-pairs) and for all α,

d R(α) M implies π(α)e(d) R′(α) M

d R′(α) M implies π(α)p(d) R̃(α) M

Then

1. If d ≤s,R M , then ([[s]]π)e(d) ≤s,R′ M .

2. If d ≤s,R′ M , then ([[s]]π)p(d) .s,R M .

Proof: By induction on s, proving both claims simultaneously. Most of the
cases are straightforward; the only case that is not is when s = (rec α. t). For
this case, we first prove a claim. Let ≤sn,R and ≤sn,R′ be the relations defined
above. We claim that for all n,

• If e ≤sn,R N , then pn,es,π(e) ≤sn,R′ N .

• If e ≤sn,R′ N , then pn,ps,π(e) .sn,R N .

42

We prove the claim by induction on n. The basis is easy, so consider the induc-
tion case. Let

π′ = π[α 7→ pns,π] : η[α 7→ T ns,η]→ η′[α 7→ T ns,η′]

Since pns,π is an ep-pair (by a simple induction on the definition of pns,π), π′ is an
ep-pair environment. To see the second part of the claim, suppose e ≤sn+1,R′ N .
Then N ⇓ (intro V) and e ≤t,R′[α7→≤s

n,R′]
V . By the induction hypothesis,

pn+1,p
s,π (e) = ([[t]]π′)p(e) .t,R[α7→≤sn,R] V

and hence pn+1,p
s,π (e) .sn+1,R N . The first part holds analogously, completing

the proof of the claim.
Using the claim, we can now prove the lemma. We prove only the second

part and leave the other to the reader. Suppose d ≤s,R′ M . Then for all n,
µn,ps,η′(d) .sn,R′ M . By the claim, pn,ps,π(µn,ps,η′(d)) .sn,R M . By general facts about

the colimit, pn,ps,π ◦ µ
n,p
s,η′ = µn,ps,η ◦ ([[s]]π)p, so for all n,

µn,ps,η (([[s]]π)p (d)) .sn,R M.

Thus, ([[s]]π)p (d) .s,R M as desired.

Lemma A.11 Suppose s = (rec α. t) and ≤sn,R are the relations defined above.

If d ≤sk,R M , then µk,es,η(d) ≤s,R M .

Proof: First, we claim that the following two statements hold:

• If d ≤sn,R M , then fn,es,η (d) ≤sn+1,R M .

• If d ≤sn+1,R M , then fn,ps,η (d) .sn,R M .

We prove the claim by induction on n. The base case is straightforward. For
the induction case, we prove the first statement and leave the second to the
reader. Now, assume that d ≤sn,R M implies fn,es,η (d) ≤n+1,R M . Recall that

fn+1,e
s,η = ([[t]](id [α 7→ fns,η]))e. Therefore, for any β,

d R[α 7→≤sn,R](β) M implies (id [α 7→ fns,η](β))e(d) R[α 7→≤sn+1,R](β) M.

So suppose d ≤sn+1,R M ; then M ⇓ (intro V) and d ≤t,R[α7→≤n,R] V . By
Lemma A.10 (1),

([[t]](id [α 7→ fns,η]))e(d) ≤t,R[α7→≤n+1,R] V

and so fn+1,e
s,η (d) ≤sn+2,R M .

We can now prove the lemma. Suppose d ≤sk,R M . We show that for all

n ≥ 0, µn,ps,η (µk,es,η (d)) .sn,R M . There are two cases:

43

• If n < k, then

µn,ps,η (µk,es,η (d)) = fn,ps,η (fn+1,p
s,η (. . . fk,ps,η (d) . . .)).

By repeated uses of the second part of the claim,

fn,ps,η (fn+1,p
s,η (. . . fk,ps,η (d) . . .)) .sn,R M.

• If n ≥ k, we proceed by induction on n. In the basis, n = k, and
µn,ps,η (µk,es,η (d)) = d ≤sn,R M by hypothesis. For the induction case, note
that

µn+1,p
s,η (µk,es,η (d)) = fn,es,η (µn,ps,η (µk,es,η (d))).

