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Abstract

We formally characterize partial evaluation of functional pro-
grams as a normalization problem in an equational theory, and de-
rive a type-based normalization-by-evaluation algorithm for com-
puting normal forms in this setting. We then establish the correct-
ness of this algorithm using a semantic argument based on Kripke
logical relations. For simplicity, the results are stated for a non-
strict, purely functional language; but the methods are directly
applicable to stating and proving correctness of type-directed par-
tial evaluation in ML-like languages as well.
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1 Introduction

The goal of partial evaluation (PE) is as follows: given a program ` p :
S×D→R of two arguments, and a fixed “static” argument s : S, produce
a specialized program ` ps : D→ R such that for all “dynamic” d : D,
Eval(psd) = Eval(p(s, d)). That is, running the specialized program on
the dynamic argument is equivalent to running the original program on
both the static and the dynamic one.

In a functional language, it is of course trivial to come up with such
a ps: just take ps = λd.p(s, d). That is, the specialized program simply
invokes the original program with a constant first argument. But such a
ps is likely to be suboptimal: the knowledge of s may already allow us
to perform some simplifications that are independent of d. For example,
consider the power function:

power (n, x)
rec
= if n = 0 then 1 else x× power(n− 1, x)

Suppose we want to compute the third power of several numbers. We
can achieve this using the trivially specialized program:

power3 = λx.power(3, x)

But using a few simple rules derived from the semantics of the language,
we can safely transform power3 to the much more efficient

power ′
3 = λx.x× (x× (x× 1))

Using further arithmetic identities, we can also easily eliminate the mul-
tiplication by 1. On the other hand, if only the argument x were known,
we could not simplify much: the specialized program would in general
still need to contain a recursive definition and a conditional test – in
addition to the multiplication. (Note that, even when x is 0 or 1, the
function as defined should still diverge for negative values of n.)

To facilitate automation of the task, partial evaluation is often ex-
pressed as a two-phase process, usually referred to as off-line PE [14]:

1. A binding-time annotation phase, which identifies all the operations
that can be performed using just the static input. This can be
done either mechanically by a binding-time analysis (often based on
abstract interpretation), or – if the intended usage of the program is
clear and the annotations are sufficiently intuitive and non-intrusive
– as part of the original program.
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2. A specialization phase, which takes the annotated program and
the static input, and produces a simplified ps, in which all the
operations marked as static have been eliminated.

The annotations must of course be consistent, i.e., a subcomputation
in the program cannot be classified as static if its result can not neces-
sarily be found from only the static input. But they may be conservative
by classifying some computations as dynamic even if they could in fact
be performed at specialization time. Techniques for accurate binding-
time analysis have been studied extensively [14]. In the following we
will therefore limit our attention to the second phase, i.e., to efficiently
specializing programs that are already binding-time separated.

A particularly simple way of phrasing specialization is as a general-
purpose simplification of the trivially specialized program λd.p(s, d):
contracting β-redexes and eliminating static operations as their inputs
become known. What makes this approach attractive is the technique
of “reduction-free normalization” or “normalization by evaluation”, al-
ready known from logic and category theory [2, 3, 7]. A few challenges
arise, however, with extending these results to a programming-language
setting. Most notably:

• Interpreted base types and their associated static operations. These
need to be properly accounted for, in addition to the β-reduction.

• Unrestricted recursion. This prevents a direct application of the
usual strong-normalization results. That is, not every well-typed
term even has a normal form; and not every reduction strategy will
find it when it does exist.

• Call-by-value languages, and effects other than non-termination.
In such a setting, the usual βη-conversions are actually unsound:
unrestricted rearrangement of side effects may completely change
the meaning of a program.

We will treat the first two concerns in detail. The call-by-value case uses
the same principles, but for space reasons we will only briefly outline the
necessary changes.

The paper is organized as follows: Section 2 introduces our program-
ming language, the notion of a binding-time separated signature, and our
desiderata for a partial evaluator; Section 3 presents the type-directed
partial evaluation algorithm; and Section 4 shows its correctness with
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respect to the criteria in Section 2. Finally, Section 5 presents a few vari-
ations and extensions, and Section 6 concludes and outlines directions
for further research.

2 A Small Language

2.1 The framework and one-level language

Our prototypical functional language has the following syntax of types
and terms:

σ ::= b | σ1 → σ2

E ::= l | cσ1,...,σn | x | λxσ.E | E1E2

Here b ranges over a set of base types listed in some signature Σ, l over a
set Ξ(b) of literals (numerals, truth values, etc.) for each base type b, and
c over a set of (possibly polymorphic) function constants in Σ. Adding
finite-product types would be completely straightforward throughout the
paper, but we omit this extension for conciseness.

