
B
R

IC
S

R
S

-01-13
C

razzolara
&

W
inskel:

E
vents

in
S

ecurity
P

rotocols

BRICS
Basic Research in Computer Science

Events in Security Protocols

Federico Crazzolara
Glynn Winskel

BRICS Report Series RS-01-13

ISSN 0909-0878 April 2001

Copyright c© 2001, Federico Crazzolara & Glynn Winskel.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/01/13/

Events in Security Protocols

Federico Crazzolara∗ Glynn Winskel

{fc232, gw104}@cl.cam.ac.uk

Computer Laboratory
University of Cambridge

Abstract

The events of a security protocol and their causal dependency
can play an important role in the analysis of security proper-
ties. This insight underlies both strand spaces and the inductive
method. But neither of these approaches builds up the events of
a protocol in a compositional way, so that there is an informal
spring from the protocol to its model. By broadening the models
to certain kinds of Petri nets, a restricted form of contextual nets,
a compositional event-based semantics is given to an economical,
but expressive, language for describing security protocols; so the
events and dependency of a wide range of protocols are deter-
mined once and for all. The net semantics is formally related to a
transition semantics, strand spaces and inductive rules, as well as
trace languages and event structures, so unifying a range of ap-
proaches, as well as providing conditions under which particular,
more limited, models are adequate for the analysis of protocols.
The net semantics allows the derivation of general properties and
proof principles which are demonstrated in establishing an au-
thentication property, following a diagrammatic style of proof.

1 Introduction

The last few years have seen the emergence of successful intensional,
event-based, approaches to reasoning about security protocols. The meth-

∗BRICS Basic Research in Computer Science, Centre of the Danish National
Research Foundation

1

ods are concerned with reasoning about the events that a security proto-
col can perform, and make use of a causal dependency that exists between
events. For example, to show secrecy in a protocol it is shown that there
can be no earliest event violating a secrecy property; any such event is
shown to depend on some earlier event which itself violates secrecy—
because the behaviour of the protocol does not permit such an infinite
regress, the secrecy property is established. In a similar way, dependency
between events is used to establish forms of authentication by showing
that a sequence of communication events of one agent entails a corre-
sponding sequence of events of the intended participant.

Both the method of strand spaces [THG98c, THG98a, THG98b] and
the inductive method of Paulson [Pau99, Pau98] have been designed to
support such an intensional, event-based, style of reasoning. Strand
spaces are based on an explicit causal dependency of events, whereas
in Paulson’s method the dependency is implicit in the inductive rules,
which might express, for instance, that the input of a message depends
on its previous output. Both methods have successfully tackled a num-
ber of protocols though in an ad hoc fashion. Both make an informal
spring from a protocol to its representation, as either a strand space or
a set of inductive rules. Both methods do not address how to build up
their representation of a protocol in a compositional fashion. Both are
remarkably similar, to the extent that a proof using one seems at an
informal level to suggest a proof using the other.

We show that Petri nets, and specifically a restricted form of contex-
tual nets [MR95], provide a common framework in which to understand
both the strand-space and inductive methods, and it seems, although
we understand it less well, the recent multiset rewriting and linear-logic
methods of [CDL+99, CDL+00].1 But, more importantly, by moving to
a broader class of models we can show how event-based models can be
structured in a compositional way and so used to give a formal semantics
to security protocols which supports proofs of their correctness. To make
the case, and provide semantics to a whole range of protocols once and
for all, we study the semantics of SPL (Security Protocol Language).

We demonstrate the usefulness of the net semantics in deriving (in
contrast to postulating) proof principles for security protocols and ap-
ply them to prove an authentication property—the diagrammatic style

1Although Petri nets have been used before in the analysis of security protocols,
e.g. [NT92], our use is significantly different and more closely related to the strand-
space and inductive methods.

2

of proof may be of interest in itself. (We hope in future to address the
issue of logics for security protocols and see the semantics of SPL as
providing a good basis for a model theory.) We establish precise re-
lationships between the net semantics and transition semantics, strand
spaces, inductive rules, and trace languages and event structures. The
results formally back up the adequacy of strand-space and inductive-rule
representations for broad classes of security protocols and properties—
showing when nothing is lost in moving to these more restrictive models.

2 Security protocols

As a running example we consider the Needham-Schröder-Lowe (NSL)
protocol:

(1) A −→ B : {m,A}Pub(B)

(2) B −→ A : {m,n,B}Pub(A)

(3) A −→ B : {n}Pub(B)

This protocol, like many others of its kind has two roles: one for the
initiator, here played by agent A (say Alice), and one for the responder,
here B (Bob). It is a public-key protocol that assumes an underlying
public-key infrastructure, such as RSA [RSA78]. Both agents have their
own, secret private key. Public keys in contrast are available to all partic-
ipants in the protocol. The NSL protocol makes use of nonces which one
can think of as newly generated, unguessable numbers whose purpose is
to ensure the freshness of messages.

The protocol describes an interaction between A in the role of initiator
and B as responder: A sends to B a new nonce m together with her
own agent name A, both encrypted with B’s public key. When the
message is received by B, he decrypts it with his secret private key.
Once decrypted, B prepares an encrypted message for A that contains
a new nonce together with the nonce received from A and his name B.
Acting as responder, B sends it to A, who recovers the clear text using
her private key. A convinces herself that this message really comes from
B by checking whether she got back the same nonce sent out in the first
message. If that is the case, she acknowledges B by returning his nonce.
B does a similar test.

Although in this informal explanation only two agents in their respec-
tive roles are described, the protocol is really a shorthand for a situation
in which a network of distributed agents are each able participate in

3

multiple concurrent sessions as both initiator and responder. There is
no assurance that they all stick to the protocol, or indeed that commu-
nication goes to the intended agent. An attacker might dissemble and
pretend to be one or several agents, taking advantage of any leaked keys
it possesses in deciphering, and preparing the messages it sends.

The NSL protocol aims at distributing nonces m and n in a secure
way, allowing no one but the initiator and the responder to know them
(secrecy). Another aim of the protocol is that, for example, Bob should
be guaranteed that m is indeed the nonce sent by Alice (authentication).
Lowe pointed out that the NSL protocol is prone to a “middle-man” at-
tack, violating both these secrecy and authentication properties, if the
name B is not included in the second message [Low96]—the second mes-
sage did not include B in the original protocol of Needham and Schröder.

3 SPL—a language for security protocols

In order to be more explicit about the activities of participants in a
protocol and those of a possible attacker, and to express these composi-
tionally, we design an economical process language for the purpose. The
language SPL(Security Protocol Language) is close to an asynchronous
Pi-Calculus [Mil99] and is similar to that adopted in [AG97], though in
its treatment of new names its transition semantics will be closer to that
in [PS93] (it separates concerns of freshness from concerns of scope which
are combined in the Pi-Calculus restriction).