By the induction hypothesis, µn,ps,η (µk,es,η (d)) ≤sn,R M . By the first part of
the claim,

fn,es,η (µn,ps,η (µk,es,η (d))) ≤sn+1,R M

as desired.

This completes the proof.

Lemma A.12 Let R be compatible with θ. Then the family of relations ≤s,R
for all closed types s forms an adequacy relation.

Proof: The only tricky part then is to verify condition (6) of the definition of
adequacy relations. Suppose s = (rec α. t) is a closed type, and pick any η. To
see one direction of (6), suppose d ≤s,R M . Then for all n,

dn = µn,ps,η (d) .sn,R M.

In particular, M ⇓ (intro V) and for all n,

dn+1 .t,R[α7→≤sn,R] V.

By Lemmas A.10 and A.11,

([[t]](id [α 7→ µns,η]))e(dn+1) .t,R[α7→≤s,R] V.

But note that ([[t]](id [α 7→ µns,η]))e = elim ◦ µn+1,e
s,η . Thus, for all n,

elim(µn+1,e
s,η (dn+1)) .t,R[α7→≤s,R] V

and hence by Lemma A.7,⊔
n≥0

elim(µn+1,e
s,η (dn+1)) = elim(d) .t,R[α7→≤s,R] V

as desired. The converse holds by a similar argument.

The Adequacy Theorem 4.1 now follows directly from Lemmas A.3 and A.12.

44

B Proof of Lemma 6.1

The proof of Lemma 6.1 uses techniques from (Riecke and Subrahmanyam,
1997). In outline, we show how to construct, from the syntax of the language,
pre-ep-pairs which mimic the semantic pre-ep-pairs in the construction of the
model. We use these to construct the desired terms clmes,n and clmps,n.

Given type expressions s and s′, a pair of closed terms

M : s⇒ s′ and M ′ : s′ ⇒ s

is called a syntactic pre-ep-pair from s to s′ (written 〈M,M ′〉 : s ↪→ s′).
Some notation on syntactic pre-ep-pairs will be helpful. If P is a syntactic pre-
ep-pair, P e and P p represent its first and second components respectively, and
P−1 denotes the pair 〈P p, P e〉. There are also several constructions for building
complex syntactic pre-ep-pairs from simple ones. Let M : s ↪→ t, N : t ↪→ u and
P : s′ ↪→ t′. Define

ids : s ↪→ s = 〈λx : s. x, λx : s. x〉 !t : void ↪→ t = 〈Ω,Ω〉
isorec α. t : t[rec α. t/α] ↪→ rec α. t = 〈introrec α. t, elimrec α. t〉
iso−1

rec α. t : (rec α. t) ↪→ t[rec α. t/α] = 〈elimrec α. t, introrec α. t〉
(N ◦M) : s ↪→ u = 〈Ne ◦Me,Mp ◦Np〉

(M ⊕ P) : (s⊕ s′) ↪→ (t⊕ t′) =

〈λx : s⊕ s′. case x of inj1(y).(M e y) or inj2(y).(P e y),
λx : t⊕ t′. case x of inj1(y).(Mp y) or inj2(y).(P p y)〉

(M ⊗ P) : (s⊗ s′) ↪→ (t⊗ t′) = 〈λx : s⊗ s′. 〈M e (proj1 x), P e (proj2 x)〉,
λx : t⊗ t′. 〈Mp (proj1 x), P p (proj2 x)〉〉

(M ⇒ P) : (s⇒ s′) ↪→ (t⇒ t′) =

〈λx : s⇒ s′. P e ◦ x ◦Mp, λx : t⇒ t′. P p ◦ x ◦Me〉

where, abusing notation, (Q ◦Q′) stands for the term (λx. Q (Q′ x)).
We use these constructions in defining terms 〈Fes, Fps〉 that syntactically rep-

resent the action, on syntactic pre-ep-pairs, of the functor [[s]] on semantic
pre-ep-pairs. The terms are defined by induction on the structure of s. As
with the functors, the syntactic terms take in a map, usually denoted pi,
from type variables to syntactic pre-ep-pairs. These maps go between type
substitutions θ, i.e., maps from type variables to closed types. More pre-
cisely, we write pi : θ ↪→ θ′ if θ, θ′ are type substitutions such that for all α,
pi(α) : θ(α) ↪→ θ′(α). We write id : θ ↪→ θ to denote the map where for all
type variables α, id(α) = idθ(α).