A typing context Γ is a finite mapping of variable names to well-
formed types over Σ. The typing rules for terms are then standard:

l ∈ Ξ(b)

Γ `Σ l : b

Σ(cσ1,...,σn) = σ

Γ `Σ cσ1,...,σn : σ

Γ(x) = σ

Γ `Σ x : σ

Γ, x: σ1 `Σ E : σ2

Γ `Σ λx
σ1.E : σ1 → σ2

Γ `Σ E1 : σ1 → σ2 Γ `Σ E2 : σ1

Γ `Σ E1E2 : σ2

An interpretation of a signature Σ is a triple I = (B,L, C). B maps
every base type b in Σ to a predomain (i.e., a bottomless cpo, usually
discretely ordered). Then we can interpret every type phrase σ over Σ
as a domain (pointed cpo):

[[b]]B = B(b)⊥
[[σ1 → σ2]]

B = [[σ1]]
B → [[σ2]]

B

where the interpretation of an arrow type is the full continuous function
space. We also define the meaning of a typing assignment Γ as a labelled
product of the domains interpreting the types of individual variables,

[[Γ]]B =
∏

x∈dom Γ
[[Γ(x)]]B .
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Further, for any base type b and literal l ∈ Ξ(b), the interpretation
must specify an element Lb(l) ∈ B(b); and for every type instance of a
polymorphic constant, an element C(cσ1,...,σn) ∈ [[Σ(cσ1,...,σn)]]B. Then we
interpret a well-typed term Γ `Σ E : σ as a (total) continuous function
[[E]]I : [[Γ]]B → [[σ]]B,

[[l]]Iρ = val⊥ Lb(l)

[[cσ1,...,σn]]Iρ = C(cσ1,...,σn)

[[x]]Iρ = ρx

[[λxσ.E]]Iρ = λa[[σ]]B. [[E]]I(ρ[x 7→ a])

[[E1E2]]
Iρ = [[E1]]

Iρ([[E2]]
Iρ)

(We use the following notation: val⊥ x and let⊥ y⇐ x in f y are lifting-
injection and the strict extension of f , respectively; b → x [] y chooses
between x and y based on the truth value b.)

When `Σ E : b is a closed term of base type, we define the par-
tial function EvalI by EvalI(E) = n if [[E]]I∅ = val⊥ n and undefined
otherwise.

Definition 1 (standard static language) We define a simple func-
tional language (essentially PCF [17]) by taking the signature Σs as fol-
lows. The base types are int and bool; the literals, Ξ(int) = {. . . , -1, 0, 1, 2, . . . }
and Ξ(bool) = {true, false}; and the constants,

+,−,× : int → int → int
=, < : int → int → bool

ifσ : bool → σ→ σ→ σ
fixσ : (σ→ σ) → σ

(We write the binary operations infixed for readability.) The interpreta-
tion of this signature is also as expected:

Bs(bool) = B = {tt ,ff }
Bs(int) = Z = {. . . ,−1, 0, 1, 2, . . . }
Cs(?) = λxZ⊥.λyZ⊥. let⊥ n⇐ x in let⊥ m⇐ y in val⊥m ? n ?∈{+,−,×,=,<}

Cs(ifσ) = λxB⊥.λa
[[σ]]
1 .λa

[[σ]]
2 . let⊥ b⇐ x in b→ a1 [] a2

Cs(fixσ) = λf [[σ]]→[[σ]].
⊔

i∈ω
f i⊥[[σ]]

It is well known (computational adequacy of the denotational seman-
tics for call-by-name evaluation [17]) that with this interpretation, EvalIs

is computable.
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2.2 The binding-time separated language

Assume now that the signature Σ is partitioned according to binding
times, Σ = Σs,Σd. We will write type and term constants from the
static part overlined, and the dynamic ones underlined. For simplicity, we
require that the dynamic base types do not come with any new literals,
i.e., Ξ(b) = ∅. (If needed, they can be added as dynamic constants.)
However, some base types will be persistent, i.e., have both static and
dynamic versions with the same intended meaning. In that case, we also
include lifting functions $b : b→ b in the dynamic signature.

We say that a type τ is fully dynamic if it is constructed from dynamic
base types only,

τ ::= b | τ1 → τ2

We also reserve ∆ for typing assumptions assigning fully dynamic types to
all variables. All term constants in Σd must have fully dynamic types, and
in particular, polymorphic dynamic constants must only be instantiated
by dynamic types, e.g., Σd(ifτ ) = bool → τ → τ → τ .

We will always take the language from Definition 1 with the standard
semantics Is as the static part. The dynamic signature typically also
has some intended evaluating interpretation Ie

d; in particular, when Σd

is merely a copy of Σs, we can use Is directly for Ie
d (interpreting all

lifting functions as identities). Later, however, we will also introduce a
“code-generating”, residualizing interpretation.

Example 1 Here are the four different binding-time annotations for the
function power : int → int → int (abbreviating int as ι):

power ss : ι → ι → ι = λxι.fixι→ι (λpι→ι.λnι. ifι (n = 0) 1 (x × p(n − 1)))
power sd : ι → ι → ι = λxι.fixι→ι (λpι→ι.λnι. ifι (n = $ 0)($ 1)($x × p(n − $ 1)))

power ds : ι → ι → ι = λxι.fixι→ι (λpι→ι.λnι. ifι (n = 0)($ 1)(x × p(n − 1)))
powerdd : ι → ι → ι = λxι.fixι→ι (λpι→ι.λnι. ifι (n = $ 0)($ 1)(x × p(n − $ 1)))

Note how the fixed-point and conditional operators are classified as static
or dynamic, depending on the binding time of the second argument.