3.1 The syntax of SPL

We start by giving the syntactic sets of the language:

• An infinite set of Names, with elements n,m, · · · , A, B, · · ·. Names
will range over nonces as well as agent names, and could also include
other values.

• Variables over names x, y, · · · , X, Y, · · ·.
• Variables over messages ψ, ψ′, ψ1, · · ·.
• Indices i ∈ Indices with which to index components of parallel

compositions.

4

Name expressions v ::= n,A, · · · | x,X, · · ·
Key expressions k ::= Pub(v) | Priv(v) | Key(v1, v2)
Messages M ::= v | k | M1,M2 | {M}k |ψ
Processes p ::= out new~xM.p |

in pat~x~ψM.p |
‖i∈Ipi

Figure 1: Syntax of SPL

The other syntactic sets of the language are described by the grammar
shown in Figure 1. Note we use “vector” notation; for example, the
“vector” ~x abbreviates some possibly empty list x1, · · · , xl.

We take fv(M), the free variables of a a message M , to be the set
of variables which appear in M , and define the free variables of process
terms by:

fv(out new~xM.p) = (fv(p) ∪ fv(M))\{~x}
fv(in pat~x~ψM.p) = (fv(p) ∪ fv(M))\{~x, ~ψ})
fv(‖i∈Ipi) =

⋃
i∈I fv(pi)

As usual, we say that a process without free variables is closed, as is a
message without variables. We shall use standard notation for substi-
tution into the free variables of an expression, though we will only be
concerned with the substitution of names or closed (variable-free) mes-
sages, obviating the problems of variable capture.

We use Pub(v), Priv(v) for the public, private keys of v, and we
use Key(v1, v2) for the symmetric key of v1 and v2. Keys can be used
in building up encrypted messages. Messages may consist of a name or
a key, be the composition of two messages (M1,M2), or an encrypted
message {M}k representing the message M encrypted using the key k.

An informal explanation of the language:

out new~xM.p This process chooses fresh, distinct names ~n = n1, · · · , nl
and binds them to the variables ~x = x1, · · · , xl. The message
M [~n/~x] is output to the network and the process resumes as p[~n/~x].
The communication is asynchronous in the sense that the action of
output does not await input. The new construct is like that of
Pitts and Stark [PS93] and abstracts out an important property of
a value chosen randomly from some large set; such a value is likely
to be new.

5

in pat~x~ψM.p This process awaits an input that matches the pattern M
for some binding of the pattern variables ~x~ψ and resumes as p
under this binding. All the pattern variables ~x~ψ must appear in
the pattern M .

‖i∈Ipi This process is the parallel composition of all components pi for
i in the indexing set I. The set I is a subset of Indices. Indices
will help us distinguish in what agent, which role and what run a
particular action occurs. The process, written nil, abbreviates the
empty parallel composition (where the indexing set is empty).

Convention 3.1 It simplifies the writing of process expressions if we
adopt some conventions. Firstly, we simply write out M.p when the list
of “new” variables is empty. Secondly, and more significantly, we allow
ourselves to write

· · · in M.p · · ·
in an expression, to be understood as meaning the expression

· · · in pat~x~ψM.p · · ·
where the pattern variables ~x, ~ψ are precisely those variables left free
in M by the surrounding expression. For example, we can describe a
responder in NSL as the process

Resp(B) ≡ in{x, Z}Pub(B). out new y{x, y, B}Pub(Z). in{y}Pub(B). nil

For the first input, the variables x, Z in {x, Z}Pub(B) are free in the whole
expression, so by convention are pattern variables, and we could instead
write in pat x, Z{x, Z}Pub(B). · · ·. On the other hand, in the second input
the variable y in {y}Pub(B) is bound by the outer new y · · · and so by the
convention is not a pattern variable, and has to be that value sent out
earlier. Often we will not write the nil process explicitly, so, for example,
omitting its mention at the end of the responder code above. A parallel
composition can be written in infix form via the notation

p1‖p2 · · · ‖pr ≡ ‖i∈{1,···,r}pi .
Replication of a process, !p, abbreviates ‖i∈ωp, consisting of a countably
infinite copies of p set in parallel.

An obvious structural induction defines the set of names of a process.
We define size(p) of a process term p to be an ordinal measuring the
depth of process operations in the term.

6

Init(A,B) ≡ out new x{x,A}Pub(B).

in{x, y,B}Pub(A).

out{y}Pub(B).

nil

Resp(B) ≡ in{x,Z}Pub(B).

out new y{x, y,B}Pub(Z).

in{y}Pub(B).

nil

Figure 2: Initiator and responder code

Definition 3.1 The size of a closed process term is an ordinal given by
the structural induction:

size(out new~xM.p) = 1 + size(p)
size(in pat~x~ψM.p) = 1 + size(p)
size(‖i∈Ipi) = 1 + supi∈Isize(pi).

3.2 NSL as a process

As an illustration, we can program the NSL protocol in our language,
and so formalise the introductory description given in the Section 2. We
assume given a set of agent names, Agents, of agents participating in
the protocol. The agents participating in the NSL protocol play two
roles, as initiator and responder with any other agent. Abbreviate by
Init(A,B) the program of initiator A ∈ Agents communicating with
B ∈ Agents and by Resp(B) the program of responder B ∈ Agents.
The code of both an arbitrary initiator and an arbitrary responder is
given in Figure 2. In the code we are forced to formalise aspects that are
implicit in the informal description, such as the creation of new nonces,
the decryption of messages and the matching of nonces.

We can model the attacker by directly programming it as a process.
Figure 3, shows a general, active attacker or “spy”. The spy has the
capability of composing eavesdropped messages, decomposing compos-
ite message, and using cryptography whenever the appropriate keys are
available; the available keys are all the public keys and the leaked pri-
vate keys. By choosing a different program for the spy we can restrict or
augment its power, e.g., to passive eavesdropping or active falsification.

The whole system is obtained by putting all components in parallel.
Components are replicated, to model multiple concurrent runs of the

7

Spy1 ≡ in ψ1.in ψ2.out(ψ1, ψ2).nil (composing)
Spy2 ≡ in(ψ1, ψ2).out ψ1.out ψ2.nil (decomposing)
Spy3 ≡ in x.in ψ.out {ψ}Pub(x).nil (encryption)
Spy4 ≡ in Priv(x).in {ψ}Pub(x).out ψ.nil (decryption)

Spy ≡ ‖i∈{1,...,4}Spyi

Figure 3: Attacker code

Pinit ≡ ‖A,B ! Init(A,B)
Presp ≡ ‖A ! Resp(A)
Pspy ≡ ! Spy

NSL ≡ ‖i∈{resp,init,spy} Pi

Figure 4: The system

protocol. The system is described in Figure 4.

3.3 A transition semantics

We first give a, fairly traditional, transition semantics to SPL. It says
how input and output actions affect configurations; a configuration ex-
presses the state of execution of the process, the messages so far output
to the network and the names currently in use.