To define the syntactic representation of the functor, let s be a type, and pi :
θ ↪→ θ′. Let θ(τ) denote the type produced from applying the type substitution
θ to τ . The term Fs(pi) : θ(s) ↪→ θ′(s) is a syntactic pre-ep-pair defined by

45

induction on s:

Fα(pi) = pi(α)
Funit(pi) = idunit
Fs⇒t(pi) = Fs(pi) ⇒ Ft(pi)

Frec α. t(pi) = fix (λf. isoθ′(rec α. t) ◦ Ft(pi[α 7→ f]) ◦ iso−1
θ(rec α. t))

A similar definition appears elsewhere (Abadi and Fiore, 1996). In the definition,
the term fix in the last line is shorthand for the term λg.∆ (intro ∆), where

∆ = λx. 〈λy. (proj1 (g ((elim x) x))) y, λz. (proj2 (g ((elim x) x))) z〉.

The term fix is a simple modification of the call-by-value recursion combina-
tor (see (Gunter, 1992)); it defines a pair 〈Ferec α. t(pi), Fprec α. t(pi)〉 by mutual
recursion.

We will show that the semantic functor [[s]] coincides with the syntactic
functor Fs. In order to do this, we must have a way to connect semantic pre-
ep-environments π with syntactic pre-ep-environments pi. Suppose π is a mor-
phism in E (see previous subsection) and η is a type environment. Then π
matches pi : θ ↪→ θ′ if for all type variables α, [[pi(α)]] = π(α).

Suppose pi : θ ↪→ θ′ and s = (rec α. t). For any g : θ(s) ↪→ θ′(s), define
Js(pi, g) : θ(s) ↪→ θ′(s) by

Js(pi, g) = isoθ′(s) ◦ Ft(pi[α 7→ g]) ◦ iso−1
θ(s).

Define

J0
s(pi, g) = g

Jn+1
s (pi, g) = Js(pi, J

n
s (pi, g))

Lemma B.1 [[Fs(pi)]] =
⊔
n≥0[[Jns (pi,Ω)]].

Theorem B.2 (Correspondence) Suppose π matches pi : θ1 ↪→ θ2. Then
[[s]]π = [[Fs(pi)]].

Proof: By induction on the structure of s. We consider four of the cases here.

1. s = α. Then [[Fα(pi)]] = [[pi(α)]] = π(α) = [[α]](π) by the hypothesis that
π matches pi.

2. s = unit, void. Then [[Fs(pi)]] = ids = [[s]]π.

3. s = (s1 ⇒ s2). Then

[[Fs(pi)]] = [[(Fs1(pi)⇒ Fs2(pi))]]

= ([[Fs1(pi)]]⇒ [[Fs2(pi)]])

= [[s1]]π ⇒ [[s2]]π

= [[s]]π

46

4. s = (rec α. t). Define type environments η1 and η2 by η1(α) = [[θ1(α)]] and
η2(α) = [[θ2(α)]]. We claim that [[Fs(pi)]] is the unique mediating map from
[[s]]η1 = Ts,η1 to [[s]]η2 = Ts,η2 . The proof of the claim is quite similar to the
proof of the existence of Freyd’s minimal invariants from (Abramsky and
Jung, 1994; Pitts, 1996), but we present the argument in detail because
of the slight difference in setting with type environments.

Recall the definitions of µns,η and pns,π and the definition of Jns above. To
prove the claim, we note three facts:

• For any type environment η, µn+1
s,η = [[iso]] ◦ [[t]](id [α 7→ µns,η]).