2.3 Static normal forms and PE

Definition 2 (static normal forms) Among the well-typed, purely dy-
namic terms ∆ `Σd

E : τ , we distinguish those in normal and atomic
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form:
∆ `at E : b

∆ `nf E : b

∆, x: τ1 `nf E : τ2

∆ `nf λxτ1.E : τ1 → τ2
x 6∈dom ∆

l ∈ Ξ(b)

∆ `at $b l : b

Σd(cτ1,...,τn
) = τ

∆ `at cτ1,...,τn
: τ

∆(x) = τ

∆ `at x : τ

∆ `at E1 : τ1 → τ2 ∆ `nf E2 : τ1
∆ `at E1E2 : τ2

In particular, such terms contain no static constants nor β-redexes. (In-
cidentally, this also means that if we had included polymorphic lets in the
source language, they would simply get unfolded in the resulting normal
forms.)

We can now define a notion of normalization based on (undirected)
equality, rather than on (directed) reduction [3]. Since lambda-abstracting
a dynamic-type term over a dynamic-type variable still yields a dynamic
term, it suffices to be able to compute normal forms of closed terms:

Definition 3 (static equivalence and normalization) Let Is be an
interpretation of Σs. We say that two terms `Σs,Σd

E : σ and `Σs,Σd

E ′ : σ are statically equivalent wrt. Is, written E =Is E ′, if for all Id

interpreting Σd, [[E]]Is,Id = [[E ′]]Is,Id. A static-normalization function is
then a computable partial function NF on well-typed terms such that

1. If `Σs,Σd
E : τ and NF (E) = Ẽ then `nf

Σd
Ẽ : τ and Ẽ =Is E.

2. If also `Σs,Σd
E ′ : τ and E ′ =Is E then NF (E ′) ≡ NF (E) (α-

equivalence).

We further say that such a normalization function is complete if when-
ever an Ẽ satisfying the conditions in (1) exists, NF (E) is defined.

Example 2 One can check that a complete static-normalization function
NF for our language must have the following properties:

NF ($ (powerss 3 4)) ≡ $ 81

NF (λxint.powerdsx 3) ≡ λxint.x× (x× (x× $ 1))

NF (λxint.powerdsx -2) undefined

Note first that ordinary evaluation is just a special case of static normal-
ization. The second example shows how static normalization achieves the
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partial-evaluation goal of the introduction. Finally, some terms have no
static normal form at all; in that case, the normalization function must
diverge.

There are two basic ways to compute normal forms. The usual one is
based on term rewriting, repeatedly locating and contracting β-redexes
and applications of static constants (and possibly η-expanding the final
result). But there is an alternative technique, normalization by evalua-
tion, which utilizes the existing mechanism of complete-program evalu-
ation (defined only for closed terms of base type) as the normalization
engine for general terms. This is the subject of the next section.

3 A Normalization-by-Evaluation Algorithm

We now present Type-Directed Partial Evaluation (TDPE), an efficient
algorithm for computing static normal forms.

3.1 Representing programs as data

To compute normal forms, we need a way of representing them as pro-
gram outputs. Assume therefore that we have base cpos rich enough to
contain unique representations of all well-formed dynamic types, variable
names, and (open) static-normal form terms, i.e., sets T , V, and Λ with
injective operations

BASE b : T
ARR : T × T → T

LIT b : Bs(b) → Λ

CST : V × T ∗ → Λ
VAR : V → Λ
LAM : V × T × Λ → Λ
APP : Λ × Λ → Λ

(where T ∗ is the set of finite lists of elements from T ). Using these, we
can define injective representation functions for types and terms, such
that pτq ∈ T for any dynamic type τ , and pEq ∈ Λ for ∆ `nf

Σd
E : τ , by

equations such as

pτ1→τ2
q = ARR(pτ1

q, pτ2
q) pλxτ.Eq = LAM (x, pτq, pEq) p$b l

q = LIT b(Lb(l))

We do not need to require a priori that all elements of T and Λ
represent well-formed types and terms (although this is easy to achieve),
let alone well-typed ones, or ones in normal form. For example, we could
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simply take all of T , V, and Λ as the type of finite character strings. Or,
even more radically, Gödel-code everything in terms of integer arithmetic
only.

To account for potentially diverging normalizations, we must now
turn the set of term representations into a pointed cpo. To also model
the generation of “new” variable names, however, we will not work with
elements of Λ⊥ directly, but instead introduce a term-family representa-
tion,

Λ̂ = N → Λ⊥

where N ⊆ N . The intent is that for e ∈ Λ̂ and i ∈ N, if ei = val⊥ pEq

then all bound variables of E will belong to the set {gi, gi+1, . . . } ⊆ V.
We also define wrapper functions to conveniently build representa-

tions of lambda-terms without committing to particular choices of bound-
variable names:

L̂ITb : Bs(b) → Λ̂ = λn. λi.val⊥ LITb(n)

ĈST : V × T ∗ → Λ̂ = λ(c,~t). λi.val⊥ CST (c,~t)

V̂AR : V → Λ̂ = λv. λi.val⊥ VAR(v)

L̂AM : T × (V → Λ̂) → Λ̂ = λ(t, ε). λi. let⊥ l ⇐ εgi (i + 1) in val⊥ LAM (gi, t, l)

ÂPP : Λ̂ × Λ̂ → Λ̂ =
λ(e1, e2). λi. let⊥ l1 ⇐ e1 i in let⊥ l2 ⇐ e2 i in val⊥ APP(l1, l2)

(These definitions would not be needed in a setting with support for
higher-order abstract syntax. But one of our goals is to show rigorously
that all the variable-name manipulations can be done efficiently by the
normalization algorithm itself, without relying on higher-level operations
such as capture-avoiding substitution or higher-order matching.)