A configuration consists of a triple

〈p, s, t〉

where p is a closed process term, s is a subset of the set of names Names,
and t is a subset of closed (i.e., variable-free) messages. We say the
configuration is proper iff the names in p and t are included in s. The
idea is that a closed process p acts in the context of the set of names s
that have been used so far, and the set of messages t which have been
output, to input a message or to generate new names before outputting
a message.

Actions α may be inputs or new-outputs, possibly tagged by indices
to show at which parallel component they occur:

α ::= out new ~n.M | in M | i : α

8

(output) Provided the names ~n are all distinct and not in s,

〈out new ~xM.p, s, t〉 out new ~nM [~n/~x]−→ 〈p[~n/~x], s ∪ {~n}, t ∪ {M [~n/~x]}〉

(input) Provided M [~n/~x, ~N/~ψ] ∈ t,

〈in pat~x~ψM.p, s, t〉 in M [~n/~x, ~N/~ψ]−→ 〈p[~n/~x, ~N/~ψ], s, t〉

(par)

〈pj , s, t〉 α−→ 〈p′j , s′, t′〉
〈‖i∈Ipi, s, t〉 j:α−→ 〈‖i∈Ipi[p′j/j], s′, t′〉

j ∈ I

Figure 5: Transition semantics

where M is a closed message, ~n are names and i is an index drawn from
Indices. We write out M for an output action, outputting a message
M , where no new names are generated.

The way configurations evolve is expressed by transitions

〈p, s, t〉 α−→ 〈p′, s′, t′〉 ,

given by the rules displayed in Figure 5.
The transition semantics allows us to state formally many security

properties. However, it does not support directly local reasoning of the
kind one might wish to apply in the analysis of security protocols. To
give an idea of the difficulty, imagine we wished to establish that the
nonce generated by B as responder in NSL was never revealed as an open
message on the network. A reasonable way to prove such a property is to
find a stronger invariant, a property which can be shown to be preserved
by all the actions of the process. Equivalently, one can assume that there
is an earliest action αl in a run which violates the invariant, and derive
a contradiction by showing that this action must depend on a previous
action, which itself violates the invariant.

An action might depend on another action through being, for exam-
ple, an input depending on a previous output, or simply through occur-
ring at a later control point in a process. A problem with the transition

9

semantics is that it masks such local dependency, and even the underly-
ing process events on which the dependency rests. The wish to support
arguments based on local dependency leads to a more refined semantics
based on events.

4 The events of SPL

We must first address the issue of what constitutes an event of a security
protocol. Here, we follow the lead from Petri nets,2 and define events in
terms of how they affect conditions. Conditions are to represent some
form of local state and we discern conditions of three kinds: control,
output and name conditions.

The set of control conditions C consists of output or input processes,
perhaps tagged by indices, and is given by the grammar

b ::= out new ~xM.p | in pat~x~ψM.p | i : b

where i ∈ Indices. A condition in C stands for the point of control in a
(single-thread) process. When C is a subset of control conditions we will
write i : C to mean {i : b | b ∈ C}.

The set of output conditions O consists of closed message expressions.
An individual condition M in O stands for the message M having been
output on the network. Output conditions are persistent; once output
conditions are made to hold they continue to hold forever. This squares
with our understanding that once a message has been output to the
network it can never be removed, and can be input repeatedly.

The set of name conditions is precisely the set of names Names. A
condition n in Names stands for the name n being in use.

We define the initial conditions of a closed process term p, to be the
subset Ic(p) of C, given by the following structural induction:

Ic(out new ~xM.p) = {out new ~xM.p}
Ic(in pat~x~ψM.p) = {in pat~x~ψM.p}
Ic(‖i∈Ipi) =

⋃

i∈I
i : Ic(pi)

where the last case also includes the base case nil , when the indexing set
is empty.

2A brief summary of Petri nets is given in the Appendix.

10

We will shortly define the set of events Events as a subset of

Pow(C)×Pow(O)×Pow(Names)×Pow(C)×Pow(O)×Pow(Names) .

So an individual event e ∈ Events is a tuple

e = (ce,oe,ne, ec, eo, en)

where ce is the set of C-preconditions of e, ec is the set of C-postconditions
of e, etc. Write ·e for ce ∪o e ∪n e, all preconditions of e, and e· for all
postconditions ec ∪ eo ∪ en.

Earlier in the transition semantics we used actions α to specify the
nature of transitions. An event e is associated with a unique action
act(e).

The set of events associated with SPL is given by an inductive def-
inition. Define Events to be the smallest set which includes all output,
input and indexed events:

• output events Out(out new ~xM.p;~n), where ~n = n1, · · · , nl are
distinct names to match the variables ~x = x1, · · · , xl, consists of an
event e with these pre- and postconditions:

ce = {out new ~xM.p} , oe = ∅ , ne = ∅ ,
ec = Ic(p[~n/~x]) , eo = {M [~n/~x]} en = {n1, · · · , nl} .

The action of an output event is

act(Out(out new ~xM.p;~n)) = out new ~n.M [~n/~x].

�

��

�

��

��
��
��
��l m

�

��

@
@R

�
��	

Z
ZZ~

�
��

C
CW

������� M [~n/~x]

out new ~xM . p

out new ~nM [~n/~x]

. .n1 nl. . .

Ic(p[~n/~x])

An occurrence of the output event Out(out new ~xM.p;~n) affects
the control conditions and puts the new names n1, · · · , nl into use,
necessarily for the first time as according to the token game the
event occurrence must avoid contact with names already in use.

The definition includes the special case when ~x and ~n are empty
lists, and we write Out(out M.p) for the output event with no
name conditions and action out M .

11

• input events In(in pat~x~ψM.p;~n, ~L), where ~n is a list of names to

match ~x and ~L is a list of closed messages to match ~ψ, consists of
an event e with these pre- and postconditions:

ce = {in pat~x~ψM.p} , oe = {M [~n/~x, ~L/~ψ]} , ne = ∅ ,
ec = Ic(p[~n/~x, ~L/~ψ]) , eo = ∅ , en = ∅ .

The action of an input event is

act(In(in pat~x~ψM.p;~n, ~L)) = in M [~n/~x, ~L/~ψ].

�

��

�

��

��
��
��
��

�

��

@
@R

�
��	

�
��=

�������

M [~n/~x, ~L/~ψ]

inM [~n/~x, ~L/~ψ]

. . . Ic(p[~n/~x, ~L/~ψ])

in pat~x~ψM.p

• indexed events i : e where e ∈ Events, where i ∈ Indices and

c(i : e) = i :c e , o(i : e) =o e , n(i : e) =n e ,

(i : e)c = i : ec , (i : e)o = eo , (i : e)n = en .

The action of an indexed event act(i : e) is i : α, where α is the
action of e.

When E is a subset of events we will generally use i : E to mean
{i : e | e ∈ E}.

