
B
R

IC
S

R
S

-01-10
F

ridlender
&

Indrika:
D

o
w

e
N

eed
D

ependentTypes?

BRICS
Basic Research in Computer Science

Do we Need Dependent Types?

Daniel Fridlender
Mia Indrika

BRICS Report Series RS-01-10

ISSN 0909-0878 March 2001



Copyright c© 2001, Daniel Fridlender & Mia Indrika.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/01/10/



Do we need dependent types?∗

Daniel Fridlender†

BRICS‡

Department of Computer Science,

University of Aarhus, Denmark
(e-mail: daniel@brics.dk)

Mia Indrika

Department of Computing Science

Chalmers University of Technology, Sweden
(e-mail: indrika@cs.chalmers.se)

Abstract

Inspired by [1], we describe a technique for defining, within the
Hindley-Milner type system, some functions which seem to require a
language with dependent types. We illustrate this by giving a general
definition of zipWith for which the Haskell library provides a family
of functions, each member of the family having a different type and
arity. Our technique consists in introducing ad hoc codings for natural
numbers which resemble numerals in λ-calculus.

∗This is a summary of a paper with the same title appeared in JFP [2].
†Current affiliation: FaMAF, Universidad Nacional de Córdoba, Argentina.
‡Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

1



1 The problem

This paper is about some functions whose definitions seem to require a lan-
guage with dependent types. We will describe a technique for defining them
in Haskell or ML, which are languages without dependent types.

Consider for example the following scheme defining zipWith.

zipWith :: (a1 -> ... -> an -> b) ->

[a1] -> ... -> [an] -> [b]

zipWith f (a1:as1) ... (an:asn)

= f a1 ... an : zipWith f as1 ... asn

zipWith _ _ ... _ = []

Figure 1: Scheme for zipWith.

When this scheme is instantiated with n equal to 1 we obtain the standard
function map. In practice, other instances of the scheme are often useful as
well.

Figure 1 cannot be used as a definition of a function in Haskell because
of the ellipses “...”. More importantly, the type of zipWith is parameter-
ized by n, which seems to indicate the need for dependent types. But, as
mentioned above, Haskell does not allow dependent types.

The way the Haskell library [4, 5] solves the problem is by providing a
family of 8 (!) functions zipWith0, zipWith1, zipWith2, zipWith3, . . . ,
zipWith7, where the number in the name of the function indicates the value
given to n when instantiating the scheme.1 The programmer can of course
extend this family with more instances if (s)he needs.

This mechanical repetition of code is very unpleasant. The main benefit
of Haskell and ML polymorphism is precisely the ability to define functions
at an abstract level, allowing a high degree of program reusability. However,
in the case of zipWith this is only partially achieved. Every member of the
family of functions has a polymorphic type, which means that it can be used

1In the Haskell library, zipWith0, zipWith1 and zipWith2 are called repeat, map and
zipWith respectively.

2



to “zip” lists of integers, booleans, or of values of any other type. But still
their definitions are not abstract enough since one cannot reuse them with
different number of arguments.

The kind of problem that we address here is how to define within the
Hindley-Milner type system (the core of the type systems underlying Haskell
and ML) a general version of zipWith that can be used with a variable num-
ber of arguments. We describe a technique that introduces ad hoc codings
for natural numbers, which resemble numerals in λ-calculus. The same tech-
nique can be applied to other examples such as liftM —for which the Haskell
library also provides families of functions— and the tautology function taut,
which is considered a standard example of the expressive power of dependent
types [3].

2 A preliminary solution

As a motivating example, suppose we want to “zip” 8 given lists as1, . . . , as8
with a given 8-ary function f of appropriate type in Haskell. Because of the
reasons mentioned above we decline defining a new instance zipWith8 of the
scheme in figure 1. We use instead the function zipWith7 from the Haskell
library, and write

zipWith7 f as1 as2 as3 as4 as5 as6 as7 << as8

where << is defined as follows.

(<<) :: [a -> b] -> [a] -> [b]

(f:fs) << (a:as) = f a : (fs << as)

_ << _ = []

In effect, since f is 8-ary, zipWith7 f as1 as2 as3 as4 as5 as6 as7

returns a list of functions and the operator << makes sure that each function
on that list is applied to the corresponding argument in as8.

Thus there is no need to define zipWith8: one can just write as above in
terms of the existing zipWith7. Similarly, there is no need to use zipWith7

since it can be replaced by an expression written in terms of zipWith6 and <<.
Iterating this process, and assuming that << associates to the left, the ex-
pression above can be written as

repeat f << as1 << ... << as8

3



where repeat —Haskell’s name for zipWith0— is a function returning a list
that consists of infinitely many copies of its argument, that is:

repeat :: b -> [b]

repeat f = f : repeat f

In general “zipping” n given lists as1, . . . , asn with a given n-ary func-
tion f of appropriate type can be written as

repeat f << as1 << ... << asn (1)

in Haskell.
Using expressions like (1) is already more flexible than implementing

many different instances of the scheme. The disadvantage is that the partial
application zipWith8 f as1 would have to be expressed in the following
clumsy form:

\as2 ... as8 -> repeat f << as1 << ... << as8

The final expression that we propose in the next section will solve this
problem.

3 Introducing numerals

Notice that expression (1) contains not only the lists as1, . . . , asn to be
“zipped” but also extra explicit information about how many the lists are,
namely, an occurrence of the operator << for each of them. This gives rise to
introducing numerals.

We define the successor function succ as follows.

succ :: ([b] -> c) -> [a -> b] -> [a] -> c

succ = \n fs as -> n (fs << as)

This can be read in terms of continuations: given a continuation n, a list
of functions fs and a list of arguments as, it applies each function in fs

to the corresponding argument in as producing a list which is given to the
continuation n.