Example 3 Let t = ARR(BASE int,BASE int). Then

L̂AM (t, λvV.ÂPP (V̂AR v, L̂ITint 3))7
= val⊥ LAM (g7, t,APP(VAR(g7),LITint(3)))
= val⊥ pλg

int→int
7 .g7 ($ 3)q

That is, we can apply an element of Λ̂ constructed using the wrapper
functions to a starting index and obtain the representation of a concrete
lambda-term.
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3.2 The residualizing interpretation

We now define a non-standard interpretation Ir
d = (Br

d, ∅, Cr
d) of the dy-

namic signature Σd, based on representations of syntactic program frag-
ments and operations constructing such representations. We will abbre-
viate [[−]]Is,Ir

d as [[−]]r. For the interpretation of Σd’s types, we take

Br
d(b) = Λ̂ .

This allows us to define for any dynamic τ a pair of continuous func-
tions, often called reification, ↓τ : [[τ ]]r → Λ̂, and reflection, ↑τ : Λ̂ → [[τ ]]r,
as follows:

↓b = λtΛ̂. t ↓τ1→τ2 = λf [[τ1]]r→[[τ2]]r. L̂AM (pτ1q, λvV.↓τ2 (f (↑τ1 (V̂AR v))))

↑b = λeΛ̂. e ↑τ1→τ2 = λeΛ̂.λa[[τ1]]r.↑τ2 (ÂPP (e, ↓τ1 a))

Informally, reification constructs a syntactic representation of a “well-
behaved” semantic value, while reflection constructs such values from
pieces of syntax. For the residualizing interpretations of Σd’s term con-
stants we now take

Cr
d(cτ1,...,τn

) = ↑Σd(cτ1,...,τn) (ĈST (c, [pτ1
q, . . . , pτn

q]))

Cr
d($b ) = λxBs(b)⊥. let⊥ n⇐ x in L̂ITbn

That is, a general dynamic constant is simply interpreted as the reflection
of its type-annotated name, while a lifting function forces evaluation of its
argument and constructs a representation of the literal result. (It is this
forcing of static subcomputations that may cause the whole specialization
process to diverge.)

Example 4 Applying the reification function to the residualizing mean-
ing of a term not in static normal form, we obtain:

↓(int→int)→int ([[(λxint.λf int→int.f ($int (x + 1))) 2]]r ∅)
= ↓(int→int)→int ([[λf.f ($int (x + 1))]]r (∅[x 7→ [[2]]r ∅]))
= ↓(int→int)→int (λϕΛ̂→Λ̂. [[f ($int (x + 1))]]r (∅[x 7→ val⊥ 2, f 7→ ϕ]))
= ↓(int→int)→int (λϕ.ϕ(Cr

d($int)(Cs(+)(val⊥ 2)(val⊥ 1))))
= ↓(int→int)→int (λϕ.ϕ(Cr

d($int)(val⊥ 3)))

= ↓(int→int)→int (λϕ.ϕ(L̂ITint 3))
= L̂AM (pint → intq, λvV.↓int((λϕ.ϕ(L̂ITint 3))(↑int→int (V̂ARv))))

= L̂AM (ARR(BASE int,BASE int), λvV.ÂPP (V̂ARv)(L̂ITint 3))

And applying this value to 7 as the first bound-variable index gives us
precisely the normal-form term from Example 3 at the end of the previous
section.
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3.3 The algorithm

So far, we have looked at a semantic property: from the interpretation
of a lambda-term in a non-standard denotational semantics of the dy-
namic signature, we can apparently recover that term’s normal form.
But this semantic result also forms the basis of an eminently practical
normalization algorithm, obtained by pulling back the components of the
residualizing semantics to the level of program syntax.

We say that a realization Φ of a signature Σ in a programming lan-
guage given by Σpl is a substitution assigning to every type constant of
Σ, a type over Σpl, and to every term constant of Σ, a Σpl-term. (For
simplicity, we assume that the literals of Σ’s base types are also literals
of the corresponding Σpl-types.)

Suppose now that Σs ⊆ Σpl, Ipl agrees with Is, and Σpl also has some
distinguished base types typ and exp with Bpl(typ) = T and Bpl(exp) =
Λ, as well as the associated (strict) constructor constants. Note that
[[int → exp]] = Λ̂ (with N = Z⊥). Then we can realize the base types of
(Σs,Σd) in Σpl by

Φr(b) = b Φr(b) = int → exp

so that [[σ{Φr}]]Bpl = [[σ]]r. Further, for any τ , we can define closed Σpl-
terms,

nameτ : typ reifyτ : τ{Φr}→ int→exp reflectτ : (int→exp)→τ{Φr}

such that [[nameτ ]]
Ipl∅ = val⊥ pτq, [[reifyτ ]]

Ipl∅ = ↓τ , and [[reflectτ ]]
Ipl∅ = ↑τ .