In defining the set of conditions and, inductively, the set of events,
we have in fact defined a (rather large) net from the syntax of SPL.
The SPL-net has conditions C ∪ O ∪ Names and events Events. Its
markings M will be subsets of conditions and so of the form

M = c ∪ s ∪ t
where c ⊆ C, s ⊆ Names, and t ⊆ O. By assumption the set of condi-
tions O are persistent so the net is a contextual net with the following
token game—see Appendix C.

Letting c∪s∪ t and c′∪s′∪ t′ be two markings, c∪s∪ t e−→ c′∪s′∪ t′
iff
·e ⊆ c ∪ s ∪ t & ec ∩ c = ∅ & en ∩ s = ∅ (event e has concession), and

c′ = (c \ce) ∪ ec & s′ = s ∪ en & t′ = t ∪ eo .

12

In particular, the occurrence of e begins the holding of its name postcon-
ditions en—these names have to be distinct from those already in use to
avoid contact.

5 Relating net and transition semantics

The behaviour of the SPL-net is closely related to the transition seman-
tics given earlier.

Theorem 5.1

i) If 〈p, s, t〉 α−→ 〈p′, s′, t′〉, then Ic(p)∪ s∪ t e−→ Ic(p′)∪ s′ ∪ t′ in the
SPL-net, for some e ∈ Events with act(e) = α.

ii) If Ic(p)∪ s∪ t e−→ M′ in the SPL-net, then 〈p, s, t〉 act(e)−→ 〈p′, s′, t′〉
and M′ = Ic(p′) ∪ s′ ∪ t′, for some closed process p′, s′ ⊆ Names
and t′ ⊆ O.

Definition 5.1 Let e ∈ Events. Let p be a closed process, s ⊆ Names,
and t ⊆ O. Write 〈p, s, t〉 e−→ 〈p′, s′, t′〉 iff Ic(p)∪s∪t e−→ Ic(p′)∪s′∪t′
in the SPL-net.

6 The events of a process

Generally for a process p only a small subset of the events Events can
ever come into play. For this reason it’s useful to restrict the events to
those reachable in the behaviour of a process.

The set Ev(p) of events of a closed process term p are defined by
induction on size:

Ev(out new ~xM.p) ={Out(out new ~xM.p;~n) | ~n distinct names}
∪

⋃
{Ev(p[~n/~x]) | ~n distinct names} ,

Ev(in pat~x~ψM.p) ={In(in pat~x~ψM.p;~n, ~L) | ~n names, ~L closed messages}
∪

⋃
{Ev(p[~n/~x, ~L/~ψ]) | ~n names, ~L closed messages} ,

Ev(‖i∈Ipi) =
⋃

i∈I
i : Ev(pi) .

As an example, the events Ev(NSL) of NSL are shown in the Appendix.

13

A closed process term p denotes a net Net(p) consisting of the global
set of conditions C ∪ O ∪ Names built from SPL, events Ev(p) and
initial control conditions Ic(p). We can define the token game on the net
Net(p) exactly as we did earlier for the SPL-net, but this time events are
restricted to being in the set Ev(p). It’s clear that if an event transition
is possible in the restricted net Net(p) then so is it in the SPL-net. The
converse also holds provided one starts from a marking whose control
conditions either belong to Ic(p) or are conditions of events in Ev(p).

Definition 6.1 Let p be a closed process term. Define the control-
conditions of p to be

pc = Ic(p) ∪
⋃

{ec | e ∈ Ev(p)} .

Lemma 6.1 Let M∩C ⊆ pc. Let e ∈ Events. Then,

M e−→ M′ in the SPL-net iff e ∈ Ev(p) & M e−→ M′ in Net(p) .

Consequently, in analysing those sequences of event transitions

〈p0, s0, t0〉 e1−→ · · · er−→ 〈pr, sr, tr〉 er+1−→ · · · ,

a closed process p can perform, or correspondingly those of the transition
semantics, it suffices to study the behaviour of Net(p) with its restricted
set of events Ev(p). This simplification is especially useful in proving
invariance properties because these amount to an argument by cases on
the form of events a process can do.

Recall that we say a configuration 〈p, s, t〉 is proper iff the names in
p and t are included in s.

Proposition 6.2 Let e ∈ Events. Suppose that 〈p, s, t〉 and 〈p′, s′, t′〉
are configurations, and that 〈p, s, t〉 is proper. If 〈p, s, t〉 e−→ 〈p′, s′, t′〉,
then 〈p′, s′, t′〉 is also proper.

Important convention: From now on we assume that all configurations
〈p, s, t〉 are proper.

14

7 Proving security properties

To demonstrate the viability of the net semantics as a tool in proving
security properties, we use the semantics to derive general principles for
proving secrecy and authentication. The principles capture the kind of
dependency reasoning found in the strand spaces and inductive methods.
To illustrate the principles in action, we apply them to establish an au-
thentication guarantee for the responder part of the NSL protocol. We
introduce a diagrammatic style of reasoning which we find helpful.

7.1 General proof principles

From the net semantics we can derive several principles useful in proving
authentication and secrecy of security protocols. Write M @ M ′ to mean
message M in a subexpression of message M ′, i.e., @ is the smallest
binary relation on messages such that:

M @ M
M @ N ⇒ M @ (N,N ′) ∧M @ (N ′,N)
M @ N ⇒ M @ {N}k

where M,N,N ′ are messages and k is a key expression. We also write
M @ t iff ∃M ′ .M @ M ′ ∧M ′ ∈ t, for a set of messages t.

Proposition 7.1 (Well-foundedness) Given a property P on configura-
tions, if a run

〈p0, s0, t0〉 e1−→ · · · er−→ 〈pr, sr, tr〉 er+1−→ · · · ,
contains a configurations such that P(p0, s0, t0) and ¬P(pj , sj, tj), then
there is an event eh, 0 < h ≤ j, such that P(pi, si, ti) for all i ≤ h and
¬P(ph, sh, th).

We say that a name m ∈ Names is fresh on an event e if m ∈ en and
we write Fresh(m, e).

Proposition 7.2 (Freshness) Within a run

〈p0, s0, t0〉 e1−→ · · · er−→ 〈pr, sr, tr〉 er+1−→ · · · ,
the following properties hold:

1. If n ∈ si then either n ∈ s0 or there is a previous event ej such that
Fresh(n, ej).

15

2. Given a name n there exists at most one event ei s.t. Fresh(n, ei).

3. If Fresh(n, ei) then for all j < i the name n does not appear in
〈pj, sj, tj〉.

Proposition 7.3 (Control precedence) Within a run

〈p0, s0, t0〉 e1−→ · · · er−→ 〈pr, sr, tr〉 er+1−→ · · · ,
if b ∈ cei either b ∈ Ic(p0) or there is an earlier event ej, j < i, such that
b ∈ ej

c.