• [[Jns (pi,Ω)]] is a pair of partial functions.

• [[Jns (pi,Ω)]] ◦ µns,η1
= µns,η2

◦ pns,π.

The first fact holds from general principles about the colimit. The second
may be proved by induction on n, using the induction hypothesis of the
theorem. The proof of the third proceeds by induction on n. The base
case, when n = 0, is easy. For the induction step,

[[Jn+1
s (pi,Ω) ◦ µn+1

s,η1
]]

= [[iso]] ◦ [[Ft(pi[α 7→ Jns (pi,Ω)])]] ◦ [[iso−1]] ◦ µn+1
s,η1

= [[iso]] ◦ [[t]](π[α 7→ [[Jns (pi,Ω)]]]) ◦ [[t]](id [α 7→ µns,η1
])

= [[iso]] ◦ [[t]](π[α 7→ [[Jns (pi,Ω)]] ◦ µns,η1
])

= [[iso]] ◦ [[t]](π[α 7→ µns,η2
◦ pns,π])

= [[iso]] ◦ [[t]](id [α 7→ µns,η2
]) ◦ [[t]](π[α 7→ pns,π])

= µn+1
s,η2
◦ pn+1

s,π

as desired, where the second line follows by the induction hypothesis of
the theorem (the fact that the semantic functor [[s]] coincides with Fs) ,
and the fourth line follows by the induction hypothesis.

These facts can be used to prove the claim. Any mediating map must be
unique, since

〈
[[s]]η1, µ

n
s,η1
| n ≥ 0

〉
is a colimiting cocone for the chain〈

T is,η1
, f is,η1

| i ≥ 0
〉

and
〈
[[s]]η2, µ

n
s,η2
◦ pns,π | n ≥ 0

〉
is a cocone for the

same chain. Thus, all we need to do is to show that Fs(pi) is a medi-
ating map, i.e., for all n ≥ 0,

[[Fs(pi)]] ◦ µns,η1
= µns,η2

◦ pns,π.

To see this, for any type s and type environment η, define fn⇒ms,η to be
the composition of the maps from T ns,η to Tms,η; then for any n ≤ m,

[[Jms (pi,Ω)]] ◦ µns,η1
= [[Jms (pi,Ω)]] ◦ µms,η1

◦ fn⇒ms,η1

= µms,η2
◦ pms,π ◦ fn⇒ms,η1

= µms,η2
◦ fn⇒ms,η2

◦ pns,π
= µns,η2

◦ pns,π

47

and hence

[[Fs(pi)]] ◦ µns,η1
= (

⊔
m≥0

[[Jms (pi,Ω)]]) ◦ µns,η1

=
⊔
m≥0

µns,η2
◦ pns,π = µns,η2

◦ pns,π

as desired.

This completes the induction and hence the proof.

Define two families of syntactic pre-ep-pairs

unwnds,i : si ↪→ si+1 and clms,i : si ↪→ s

by induction on s. Most of the definition is straightforward—the main difficulty
lies when s is a recursive type.

1. For type variables, unwndα,n = idα and clmα,n = idα.

2. For the base types s = void, unit, let unwnds,n = ids and clms,n = ids.

3. For sum, product, and function types, let

unwnds1⇒s2,n = unwnds1,n ⇒ unwnds2,n

clms1⇒s2,n = clms1,n ⇒ clms2,n

and similarly for sums and products.

4. For recursive types, suppose s = (rec α. t). Define the family of types
T ns,k, for n, k ≥ 0, by

T 0
s,k = void

T n+1
s,k = tk[T ns,k/α].

Notice that, for any n, T ns,n is the same as sn defined above. Define two
families of syntactic pre-ep-pairs

fns,k : T ns,k ↪→ T ns,k+1 and gns,k : T ns,k ↪→ T n+1
s,k

by

f0
s,k = !void fn+1

s,k = Ftk+1
(id[α 7→ fns,k]) ◦ unwndt,k[T ns,k/α]

g0
s,k = !T 1

s,k
gn+1
s,k = Ftk(id[α 7→ gns,k])

48

A diagram clarifies these types and functions:

...
...