And using those, we can define realizations of the term constants from
(Σs,Σd):

Φr(cσ1,...,σn) = cσ1{Φr},...,σn{Φr}
Φr(cτ1,...,τn

) = reflectΣd(cτ1,...,τn
) (λi.CST (c, [nameτ1 , . . . , nameτn ]))

Φr($b) = λn.λi.LITbn (given Cpl(LITb) = λx. let⊥ n ⇐ x in val⊥ LITb(n))

so that [[E{Φr}]]Ipl = [[E]]r. Note in particular that the realizations of
static base types and constants are exactly the corresponding constructs
from the programming language. This means that we can even use the
usual syntactic sugar (such as letrec for applications of fix) in the static
parts of programs to be specialized.

We can use this realization to express our normalization algorithm:
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Definition 4 (TDPE) For any dynamic type τ , we define the partial
function TDPE τ : {E | `Σs,Σd

E : τ}⇀ {E | `nf
Σd
E : τ} by

TDPE τ (E) = Ẽ if EvalIpl
(reifyτ E{Φr} 0) = pẼq .

This TDPE is clearly computable; we will show in Section 4 that it is
indeed a complete static-normalization function.

Note that we can view TDPE an instance of “cogen-based special-
ization” [13], in which a “compiler generator” is used to syntactically
transform a (binding-time annotated) program ` p : S ×D→R into its
generating extension ` p† : S→ exp, with the property that for any s : S,
Eval(p† s) = pps

q. That is, we effectively take

p† = λsS. reifyD→R (λdD{Φr}.p{Φr}(s, d))0 .

TDPE shares the general high efficiency of cogen-based PE [12]. For-
mulating the task in terms of static normalization over a binding-time
separated signature, however, permits a very precise yet concise syntactic
characterization of the specialized program ps. Also, unlike traditional
cogens, TDPE does not require any binding-time annotation of lambdas
and applications in the source program.

As a further advantage, the signatures and realizations can be very
conveniently expressed in terms of parameterized modules in a Standard
ML-style module system. The program to be specialized is simply written
as the body of a functor parameterized by the signature of dynamic
operations. The functor can then be applied to either an evaluating
(Φe) or a residualizing (Φr) structure. That is, the cogen pass does not
even require an explicit syntactic traversal of the program, making it
possible to enrich the static fragment of the language (e.g., with pattern
matching) without any modification to the partial evaluator itself.

It is also worth noting that the τ -indexed families above can be
straightforwardly defined even in ML’s type system: consider the type
abbreviation

tdpe(α) ≡ typ × (α→ int → exp) × ((int → exp) → α) .

Then for any dynamic type τ , we can construct a term of type tdpe(τ{Φr})
whose value is the triple (nameτ , reifyτ , reflectτ ). We do this by defining
once and for all two ML-typable terms

base : tdpe(int→ exp) arrow : ∀α, β. tdpe(α)× tdpe(β)→ tdpe(α→β) ,
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with which we can then systematically construct the required value. The
technique is explained in more detail elsewhere [18].

Finally, the dynamic polymorphic constants (e.g., fix) now take ex-
plicit representations of the types at which they are being instantiated
as extra arguments. In the evaluating realization, these extra arguments
are ignored; but the residualizing realization uses them to construct
the name-reflect-reify triple for Σ(cτ1,...,τn

) given corresponding triples
for τ1, . . . , τn.

3.4 Applications

Despite its apparent simplicity, TDPE has been successfully used for
several non-trivial examples; see Danvy’s tutorial for an overview [6].
Many of these actually use the slightly more complicated call-by-value
version [4] (see Section 5.4). Because it exploits the highly-optimized
evaluation mechanism of a functional language, such a partial evaluator is
typically much faster than one representing and manipulating the source
program as an explicit value.

Let us just mention here that in addition to stand-alone, source-to-
source PE, the TDPE framework can be particularly naturally employed
as a “semantic back-end” for executable language specifications. That
is, if we explicitly parameterize such a specification by the signature of
runtime operations (including conditionals, fixed points, etc.), we can
instantiate this signature with either the runtime realization, yielding
an interpreter, or with the residualizing signature, yielding a compiler
[8, 11]. Amusingly, the specializer does not even need the actual text of
the specification, only its representation as an already compiled module.

4 Showing Correctness

In this section, we sketch a correctness proof for the TDPE algorithm,
i.e., that it computes static normal forms when they exist. For the case
without static constants, essentially the same algorithm can actually be
extracted directly from the standard (syntactic) proof of strong normal-
ization for the simply typed lambda-calculus [1]; but it is not clear if this
approach can be extended to a richer programming-language setting.

Instead, our proof uses the technique of semantic logical relations,
structured similarly to Gomard and Jones’s proof of Lambda-mix [14,
8.8], but accounting more rigorously for potential divergence and for
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the generation of “fresh” variable names. It also admits a richer type
structure for the dynamic language. (We can still treat the untyped
variant as a special case; see Section 5.1.)

4.1 Properties of the term-family representation

Let some evaluating dynamic interpretation Ie
d of Σd be given. We ab-

breviate [[−]]Is,Ie
d as [[−]]e (and [[−]]Is,Ir

d as [[−]]r as before).