Proposition 7.4 (Output-input precedence) In a run

〈p0, s0, t0〉 e1−→ · · · er−→ 〈pr, sr, tr〉 er+1−→ · · · ,
if M ∈ oei, then either M ∈ t0 or there is an earlier event ej, j < i, such
that M ∈ ej

o.

7.2 An example: authentication for NSL

We will prove authentication for a responder in an NSL protocol in the
sense that: to any complete session of agent B0 as responder, appar-
ently with agent A0, there corresponds a complete session of agent A0 as
initiator. We refer to the Appendix for the events of NSL.

In the proof it’s helpful to make use of a form of diagrammatic reason-
ing which captures the precedence of events. When the run is understood
we draw e // e′ when e precedes e′ in the run, allowing e = e′.

Theorem 7.5 (Authentication) If a run of NSL

〈NSL, s0, t0〉 e1−→ · · · er−→ 〈pr, sr, tr〉 er+1−→ · · · ,
contains the responder events b1, b2, b3, with actions

act(b1) = resp : B0 : i : in {m0, A0}Pub(B0) ,
act(b2) = resp : B0 : i : out new n0 {m0, n0, B0}Pub(A0) ,
act(b3) = resp : B0 : i : in{n0}Pub(B0)) ,

for an index i, and Priv(A0) 6@ t0, then the run contains initiator events
a1, a2, a3 with a3 // b3 , where, for some index j,

act(a1) = init : (A0, B0) : j : out newm0 {m0, A0}Pub(B0) ,
act(a2) = init : (A0, B0) : j : in{m0, n0, B0}Pub(A0) ,
act(a3) = init : (A0, B0) : j : out{n0}Pub(B0) .

16

Proof. By control precedence we obtain: b1 // b2 // b3 .
Consider the property of configurations

Q(p, s, t) ⇔ ∀M ∈ t. n0 @ M ⇒ {m0, n0, B0}Pub(A0) @ M .

By freshness, the property Q holds immediately after b2, but clearly
not immediately before b3. By well-foundedness there is a earliest event
following b2 but preceding b3 that violates Q. Let e be such an event.

b1 // b2 //

��?
??

??
??

b3

e

??�������

Inspecting the events of the NSL protocol (see Appendix), using the
assumption that Priv(A0) 6@ t0, one can show that e can only be an
initiator event a′3 with action

act(a′3) = init : (A,B0) : j : out{n0}Pub(B0)

for some index j and agent A. There must also be preceding events
a′1, a′2 with actions

act(a′1) = init : (A,B0) : j : out newm {m,A}Pub(B0)

act(a′2) = init : (A,B0) : j : in{m,n0, B0}Pub(A)

b1 // b2 //

��?
??

??
??

b3

a′1 // a′2 // a′3

??�������

Since Fresh(b2, n0), the event b2 must precede a′2. The property Q holds
on configurations up to a′3 and, in particular, on the configuration im-
mediately before a′2. From this we conclude that m = m0 and A = A0.
Hence a′3 = a3, a

′
2 = a2, and a′1 = a1 as described below.

b1 // b2 //

��

b3

a1 // a2 // a3

OO

(Since Fresh(a1, m0), the event a1 precedes b1.) 2

17

8 Relating security models

We have related our net semantics of SPL to a transition semantics.
Now we establish its relations to the security models of strand spaces,
inductive rules, as well as other traditional models. In security protocols
we are largely interested in safety properties, which reduce to a property
holding of all finite behaviours. Thus it suffices to show how a finite be-
haviour in one model can be matched by the finite behaviour in another.
In relating the net semantics to strand spaces and inductive rules we need
to constrain process terms, to allow some repetition of actions, though
this does not seem unduly restrictive in formalising security protocols.

8.1 Strand spaces

In relating the net semantics to strand spaces we must face the fact that
strand spaces don’t compose readily, not using traditional process op-
erations at least. Their form doesn’t allow prefixing by a single event.
Nondeterminism only arises through the choice as to where input comes
from, and there is not a recognisable nondeterministic sum of strand
spaces. Even an easy definition of parallel composition by juxtaposition
is thwarted if “unique origination” is handled as a global condition on
the entire strand space. This complicates the relation between a compo-
sitional semantics and strand spaces.

We can however relate the net behaviour of a !-par process to to that
of an associated strand space; a !-par process is a closed process of the
form !‖i∈Ipi for which no subterm pi contains a parallel composition. In
proving the relation (though unfortunately not in this short write-up) we
find it useful to extend strand spaces in order to compose them, chiefly
with conflict to permit their nondeterministic sum, and then finally to
observe that for processes with replication the conflict can be eliminated,
without upsetting the strand-space behaviour. (Strand spaces can be
viewed as special forms of event structures—see below; so ideas, such as
the use of a conflict relation, can be adapted from there.)

Definition 8.1 A strand space consists of S = 〈Si〉i∈I an indexed set
of strands. An individual strand Si, where i ∈ I, is a finite sequence of
output or input events carrying respectively output or input actions of
the kind out new~nM or inM , where M is a closed message and ~n a list
of distinct names that are intended to be fresh (“uniquely originating”)
at the event. We permit only strands on which any “new” names do

18

appear in previous actions of the strand. (A set of strands is canonically
a strand space in which each strand has itself as index.)

As usual, a strand space can be seen as a graph whose nodes are of the
form (i, l) with i ∈ I index of a strand and l position of an event in that
strand (1 ≤ l ≤ length(si)). Each node uniquely identifies an event in
a strand. Edges are of two different kinds: ⇒ between two nodes that
identify two events of a same strand, one immediately preceding the other
and → between two nodes identifying respectively an output event and
an input event with the same message. A bundle of a strand space S is
a finite, acyclic subgraph such that

• if a node belongs to the bundle then so do all the nodes that precede
it on its strand,

• each input node has exactly one incoming → edge,

• two different strands that have a “new” name in common don’t
both contribute to the same bundle.

Our definition is not quite standard. But the only significant difference
is in the treatment of unique origination which is taken care of in the
definition of bundle rather than being a condition on the entire strand
space—the “parametric strand spaces” of [CDL+00] achieve the same
effect and are closely related.

A strand space can be seen as a form of event structure [Win87a]. A
strand space determines a stable event structure, whose family of con-
figurations is the same as the bundles of the strand space; the bundles
of a strand space when ordered by inclusion form a stable family which
ensures not only that each configuration of events in the family can be
equipped with a local partial order of causal dependency, but that at
the cost renaming events these local partial orders can be extended to a
global partial order of causal dependency, yielding a prime event struc-
ture.

Often in strand spaces the precise identity of indices doesn’t matter.
A re-indexing of a strand space S = 〈Si〉i∈I is a permutation π of I such
that Si and Sπ(i) are sequences of the same length with the same actions
at corresponding events. A re-indexing of a strand space induces a re-
indexing on its bundles; a bundle’s nodes and arcs are changed according
to the correspondence given by π.