...

T 2
s,0

g0
s,2

OO

f2
s,0

// T 2
s,1

g1
s,2

OO

f2
s,1

// T 2
s,2

g2
s,2

OO

f2
s,2

// · · ·

T 1
s,0

g0
s,1

OO

f1
s,0

// T 1
s,1

g1
s,1

OO

f1
s,1

// T 1
s,2

g2
s,1

OO

f1
s,2

// · · ·

void

g0
s,0

OO

f0
s,0

// void

g1
s,0

OO

f0
s,1

// void

g2
s,0

OO

f0
s,2

// · · ·

Then define the maps unwnds,n along the main diagonal:

unwnds,n = fn+1
s,n ◦ gns,n

For the colimiting maps, define clmns,k : T ns,k ↪→ s by

clm0
s,k = !s

clmn+1
s,k = isos ◦ Ft(id[α 7→ clmns,k]) ◦ clmt,k[T ns,k/α]

and set clms,n = clmns,n.

In order to prove Lemma 6.1, we need to break up the definition of the
colimiting maps on recursive types into two pieces. Suppose s = (rec α. t).
Define the syntactic pre-ep-pairs hns,k : T ns,k ↪→ T ns and muns : T ns ↪→ s, where

T 0
s = void T n+1

s = t[T ns /α]
h0
s,k = idvoid hn+1

s,k = Ft(id[α 7→ hns,k]) ◦ clmt,k[T ns,k/α]

mu0
s = !s mun+1

s = isos ◦ Ft(id[α 7→ muns])

Lemma B.3 [[θ(muns)]] = µnθ(s).

The proof follows from the Correspondence Theorem and the properties of col-
imits.

Lemma B.4 [[θ(clmns,k)]] = [[muns ◦ hns,k]].

49

Proof: By induction on n; to simplify notation, we omit meaning brackets
below. The base case is trivial; the induction step is as follows:

θ(mun+1
s ◦ hn+1

s,k)

= θ(isos ◦ Ft(id[α 7→ muns]) ◦ Ft(id[α 7→ hns,k]) ◦ clmt,k[T ns,k/α])

= θ(isos ◦ Ft(id[α 7→ muns ◦ hns,k]) ◦ clmt,k[T ns,k/α])

= θ(isos ◦ Ft(id[α 7→ clmns,k]) ◦ clmt,k[T ns,k/α])

= θ(clmn+1
s,k)

where the first equality follows from the definition of mun+1
s , hn+1

s,k , the second
from syntactic functoriality, the third from the induction hypothesis, and the
forth from the definition of clmn+1

s,k . This completes the induction step and
hence the proof.

Lemma B.5 For any s and θ,
⊔
n≥0[[θ(clmes,n ◦ clmps,n)]] = id [[θ(s)]].

Proof: We proceed by induction on s, omitting meaning brackets to simplify
the notation. We give only the case of s = (rec α. t) and leave the others to
the reader. We claim ⊔

k≥0

θ(hn,es,k ◦ h
n,p
s,k) = id .

We prove the claim by induction on n. The basis, n = 0, is easy, so for the
induction step,⊔
k≥0

θ(hn+1,e
s,k ◦ hn+1,p

s,k)

=
⊔
k≥0

θ(Fet (id[α 7→ h
n,e
s,k]) ◦ clmet,k[T ns,k/α] ◦ clmpt,k[T ns,k/α] ◦ Fpt (id[α 7→ h

n,e
s,k]))

=
⊔

k,m≥0

θ(Fet (id[α 7→ h
n,e
s,k]) ◦ clmet,m[T ns,k/α] ◦ clmpt,m[T ns,k/α] ◦ Fpt (id[α 7→ h

n,e
s,k]))

=
⊔

k,m≥0

θ(Fet (id[α 7→ h
n,e
s,k]) ◦ (clmet,m ◦ clm

p
t,m)[T ns,k/α] ◦ Fpt (id[α 7→ h

n,e
s,k]))