Definition 5 (partial meaning relation, �) For any ∆, let

]∆ = max({i+ 1 | gi ∈ dom ∆} ∪ {0})

(so if i ≥ ]∆ then gi 6∈ dom ∆). Then for any ∆, τ , s ∈ {nf, at} (as used
in Definition 2), δ ∈ [[∆]]I

e
d , e ∈ Λ̂, and a ∈ [[τ ]]I

e
d , we define a relation by

e@∆δ �s
τ a⇐⇒ ∀i ≥ ]∆. e i = ⊥∨∃E. ei = val⊥ pEq∧∆ `s

Σd
E : τ∧[[E]]I

e
dδ = a

This roughly expresses that “[[e]]δ = a”, but taking into account variable
renaming, partiality, and simplification: for all sufficiently large starting
indices i, if e i converges, it must represent a normal-form term with the
right meaning. We check that this relation is semantically well behaved:

Definition 6 (admissibility) We say that a relation R ⊆ A × A′ be-
tween two pointed cpos is admissible (or inclusive) if it is chain-complete
(i.e., for all chains (ai)i and (a′i)i, if ∀i. (ai, a

′
i) ∈ R then also (

⊔
i ai,

⊔
i a

′
i) ∈

R) and pointed (i.e., (⊥A,⊥A′) ∈ R).

Lemma 1 (� is admissible) For any ∆, δ ∈ [[∆]]I
e
d , τ , and s ∈ {nf, at},

the relation {(e, a) | e@∆ δ �s
τ a} is admissible.

Proof. Straightforward, noting that admissible relations are closed
under arbitrary intersection, and that any chain in Λ⊥ is eventually con-
stant.

Although the output of TDPE is a closed program, we still need to
account for the typing and meaning of open program fragments as they
are being constructed and put into context:
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Definition 7 (Kripke structure) A world is a pair (∆, δ) where δ ∈
[[∆]]I

e
d . Such worlds are partially ordered by

(∆′, δ′) ≥ (∆, δ) ⇐⇒ ∀x ∈ dom ∆.∆′(x) = ∆(x) ∧ δ′x = δx

Lemma 2 (� is Kripke) If e @∆ δ �s
τ a and (∆′, δ′) ≥ (∆, δ), then

also e@∆′
δ′ �s

τ a.

Proof. Follows easily from standard weakening properties of the typing
relation (if ∆ ` E : τ then ∆′ ` E : τ) and denotational semantics
([[E]]δ′ = [[E]]δ).

Lemma 3 (meanings of term families) The wrapper functions have
the following properties:

1. If ∆(v) = τ then V̂AR v @∆ δ �at
τ δ v.

2. If n ∈ Bs(b) then L̂ITbn@∆ δ �at
b val⊥ n

3. ĈST (c, [pτ1q, . . . , pτnq]) @∆ δ �at
Σd(cτ1,...,τn

) Ce
d(cτ1,...,τn

)

4. If for all v 6∈ dom∆ and a ∈ [[τ1]]
Ie
d , εv @∆,v:τ1 δ[v 7→ a] �nf

τ2
f a

then L̂AM (pτ1q, ε) @∆ δ �nf
τ1→τ2

f .

5. If e1 @∆ δ �at
τ1→τ2 f and e2@∆ δ �nf

τ1 a then ÂPP (e1, e2)@
∆ δ �at

τ2 f a

Proof. Straightforward verification in all cases. (For case 4, we exploit
the fact that [[τ1]]

Ie
d is always non-empty; this shortcut can be avoided by

using a slightly more complicated world structure throughout the proof.)

4.2 Soundness of TDPE

We prove soundness by formally relating the standard and the residual-
izing interpretations of types and terms.

Definition 8 (logical relation, ∼σ) For any type σ and world (∆, δ),
we define a relation a @∆ δ ∼σ a

′, where a ∈ [[σ]]r and a′ ∈ [[σ]]e by:

n@∆ δ ∼b n
′ ⇐⇒ n = n′

e@∆ δ ∼b n
′ ⇐⇒ e @∆ δ �nf

b n′

f @∆ δ ∼σ1→σ2 f
′ ⇐⇒ ∀(∆′, δ′) ≥ (∆, δ).

∀a, a′. a@∆′
δ′ ∼σ1 a

′ ⇒ f a@∆′
δ′ ∼σ2 f

′a′
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We first check the standard requirements:

Lemma 4 (∼σ is admissible) For any σ, the relation {(a, a′) | a @∆

δ ∼σ a
′} is admissible.

Proof. Simple induction on σ. For b, use admissibility of � (Lemma 1).

Lemma 5 (∼σ is Kripke) If e @∆ δ ∼σ a and (∆′, δ′) ≥ (∆, δ), then
also e@∆′

δ′ ∼σ a.

Proof. This is a standard result about Kripke logical relations; the
proof is by a simple induction on σ, using Lemma 2 for the base case
σ = b.

We obtain our main correctness result from two lemmas:

Lemma 6 (soundness, type part) For any dynamic type τ ,

1. If a@∆ δ ∼τ a
′ then ↓τ a @∆ δ �nf

τ a′.

2. If e@∆ δ �at
τ a′ then ↑τ e@∆ δ ∼τ a

′.

Proof. Straightforward induction on τ , using the properties of the
wrapper functions from Lemma 3.