To relate the net behaviour of a process to its behaviour as a strand
space we need to linearise bundles. More precisely:

19

Definition 8.2 Given a bundle C of a strand space S, a linearisation of
C is a sequence of nodes e1 . . . ek such that {e1, . . . , ek} = C and for all e in
C and for all ei in L, if e⇒Cei or e→Cei then e precedes ei in the sequence.
An event-linearisation of a bundle is the sequence of strand-space events
associated with the nodes of a linearisation.

Let p be a !-par process and s a set of names containing all names in
p. Take Tr(p, s) to be the strand space with strands consisting of all the
maximal sequences e1 . . . ek of events in Ev(p) such that:

i) ce1 ⊆ Ic(p) and

ii) for all i, 1 ≤ i < k, we have ei
n ∩ (s ∪ {ejn | j < i}) = ∅ and

ei
c = cei+1.

Sequences satisfying the above conditions are necessarily finite as the size
of control conditions strictly decreases along the sequence. The events of
the net are already associated with input and output actions. The net
and strand space behaviour are closely related:

Theorem 8.3 Given p a !-par process and s set of names containing all
names in p, we have that:

1. The sequence of events in a finite run in Net(p) from the ini-
tial configuration 〈p, s, ∅〉 is an event-linearisation of a bundle over
Tr(p, s).

2. Every bundle over Tr(p, s) can be re-indexed so that any of its
event-linearisations is a run in Net(p).

The only way a strand space can cope with there being a nonempty set
of initial output messages is through the slight clumsiness of introducing
extra output events; we avoid this above by assuming the initial set of
output messages is empty.

8.2 Inductive rules

Paulson’s inductive rules for a security protocol capture the actions it and
a spy can perform [Pau98]. Through allowing persistent conditions, we
can represent a collection of inductive rules as a net in which the events
stand for rule instances and runs to sequences of rule instances which
form a derivation from the rules. In particular, instances of inductive

20

rules for security protocols can be represented as events in a net for
which all but the name conditions are persistent. According to such a
semantics, once a protocol can input it can do so repeatedly. Once it
can output generating new names it can do so repeatedly, provided this
doesn’t lead to clashes with names already in use. Paulson’s traces and
the associated runs of the net will necessarily include such “stuttering.”

We define a net of rule instances from a closed process term. Take
the set of “rule-conditions” to consist of name conditions and persistent
output conditions, as before, but now with additional persistent condi-
tions consisting of closed input and output process terms. Let r be the
function from SPL-conditions to rule-conditions which removes the in-
dices tagging control conditions and leaves output and name conditions
unchanged. Extend r to SPL-events: let r replace all the control condi-
tions of an SPL-event by their images under r—intuitively, an event is
replaced by a rule instance. Define the “net of rule instances” R(p) of a
closed process term p to be the net with rule-conditions and events the
image r Ev(p).

For a closed process term p, let p∗ be the process term obtained by
inserting a replication before every input and output process subterm in
p. Note that R(p∗) = R(p) as R drops indices. Now, having restricted
to a process with sufficient replication, we can establish a close relation
between the behaviours of Net(p∗) and R(p∗).

Theorem 8.4 Let p be a closed process term. Let t be a subset of closed
messages and s a subset of names including those of p and t. Let M0 =
Ic(p∗) ∪ s ∪ t.

1. A run M0
e1−→ · · · el−→Ml of Net(p

∗) yields rM0
r(e1)−→ · · · r(el)−→ rMl

a run of R(p∗).

2. If M′
0

e′1−→ · · · e′l−→ M′
l is a run of R(p∗) with M′

0 = rM0, then

there is a run M0
e1−→ · · · el−→ Ml of Net(p∗), with r(ei) = e′i and

r(Mi) = M′
i for all i, 0 < i ≤ l.

8.3 Basic nets, trace languages and event structures

Because strand spaces can be easily turned into event structures, Sec-
tion 8.1 yields an event structure for each !-par process. But, without any
restrictions, we can relate the net semantics to traditional independence
models such as event structures and Mazurkiewicz trace languages. The

21

crux of the construction is that of eliminating the persistent conditions
from the net Net(p), of a closed process term p, in an initial marking
Init(p)∪ s∪ t, to produce a basic net. It’s well-known how to “unfold” a
basic net to a Mazurkiewicz trace language and event structure. Assume
Net(p) has input events In and output events Out. Then:

Theorem 8.5 There is a basic net N with events

E = Out
∪ {(∗, e) | e ∈ In & oe ⊆ t}
∪ {(e1, e) | e ∈ In & e1 ∈ Out & oe = eo1}

Let the map σ : E → Out∪In leave events in Out unchanged and project
pairs (∗, e), (e1, e) to the component e.

i) If N has a run with events e′1, · · · , e′k, then there is a run with events
σ(e′1), · · · , σ(e′k) of Net(p) from the initial marking Init(p) ∪ s ∪ t.

ii) If Net(p) has a run e1, · · · , ek from the initial marking Init(p)∪s∪t,
then N has a run e′1, · · · , e′k where e1, · · · , ek = σ(e′1), · · · , σ(e′k).

The construction used to obtain N above is an example of the con-
struction for eliminating colours from a coloured net—see [Win87b]; first
colours are introduced to the persistent conditions and input events of
Net(p) to distinguish the different ways in which they are made to occur,
and then eliminated through splitting the conditions and events accord-
ing to their colours. The result in this case is a basic net. Its runs form
a Mazurkiewicz trace language from which we can then obtain an event
structure–see [WN95] for details.

Appendix

A Petri nets

The explanation of general Petri nets involves a little algebra of multisets
(or bags), which are like sets but where multiplicities of elements matters.
It’s convenient to also allow infinite multiplicities, so we adjoin an extra

22

element ∞ to the natural numbers, though care must be taken to avoid
subtracting ∞. ∞-Multisets support addition + and multiset inclusion
≤, and even multiset subtraction X − Y provided Y ≤ X and Y has no
infinite multiplicities, in which case we call Y simply a multiset.

A.1 General Petri nets

A general Petri net (often called a place-transition system) consists of

• a set of conditions (or places), P ,

• a set of events (or transitions), T ,

• a precondition map pre, which to each t ∈ T assigns a multiset
pre(t) over P . It is traditional to write ·t for pre(t).

• a postcondition map post which to each t ∈ T assigns an ∞-multiset
post(t) over P , traditionally written t·.

• a capacity function Cap which is an ∞-multiset over P , assigning
a nonnegative number or ∞ to each condition p, bounding the
multiplicity to which the condition can hold; a capacity of ∞ means
the capacity is unbounded.

A state of a Petri net consists of a marking which is an ∞-multiset
M over P bounded by the capacity function, i.e.

M ≤ Cap .

A marking captures a notion of distributed, global state.
Token game for general nets: Markings can change as events occur,
precisely how being expressed by the transitions

M t→ M′

events t determine between markings M and M′. For markings M, M′

and t ∈ T , define

M t−→ M′ iff ·t ≤ M and M′ = M− ·t+ t· .