The numeral zero is simply the identity function id :: a -> a, which
in particular has type [a] -> [a]. The remaining numerals are obtained by
iterating the successor function succ on zero.

4



one = succ zero :: [a -> b] -> [a] -> [b]

two = succ one :: [a -> b -> c] -> [a] -> [b] -> [c]

In general, the numeral n corresponding to the number n has the following
type.

n :: [a1 -> ... -> an -> b] -> [a1] -> ... -> [an] -> [b]

We now define zipWith as:

zipWith :: ([a] -> b) -> a -> b

zipWith n f = n (repeat f)

Thus, given a numeral n, zipWith n will have type

zipWith n :: (a1 -> ... -> an -> b) ->

[a1] -> ... -> [an] -> [b]

which is exactly what we wanted. Expression (1) can finally be written:

zipWith n as1 ... asn

We revisit now the motivating example from Section 2.

4 The numerals in use

Assume that the numeral seven is defined in the library. In order to “zip” 8
given lists as1, . . . , as8 with a given 8-ary function f of appropriate type,
we can define

eight = succ seven

and write the expression:

zipWith eight f as1 as2 as3 as4 as5 as6 as7 as8

Defining eight is unnecessary, one may replace it by (succ seven) in
the expression above.

The disadvantage mentioned in Section 2 vanishes now because the equiv-
alent to zipWith8 f as1 becomes:

zipWith eight f as1

See [2] for an example of how to reuse these numerals in some situations.

5



5 Conclusion

Inspired by the work presented in [1], we considered a function whose im-
plementability was generally believed to require dependent types. We have
shown that it is possible to define it without dependent types in an elegant
way by introducing ad hoc numerals. The same technique can be applied to
other functions like liftM, zip, unzip, curry, uncurry, and taut. The case
of taut is explained in detail in [2].

The reader is referred to [2] for further discussions about our solution:
the problem of numerals being too ad hoc, the role of polymorphism, the or-
thogonality with strictness and lazyness, the performance of our zipWith. In
addition, our solution is there compared to solving the problem in languages
with dependent types and in languages for generic programming.

Acknowledgments

We are grateful to Magnus Carlsson and Olivier Danvy with whom we dis-
cussed the subject of this paper in several opportunities. Richard Bird,
Olivier Danvy and an anonymous reviewer gave us valuable comments on
earlier versions of this paper.

References

[1] O. Danvy. Functional Unparsing. Journal of Functional Programming,
8(6):621–625, 1998.

[2] D. Fridlender and M. Indrika. Do we need dependent types? Journal of
Functional Programming, 10(4):409–415, 2000.

[3] B. Nordström, K. Petersson, and J. Smith. Programming in Martin-Löf ’s
Type Theory. An Introduction. Oxford University Press, 1990.

[4] S. Peyton Jones and J. Hughes, editors. Report on the Programming
Language Haskell 98. http://www.haskell.org/onlinereport/, 1999.

[5] S. Peyton Jones and J. Hughes, editors. Standard Libraries for the
Haskell 98 Programming Language. http://www.haskell.org/online

library/, 1999.

6



Recent BRICS Report Series Publications

RS-01-10 Daniel Fridlender and Mia Indrika. Do we Need Dependent
Types? March 2001. 6 pp. Appears inJournal of Functional
Programming, 10(4):409–415, 2000. Superseeds BRICS Report
RS-98-38.

RS-01-9 Claus Brabrand, Anders Møller, and Michael I. Schwartzbach.
Static Validation of Dynamically Generated HTML. February
2001. 18 pp.

RS-01-8 Ulrik Frendrup and Jesper Nyholm Jensen.Checking for Open
Bisimilarity in the π-Calculus. February 2001. 61 pp.

RS-01-7 Gregory Gutin, Khee Meng Koh, Eng Guan Tay, and Anders
Yeo. On the Number of Quasi-Kernels in Digraphs. January
2001. 11 pp.

RS-01-6 Gregory Gutin, Anders Yeo, and Alexey Zverovich. Travel-
ing Salesman Should not be Greedy: Domination Analysis of
Greedy-Type Heuristics for the TSP. January 2001. 7 pp.

RS-01-5 Thomas S. Hune, Judi Romijn, Marïelle Stoelinga, and
Frits W. Vaandrager. Linear Parametric Model Checking of
Timed Automata. January 2001. 44 pp. To appear inTools
and Algorithms for The Construction and Analysis of Systems:
7th International Conference, TACAS ’01 Proceedings, LNCS,
2001.

RS-01-4 Gerd Behrmann, Ansgar Fehnker, Thomas S. Hune, Kim G.
Larsen, Paul Pettersson, and Judi Romijn. Efficient Guiding
Towards Cost-Optimality inUPPAAL. January 2001. 21 pp.
To appear in Tools and Algorithms for The Construction and
Analysis of Systems: 7th International Conference, TACAS ’01
Proceedings, LNCS, 2001.

RS-01-3 Gerd Behrmann, Ansgar Fehnker, Thomas S. Hune, Kim G.
Larsen, Paul Pettersson, Judi Romijn, and Frits W. Vaan-
drager. Minimum-Cost Reachability for Priced Timed Automata.
January 2001. 22 pp. To appear inHybrid Systems: Computa-
tion and Control, 2001.

RS-01-2 Rasmus Pagh and Jakob Pagter.Optimal Time-Space Trade-
Offs for Non-Comparison-Based Sorting. January 2001.
ii+20 pp.