Lemma 7 (soundness, term part) Let (∆, δ) be a world, and let ρ ∈
[[Γ]]r and ρ′ ∈ [[Γ]]e. Then for any well-typed term Γ `Σs,Σd

E : σ, if
∀x ∈ dom Γ. ρx@∆ δ ∼Γ(x) ρ

′x then [[E]]r ρ@∆ δ ∼σ [[E]]e ρ
′.

Proof. This is the usual Kripke logical relations lemma, proved by
straightforward induction on E. The only non-standard case is that of
E = cτ1,...,τn

, for which we need Lemma 6(2). For E = fixσ, we use fixed-
point induction, i.e., Lemma 4 together with the chain-based construction
of Cs(fixσ) in Definition 1.

Theorem 1 (soundness) TDPE is a static-normalization function.

Proof. Observe first that TDPEτ(E) = Ẽ iff ↓τ ([[E]]r ∅)0 = val⊥ pẼq.
Now, by Lemma 7, since empty environments are vacuously related,
[[E]]r ∅@ ∅ ∼τ [[E]]e ∅. And thus by Lemma 6(1), ↓τ ([[E]]r ∅)@ ∅ �nf

τ [[E]]e ∅,
which, by the definitions of �τ and ], gives us precisely that `nf

Σd
Ẽ : τ

and [[Ẽ]]I
e
d = [[E]]Is,Ie

d .
For the second part, if E ′ =Is E then in particular [[E ′]]r = [[E]]r. And

thus by the observation above, we must have TDPE τ (E
′) = TDPE τ (E).
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4.3 Completeness of TDPE

To supplement the above partial-correctness result, we can also show that
if a suitable Ẽ exists, the algorithm will actually find it. This proof uses
a much simpler logical-relation argument, capturing the intuition that
the algorithm necessarily converges when applied to a term containing
no static constants:

Definition 9 (totality predicate) For any dynamic type τ , we define
a predicate Tτ ⊆ [[τ ]]I

r
d by

Tb = {e ∈ Λ̂ | ∀i. ei 6= ⊥}
Tτ1→τ2 = {f ∈ [[τ1]]

Ir
d → [[τ2]]

Ir
d | ∀a ∈ Tτ1 . fa ∈ Tτ2}

As before, we then obtain the result from two main lemmas:

Lemma 8 (completeness, type part) For any dynamic type τ ,

1. If a ∈ Tτ then for all i ≥ 0, ↓τ a i 6= ⊥.

2. If for all i ≥ 0, ei 6= ⊥ then ↑τ e ∈ Tτ .

Proof. Straightforward induction on τ , by inspection of the definitions
of the wrapper functions.

Lemma 9 (completeness, term part) Let δ ∈ [[∆]]I
r
d . Then for any

well-typed term ∆ `Σd
E : τ , if ∀x ∈ dom ∆. δ x ∈ T∆(x) then [[E]]I

r
dδ ∈

Tτ .

Proof. Standard induction on E, using Lemma 8(2) for dynamic con-
stants.

Theorem 2 (completeness) TDPE is a complete static-normalization
function.

Proof. Suppose `Σs,Σd
E : τ has the static normal form `Σd

Ẽ : τ .

Then in particular [[E]]r = [[E]]Is,Ir
d = [[Ẽ]]I

r
d . By Lemma 9, [[Ẽ]]I

r
d∅ ∈ Tτ ,

and thus by Lemma 8(1), ↓τ ([[E]]r ∅)0 = ↓τ ([[Ẽ]]I
r
d ∅)0 6= ⊥, so TDPE τ (E)

is defined.
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5 Variations and Extensions

5.1 Lambda-mix

We can use the previous results to show correctness of partial evaluation
for languages like the one used for Lambda-mix [14, 8.8]. Here, the
dynamic language is untyped. Or, more precisely, it has a single type d
of dynamic values, and operators:

Γ, x: d ` E : d

Γ ` λx.E : d

Γ ` E1 : d Γ ` E2 : d

Γ ` E1 @ E2 : d

To model this in our typed framework, we let the dynamic signature
Σd contain the single base type d, and constants φ : (d→ d) → d and
ψ : d → d → d. We can then treat dynamic lambda-abstraction and
application as abbreviations:

λx.E ≡ φ(λxd.E) and E1 @ E2 ≡ ψE1E2

In the evaluating dynamic semantics Ie
d of Σd, the type constant d is

interpreted as a solution to the domain equation

D ∼= (D→D) ⊕ Z⊥ ⊕B⊥ ,

and φ and ψ as the evident embedding and projection functions for the
first summand. In the residualizing interpretation Ir

d, on the other hand,
d is the domain of syntactic term families, and the constants are reflected
according to their types, as usual. In particular, reifyd is simply the
identity.

The soundness result for TDPE then gives us that if `Σs,Σd
E : d and

EvalIs,Ir
d
(E) = pẼq then `nf

Σd
Ẽ : d and EvalIe

d
(Ẽ) = EvalIs,Ie

d
(E). With a

little more work we also obtain a similar statement for non-closed terms.
Note finally that normalizing a term of type d a priori yields a simply-

typed term over Σd, rather than an untyped one. In a static normal form,
however, any occurrence of the constant φ will be applied to a syntactic
lambda-abstraction, and ψ will be applied to two arguments. Thus, the
output of the partial evaluator can always be directly expressed in terms
of the underlined abstraction and application operators.