An event t is said to have concession (or be enabled) at a marking M iff
its occurrence would lead to a marking, i.e.iff

·t ≤ M and M− ·t+ t· ≤ Cap .

23

There is a widely-used graphical notation for nets in which events
are represented by squares, conditions by circles and the pre- and post-
condition maps by directed arcs carrying numbers or ∞. A marking is
represented by the presence of tokens on a condition, the number of to-
kens representing the multiplicity to which the condition holds. When
an event with concession occurs tokens are removed from its precondi-
tions and put on its postconditions with multiplicities according to the
pre- and postcondition maps. Because of this presentation, the transition
relation on Petri nets is described as the “token game”.

B Basic nets

We instantiate the definition of general Petri nets to an important case
where in all the multisets the multiplicities are either 0 or 1, and so
can be regarded as sets. In particular, we take the capacity function to
assign 1 to every condition, so that markings become simply subsets of
conditions. The general definition now specialises to the following.

A basic Petri net consists of

• a set of conditions, B,

• a set of events, E, and

• two maps: a precondition map pre : E→Pow(B), a postcondition
map post : E → Pow(B). We can still write ·e for the preconditions
and e· for the postconditions of e ∈ E and we require .e ∪ e. 6= ∅.

Now a marking consists of a subset of conditions, specifying those
conditions which hold.
Token game for basic nets: Markings can change as events occur,
precisely how being expressed by the transitions

M e→ M′

events e determine between markings M,M′.
For M,M′ ⊆ B and e ∈ E, define

M e→ M′ iff (1) ·e ⊆ M & (M\·e) ∩ e· = ∅ (Concession), and

(2) M′ = (M\·e) ∪ e· .
Property (1) expresses that the event e has concession at the marking
M. Returning to the definition of concession for general nets, of which

24

it is an instance, it ensures that the event does not load another token
on a condition that is already marked. Property (2) expresses in terms
of sets the marking that results from the occurrence of an event. So, an
occurrence of the event ends the holding of its preconditions and begins
the holding of its postconditions. (It is possible for a condition to be both
a precondition and a postcondition of the same event, in which case the
event is imagined to end the precondition before immediately restarting
it.)

There is contact at a marking M when for some event e

·e ⊆ M & (M\·e) ∩ e· 6= ∅.

The occurrence of an event is blocked through conditions, which it should
begin, holding already. Blocking through contact is consistent with the
understanding that the occurrence of an event should end the holding
of its preconditions and begin the holding of its postconditions; if the
postconditions already hold, and are not also preconditions of the event,
then they cannot begin to hold on the occurrence of the event. Avoiding
contact ensures the freshness of names in the semantics of name creation.

Basic nets are important because they are related to many other
models of concurrent computation, in particular, Mazurkiewicz trace
languages (languages subject to trace equivalence determined by the in-
dependence of actions) and event structures (sets of events with extra
relations of causality and conflict)—see [WN95].

C Nets with persistent conditions

Sometimes we have use for conditions which once established continue to
hold and can be used repeatedly. This is true of assertions in traditional
logic, for example, where once an assertion is established to be true it can
be used again and again in the proof of further assertions. Similarly, if
we are to use net events to represent rules of the kind we find in inductive
definitions, we need conditions that persist.

Persistent conditions can be understood as an abbreviation for con-
ditions within general nets which once they hold, do so with infinite
multiplicity. Consequently any number of events can make use of them
as preconditions but without their ever ceasing to hold. Such conditions,
having unbounded capacity, can be postconditions of several events with-
out there being conflict.

25

To be more precise, we modify the definition of basic net given above
by allowing certain conditions to be persistent. A net with persistent
conditions will still consist of events and conditions related by pre- and
postcondition maps which to an event will assign a set of preconditions
and a set of postconditions. But, now amongst the conditions are the
persistent conditions forming a subset P . A marking of a net with per-
sistent conditions will be simply a subset of conditions, of which some
may be persistent. Nets with persistent conditions have arisen indepen-
dently several times and have been studied for example in contextual
nets [MR95].

A net with persistent conditions can be understood on its own terms,
or as standing for a general net with the same sets for conditions and
events. The general net’s capacity function will be either 1 or ∞ on a
condition, being ∞ precisely on the persistent conditions. When p is
persistent, p ∈ e· is interpreted in the general net as (e·)p = ∞, and
p ∈ ·e as (·e)p = 1. A marking of a net with persistent conditions will
correspond to a marking in the general Petri net in which those persistent
conditions which hold do so with infinite multiplicity.

Graphically, we’ll distinguish persistent conditions by drawing them
as double circles:

l�

��

Token game with persistent conditions: The token game is modified
to account for the subset of conditions P being persistent. Let M and
M′ be markings (i.e. subsets of conditions), and e an event. Define

M e→ M′ iff ·e ⊆ M & (M\ (.e ∪ P)) ∩ e· = ∅ (e has concession), and

M′ = (M\ ·e) ∪ e· ∪ (M∩ P) .

The token game fits our understanding of persistence, and specifically
it matches the token game in its interpretation as a general net. In this
paper, these special contextual nets are used in modelling and analysing
security protocols.

D The events of NSL

We can classify the events Ev(NSL) involved in the NSL protocol.
Initiator events:

Out(Init(A,B);m):

26

�

��

�

��

��
��
��
��

�

��

@
@R

�
��	 ?

Z
ZZ~

{m,A}Pub(B)m

Init(A,B)

in{m, y,B}Pub(A)out{y}Pub(B)

out new m {m,A}Pub(B)

In(in{m, y,B}Pub(A)out{y}Pub(B);n):

�

��

�

��

��
��
��
��

@
@R

�
��	

�
��=

{m,n,B}Pub(A)in{m, y,B}Pub(A)out{y}Pub(B)

out{n}Pub(B)

in{m,n,B}Pub(A)

Out(out{n}Pub(B)):

�

��

��
��
��
��

@
@R

Z
ZZ~

{n}Pub(B)

out{n}Pub(B)

out{n}Pub(B)

Responder events:

In(Resp(B);m,A):

�

��

�

��

��
��
��
��

@
@R

�
��	

�
��=

{m,A}Pub(B)Resp(B)

out new y {m, y,B}Pub(A).in {y}Pub(B)

in {m,A}Pub(B)

Out(out new y {m, y,B}Pub(A).in {y}Pub(B);n):

�

��

�

��

��
��
��
��

�

��

@
@R

�
��	 ?