=
⊔
k≥0

θ(Fet (id[α 7→ h
n,e
s,k]) ◦ (

⊔
m≥0

clmet,m ◦ clm
p
t,m)[T ns,k/α] ◦ Fpt (id[α 7→ h

n,e
s,k]))

=
⊔
k≥0

θ(Fet (id[α 7→ h
n,e
s,k]) ◦ Fpt (id[α 7→ h

n,e
s,k]))

= id

where the second line follows from Bekič’s Lemma, the fifth from the global
induction hypothesis, and the last by a simple induction on t, using the local

50

induction hypothesis. Taking advantage of this fact,⊔
n≥0

θ(clmes,n ◦ clmps,n) =
⊔
n≥0

θ(clmn,es,n ◦ clmn,ps,n)

=
⊔

k,n≥0

θ(clmn,es,k ◦ clm
n,p
s,k)

=
⊔

k,n≥0

θ(mun,es ◦ hn,es,k ◦ h
n,p
s,k ◦ mun,ps)

=
⊔
n≥0

θ(mun,es ◦ (
⊔
k≥0

h
n,e
s,k ◦ h

n,p
s,k) ◦ mun,ps)

=
⊔
n≥0

θ(mun,es ◦ mun,ps)

= idθ(s)

where the third line follows from Lemma B.4, the fifth from the claim, and the
last by Lemma B.3 and the properties of colimits. This completes the induction
and hence the proof.

Lemma 6.1 now follows directly from Lemma B.5.

51

Recent BRICS Report Series Publications

RS-99-10 Jon G. Riecke and Anders B. Sandholm.A Relational Account
of Call-by-Value Sequentiality. March 1999. 51 pp. To appear
in Information and Computation, LICS ’97 Special Issue. Ex-
tended version of an article appearing inTwelfth Annual IEEE
Symposium on Logic in Computer Science, LICS ’97 Proceed-
ings, 1997, pages 258–267. This report supersedes the earlier
report BRICS RS-97-41.

RS-99-9 Claus Brabrand, Anders Møller, Anders B. Sandholm, and
Michael I. Schwartzbach. A Runtime System for Interactive
Web Services. March 1999. 21 pp. Appears in Mendelzon, edi-
tor, Eighth International World Wide Web Conference, WWW8
Proceedings, 1999, pages 313–323 andComputer Networks,
31:1391–1401, 1999.

RS-99-8 Klaus Havelund, Kim G. Larsen, and Arne Skou. Formal
Verification of a Power Controller Using the Real-Time Model
CheckerUPPAAL. March 1999. 23 pp. To appear in Katoen,
editor, 5th International AMAST Workshop on Real-Time and
Probabilistic Systems, ARTS ’99 Proceedings, LNCS, 1999.

RS-99-7 Glynn Winskel. Event Structures as Presheaves—Two Repre-
sentation Theorems. March 1999. 16 pp.

RS-99-6 Rune B. Lyngsø, Christian N. S. Pedersen, and Henrik Nielsen.
Measures on Hidden Markov Models. February 1999. 27 pp.
To appear in Seventh International Conference on Intelligent
Systems for Molecular Biology, ISMB ’99 Proceedings, 1999.

RS-99-5 Julian C. Bradfield and Perdita Stevens.Observational Mu-
Calculus. February 1999. 18 pp.

RS-99-4 Sibylle B. Fr̈oschle and Thomas Troels Hildebrandt. On
Plain and Hereditary History-Preserving Bisimulation. Febru-
ary 1999. 21 pp.

RS-99-3 Peter Bro Miltersen.Two Notes on the Computational Complex-
ity of One-Dimensional Sandpiles. February 1999. 8 pp.

RS-99-2 Ivan B. Damg̊ard. An Error in the Mixed Adversary Protocol by
Fitzi, Hirt and Maurer . February 1999. 4 pp.

RS-99-1 Marcin Jurdziński and Mogens Nielsen. Hereditary History
Preserving Simulation is Undecidable. January 1999. 15 pp.