5.2 Gensym-like name generation

The term-family representation from Section 3.1 constructs terms in
which the names of bound variables are derived from the number of en-
closing lambdas; this convention is sometimes known as de Bruijn levels
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(not to be confused with de Bruijn indices). Although this is proba-
bly the simplest choice in a purely functional setting, there is nothing
canonical about it. To more precisely capture the informal concept of
newly-generated “fresh” variable names, we could instead take:

Λ̂ = N → (Λ ×N )⊥

V̂AR = λv.λi.val⊥ (VAR(v), i)

L̂AM = λ(t, ε).λi. let⊥ (l, i′) ⇐ εgi (i + 1) in val⊥ (LAM (gi, t, l), i′)

ÂPP = λ(e1, e2).λi. let⊥ (l1, i′) ⇐ e1 i in let⊥ (l2, i′′) ⇐ e2 i′ in val⊥ (APP(l1, l2), i′′)

(with analogous extensions for constants and literals). This scheme gen-
erates terms in which all bound-variable names are distinct. Then, after
changing the conditional meaning relation to read:

e@∆ δ �s
τ a ⇐⇒

∀i ≥ ]∆. e i = ⊥ ∨ ∃E, i′ ≥ i. e i = val⊥ (pEq, i′) ∧ ∆ `s
Σd
E : τ ∧ [[E]]δ = a.

we can check that Lemma 3 still holds, and therefore all the remaining
constructions and proofs go through without further modifications.

5.3 On-line type-directed partial evaluation

Although TDPE generally works on binding-time separated signatures,
it is actually possible to give an on-line formulation, in which it is not
necessary to explicitly annotate all base types and operations. Concep-
tually, we instead take Br

d(b) = N → (Bs(b) + Λ)⊥. (In practice, when
Λ is a conveniently inspectable type, it suffices to take Br

d(b) = Λ̂ and
explicitly recognize Λ-values that represent literals.) The arithmetic op-
erators then produce a static result if if both arguments are static, and
dynamic otherwise, possibly coercing one argument in the process. A
similar extension works for conditionals.

This scheme enables “opportunistic” simplifications, in cases where
an operand is sometimes, but not always, statically known (or where a
static analysis cannot prove that it is known). Note, however, that we
must still annotate occurrences of fix as static or dynamic, or otherwise
prevent fruitless infinite expansion of a recursive function. For example,
it is often possible to explicitly identify a particular function parameter
as the one controlling the recursion, and only unfold calls in which that
argument is a literal [5].
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Of course, the price of these potential improvements is that the amount
of simplification is less predictable: the output will still be in long βη-
normal form, but it is no longer evident from the original program which
operations will be performed statically, and which ones must remain in
the specialized program.

5.4 Call-by-value and effects

For practical applications, a call-by-value variant of TDPE is usually
preferable, and indeed the technique was first presented in this setting
[4]. Let us briefly sketch the necessary changes from the call-by-name
case here.

To give a denotational semantics of an ML-like language, we consider
an interpretation I to also explicitly include a monad for modeling ef-
fectful computations. We usually want to be able to use any monad in
the evaluating interpretation; thus the notion of static equality must be
safe for any dynamic effect. That is, instead of computing normal forms
based on the strong βη-lambda-calculus, we now need a normalization-
by-evaluation algorithm for Moggi’s computational lambda-calculus λc

[15].
Fortunately, much as a single residualizing interpretation of dynamic

type and term constants suffices to compute call-by-name static normal
forms sound for any dynamic interpretation, it turns out that a single
“maximally general” residualizing interpretation of effects can be used
to compute call-by-value normal forms suitable for any dynamic monad.

A particularly natural such residualizing monad is that of continua-
tions with answer type Λ̂, which can be straightforwardly related to any
dynamic monad for the purpose of the logical relation in Section 4.2.
Moreover, we can still construct the corresponding residualizing real-
ization Φr, as long as our programming language contains Scheme-style
first-class continuations and state [10]. Incidentally, this construction
also allows disjoint-union types (sums) to be naturally added to the lan-
guage. The details are still under investigation, however, and will be
reported in a forthcoming paper.

6 Conclusions and Future Work

We have given an account of type-directed partial evaluation that sep-
arates the specification of the problem (computation of static normal
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forms) from its implementation (normalization by evaluation); in previ-
ous work these tended to be intertwined. We also presented a correctness
proof for the implementation, using logical relations over a simple denota-
tional model of the binding-time separated language. To keep the details
manageable, we restricted our scope to a purely functional language;
but both the algorithm and the proof techniques extend to call-by-value
languages with effects as well.

Future work falls in two classes. First, there are a number of natural
extensions to the framework and results in essentially the form they are
presented here. In addition to the directions already mentioned in Sec-
tion 5, one can also consider polyvariant specialization, run-time code
generation, and other classical PE concepts in the context of TDPE.

Second, it would be interesting to investigate how TDPE relates to
more general work on linguistic support for staged computation, espe-
cially recent developments based on modal logics [9, 16]. For example,
it might be possible to generalize the notion of static normalization to
such settings, and consider normalization-by-evaluation algorithms for
type systems more expressive than simple types.
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