Z
ZZ~

{m,n,B}Pub(A)n

out new y {m, y,B}Pub(A).in {y}Pub(B)

in {n}Pub(B)

out new n {n,B}Pub(A)

27

In(in {n}Pub(B)):

�

��

��
��
��
��

@
@R

�
��=

{n}Pub(B)in {n}Pub(B)

in {n}Pub(B)

Spy events:

Composing, Spy1 ≡ in ψ1.in ψ2.out(ψ1, ψ2):

m

m�

��

l

�

��m

l

�

��m

QQs �
�3 PPPq ���* HHHj

��3 ���* HHHj

M1 M2 (M1,M2)

Decomposing, Spy2 ≡ in(ψ1, ψ2).out ψ1.out ψ2:

m

m�

��

l l

�

��m �

��m

QQs �
�3 PPPq ���* HHHj

��3 HHHj
HHHj

(M1,M2) M1 M2

Encryption, Spy3 ≡ in x.in ψ.out {ψ}Pub(x):

m

m�

��

l

�

��m

l

�

��m

QQs �
�3 PPPq ���* HHHj

��3 ���* HHHj

n M {M}Pub(n)

Decryption, Spy4 ≡ in Priv(x).in {ψ}Pub(x).out ψ:

m

m�

��

l

�

��m �

��m

QQs �
�3 PPPq

��3 ���* HHHj

Priv(n) {M}Pub(n) M

28

References

[AG97] M. Abadi and A. Gordon. A calculus for cryptographic proto-
cols: The Spi calculus. In Proceedings of the Fourth ACM Con-
ference on Computer and Communications Security. ACM
Press, 1997.

[CDL+99] I. Cervesato, N. A. Durgin, P. D. Lincoln, J. C. Mitchell, and
A. Scedrov. A meta-notation for protocol analysis. In R. Gor-
rieri, editor, Proceedings of the 12th IEEE Computer Security
Foundations Workshop - CSFW’99, pages 55–69, Mordano,
Italy, 28–30 June 1999. IEEE Computer Society Press.

[CDL+00] I. Cervesato, N. A. Durgin, P. D. Lincoln, J. C. Mitchell, and
A. Scedrov. Relating strands and multiset rewriting for se-
curity protocol analysis. In P. Syverson, editor, 13th IEEE
Computer Security Foundations Workshop - CSFW’00, Cam-
bridge, UK, 3-5 July 2000. IEEE Computer Society Press.

[Low96] G. Lowe. Breaking and fixing the Needham-Schroeder public-
key protocol using FDR. In 2nd International Workshop on
Tools and Algorithms for the construction and Analysis of Sys-
tems. Springer-Verlag, 1996.

[Mil99] R. Milner. Communicating and mobile systems: The π-
calculus. Cambridge University Press, 1999.

[MR95] U. Montanari and F. Rossi. Contextual nets. Acta Informat-
ica, (32), 1995.

[NT92] B. B. Nieh and S. E. Tavares. Modelling and analyzing
cryptographic protocols using Petri Nets. In Advances in
Cryptology-AUSCRYPT ’92, volume 718 of LNCS, pages 275–
295. Springer-Verlag, 1992.

[Pau98] L. C. Paulson. The inductive approach to verifying crypto-
graphic protocols. Journal of Computer Security, 6:85–128,
1998.

[Pau99] L. C. Paulson. Proving security protocols correct. In Proceed-
ings of the 14th Symposium on Logic in Computer Science,
July 1999.

29

[PS93] A. M. Pitts and I. Stark. Observable properties of higher order
functions that dynamically create local names, or: What’s
new? In Mathematical Foundations of Computer Science,
Proc. 18th Int. Symp., Gdańsk, 1993, volume 711 of Lecture
Notes in Computer Science, pages 122–141. Springer-Verlag,
Berlin, 1993.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A method for ob-
taining digital signatures and public-key cryptosystems. Com-
munications of the ACM, 21(2):120–126, 1978.

[THG98a] J. Thayer, J. Herzog, and J. Guttman. Honest ideals on strand
spaces. In Proceedings of the 11th IEEE Computer Security
Foundations Workshop. IEEE Computer Society Press, 1998.

[THG98b] J. Thayer, J. Herzog, and J. Guttman. Strand space pictures.
Workshop on Formal Methods and Security Protocols, Indi-
anapolis, Indiana, June 1998.

[THG98c] J. Thayer, J. Herzog, and J. Guttman. Strand spaces: Why
is a security protocol correct? In 1998 IEEE Symposium on
Security and Privacy. IEEE Computer Society Press, 1998.

[Win87a] G. Winskel. Event structures. In Proceedings of the Advanced
Course on Petri nets, volume 255 of LNCS. Springer–Verlag,
1987.

[Win87b] G. Winskel. Petri nets, algebras, morphisms, and composi-
tionality. Information and Computation, 72:197–238, 1987.

[WN95] G. Winskel and M. Nielsen. Models for concurrency, vol-
ume IV. Oxford University Press, 1995.

30

Recent BRICS Report Series Publications

RS-01-13 Federico Crazzolara and Glynn Winskel. Events in Security
Protocols. April 2001. 30 pp.

RS-01-12 Torben Amtoft, Charles Consel, Olivier Danvy, and Karo-
line Malmkjær. The Abstraction and Instantiation of String-
Matching Programs. April 2001.

RS-01-11 Alexandre David and M. Oliver Möller. From HUPPAAL to
UPPAAL : A Translation from Hierarchical Timed Automata to
Flat Timed Automata. March 2001. 40 pp.

RS-01-10 Daniel Fridlender and Mia Indrika. Do we Need Dependent
Types? March 2001. 6 pp. Appears inJournal of Functional
Programming, 10(4):409–415, 2000. Superseeds BRICS Report
RS-98-38.

RS-01-9 Claus Brabrand, Anders Møller, and Michael I. Schwartzbach.
Static Validation of Dynamically Generated HTML. February
2001. 18 pp.

RS-01-8 Ulrik Frendrup and Jesper Nyholm Jensen.Checking for Open
Bisimilarity in the π-Calculus. February 2001. 61 pp.

RS-01-7 Gregory Gutin, Khee Meng Koh, Eng Guan Tay, and Anders
Yeo. On the Number of Quasi-Kernels in Digraphs. January
2001. 11 pp.

RS-01-6 Gregory Gutin, Anders Yeo, and Alexey Zverovich. Travel-
ing Salesman Should not be Greedy: Domination Analysis of
Greedy-Type Heuristics for the TSP. January 2001. 7 pp.

RS-01-5 Thomas S. Hune, Judi Romijn, Marïelle Stoelinga, and
Frits W. Vaandrager. Linear Parametric Model Checking of
Timed Automata. January 2001. 44 pp. To appear in Margaria
and Yi, editors, Tools and Algorithms for The Construction and
Analysis of Systems: 7th International Conference, TACAS ’01
Proceedings, LNCS, 2001.

RS-01-4 Gerd Behrmann, Ansgar Fehnker, Thomas S. Hune, Kim G.
Larsen, Paul Pettersson, and Judi Romijn. Efficient Guiding
Towards Cost-Optimality inUPPAAL. January 2001. 21 pp.
To appear in Margaria and Yi, editors, Tools and Algorithms
for The Construction and Analysis of Systems: 7th International
Conference, TACAS ’01 Proceedings, LNCS, 2001.

