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E�cient String Matching on Coded Texts

Dany Breslauer� Leszek G�asieniecy

Abstract

The so called �four Russians technique� is often used to speed up al�
gorithms by encoding several data items in a single memory cell� Given
a sequence of n symbols over a constant size alphabet� one can encode
the sequence into O�n��� memory cells in O�log�� time using n� log�
processors�

This paper presents an e	cient CRCW�PRAM string�matching al�
gorithm for coded texts that takes O�log log�m���� time� making only
O�n��� operations� an improvement by a factor of � 
 O�logn� on the
number of operations used in previous algorithms� Using this string�
matching algorithm one can test if a string is square�free and �nd all
palindromes in a string in O�log logn� time using n� log logn processors�

� Introduction

In the string�matching problem one is searching for occurrences of a pattern
string P ����m� in a text string T ����n�� There exist several O�n �m	 time se�
quential string�matching algorithms that are used in a large variety of applica�
tions� Galil �
�� published the �rst e
cient parallel string�matching algorithm�
His algorithm takes O�logm	 time and uses n processors in the concurrent�
read concurrent�write parallel random�access�machine model� If the symbols
of the input strings are taken from a constant size alphabet� then the number
of processors is reduced to n� logm� achieving an optimal speedup� or in other
words achieving a time�processor product that is equal to the running time of
the fastest sequential algorithm for the problem� �Notice that there is a trivial
constant time parallel string�matching algorithm that uses nm processors� Our
goal is to design fast parallel algorithms that use few processors�	 The saving
is obtained by using the so called �four Russians technique�� named after the
work of Arlazarov et al� ���� where each block of O�logm	 symbols is packed
into a single memory cell to facilitate comparisons of many symbols in a single
operation�
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Vishkin ���� generalized Galil�s algorithm and obtained an O�logm	 time
algorithm that uses only n� logm processors� regardless of the alphabet size�
Breslauer and Galil ���� gave an O�log logm	 time string�matching algorithm
that uses n� log logm processors� Breslauer and Galil ���� proved that if n �
O�m	� then this is the best time bound achievable by an optimal�speedup string�
matching algorithm that has access to the input strings only by pairwise symbol
comparisons�

Vishkin ���� presented an optimal�speedup string�matching algorithm that
takes O�log�m	 time for the pattern preprocessing and then only O�log�m	
time to �nd all occurrences of the pattern in the text� Galil �
�� improved the
text processing step to constant time� Goldberg and Zwick �
�� presented an
algorithm with a tradeo� between the the time spent in the pattern preprocess�
ing and the text processing steps� Recently� Crochemore et al� ���� discovered
an algorithm that takes O�log logm	 time to preprocess the pattern and then
constant time to �nd all occurrences of the pattern in the text� Crochemore et
al� also gave a randomized version of their pattern preprocessing algorithm that
takes only constant expected time� These algorithms access the input strings
by pairwise symbol comparisons and do not require any special assumption on
the alphabet size�

This paper gives a variant of Breslauer and Galil�s ���� string�matching
algorithm that takes O�log log�m��		 time making only O�n��	 operations�
after the input strings are coded in O�n��	 memory cells� The parameter
� � O�logn	� The input symbols� which are assumed to be taken from a
constant size alphabet� are encoded in O�log�	 time using n� log� processors�
Notice that the encoding step dominates the number of operations made� Thus
the new algorithm is inferior to the previously known parallel string�matching
algorithms since it has the additional restriction on the alphabet size� However�
the advantages of the algorithm become clear if the input strings are given in
their coded form�

Apostolico� Breslauer and Galil gave e
cient parallel algorithms for testing
if a string is square�free and for �nding all palindromes in a string ��� �� ���
Their algorithms share a similar structure� take O�log logn	 time utilizing
n logn� log logn processors� and rely on a procedure that is used to solve sev�
eral string�matching problems� Observing that it su
ces to encode the input
string only once and use the coded string as input to many string�matching
problem instances� we improve the processor bounds of these algorithms and
obtain optimal�speedup O�log logn	 time n� log logn�processor algorithms for
the two problems� We assume that the reader is familiar with these algorithms
and with the Breslauer�Galil string�matching algorithm�

The paper is organized as follows� Section 
 introduces the computation
model� Section � describes how the input strings are encoded and how the coded
strings are manipulated� The string�matching algorithm is given is Section �
and its applications for testing if a string is square�free and for �nding all
palindromes in a string are given in Section �� Concluding remarks and open
problems are given in Section ��






� The computation model

The computation model we use in this paper is the common concurrent�read
concurrent�write parallel random�access�machine� In this model� processors are
allowed to read and write simultaneously at the same memory location� If many
processors write to the same memory cell at the same time they are guaranteed
to write the same value� The arithmetic operations �� �� �� and integer division
� can be performed by each processor in constant time on any memory words�
Notice that the memory words must be able to hold numbers which are as large
as the lengths of the input strings�

The following lemma is often used in parallel algorithms� The claimed
bounds hold also in the weaker exclusive�read exclusive�write parallel random�
access�machine model�

Lemma ��� �Lander and Fischer ����� Given a sequence x�� � � � � xh	 and an
associative binary operation �	 one can compute the pre
x sums x��x��� � ��
xg	 for all g � �� � � � � h	 in O�log h	 time using h� log h processors�

In the CRCW�PRAM model� certain computations can be carried out much
faster�

Lemma ��� �Fich	 Ragde and Wigderson ����� Given a collection of h integers
from the range �� � � � � h	 it is possible to 
nd their minima value in constant time
using an h�processor CRCW�PRAM�

The last lemma will be used mainly to �nd the leftmost non�zero entry in
an array� We shall also use the following general theorem without going into
the details of the assignment of processors to their tasks�

Theorem ��� �Brent ���� Any parallel algorithm of time t that consists of a to�
tal of x elementary operations can be implemented on p processors in O�dx�pe�
t	 time�

� Encoding strings

Throughout the paper we assume that the input alphabet is � � f�� �� � � � � c��g�
for some �xed positive constant c� Since the memory words in our model are
able to store numbers as large as n� where n is the length of the string S����n�
being encoded� we could represent at least blogc nc symbols in each memory
word as a number in base c that has the symbols as its digits�

The new string�matching algorithm takes advantage of the coded represen�
tation of strings in two ways� fast comparison of blocks of several symbols and
table lookup of precomputed information� While the �rst use would bene�t
from packing as many symbols as possible in each memory word� the second
might require a substantial use of computational resources �time� processors�
space	 to compute and store the tables� The balance is achieved by packing
only � � max��� b�

�
logc nc	 symbols in each word� The parameters c and � will

be used throughout the paper�
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Given a string S����n�� we break the string into consecutive blocks of �
symbols and encode each block into a memory word� Thus� a string of length
n is encoded into a sequence of dn��e memory words� We shall continue to
refer to the symbols� the indices and the length of the original string� using the
encoded representation only when we wish to compare substrings fast or when
we wish to look up some information that we have precomputed for the coded
strings�

To manipulate the coded strings e
ciently we extend the repertoire of oper�
ations supported by our model to include the powers ch� for h � �� � � � � �� and to
support the modulo operation� The modulo operation can be implemented as
a mod b � a� b � ba�bc� and the powers ch are implemented by a table lookup�

Lemma ��� Given a string S����n� over a constant size alphabet	 one can en�
code the string into O�n��	 memory words in O�log�	 � O�log log n	 time
using n� log� � O�n� log logn	 processors�

Proof� The encoding consists of the string representation as a sequence of base
c numbers together with some lookup tables� Most of these tables are described
only later at the place where they are used� but their creation takes place when
the string S����n� is being encoded and they are considered part of the encoded
representation�

The table of powers of c mentioned above is precomputed by Lemma 
��
in O�log�	 time making O��	 operations� It occupies O��	 space� Notice that
the power table and other tables that are described later depend only on the
parameters c and �� The size of each table will not exceed O�n��	 and the time
to create each table will not exceed O�log�	 making at most O�n	 operations�

The string representation is created by encoding each consecutive block of
symbols S�g�� � � � �S�g������ as a base c number S�g��S�g����c� � � ��S�g�
�� �� � c���� By Lemma 
��� this computation is done in O�log�	 time making
O��	 operations� Since all the dn��e ��blocks are encoded simultaneously� the
encoding takes O�log�	 time making O�n	 operations� By Theorem 
��� the
whole encoding step takes O�log�	 time using n� log� processors� �

Using the encoded representation� we can save a factor of � in the number
of operations needed to compare two strings�

Lemma ��� It is possible to compare two coded strings of original length l and
to 
nd the position of the 
rst mismatch between them if they are not equal	 in
constant time and O�dl��e	 operations�

Proof� The algorithm will use a precomputed table CMP��a��b� that gives the
position of the �rst mismatch between the strings �a and �b� We use the notation
�a and �b to refer to both the integers that code � symbols and to the string
formed by these symbols� The size of the CMP table is O�c��	 � O�n��	 and
it can be computed in constant time making O�c����	 � O�n	 operations� We
describe how the computation of this table is carried out� The computation of
the other tables that are mentioned later is similar and will not be described in
such detail�
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Each entry of the table CMP��a��b� is computed independently and simulta�
neously by � processors� Notice that if symbols are indexed from � to �� then

the kth symbol of �a is given by the formula� b�a�ck��c mod c� The symbols of
�a and �b are extracted from the integer representation of these strings and the
corresponding symbols are compared simultaneously� The position of the �rst
mismatch is found by Lemma 
�
 in constant time making O��	 operations�
and is assigned to CMP��a��b��

Observe that the strings being compared might be speci�ed by indices in
some longer coded strings� Thus� their coded representations do not necessarily
starts on the boundaries of the memory words� Therefore� the algorithm �rst
extracts proper dl��e words that constitute the coded representation of each of
the two strings� Notice that the coded representation of the substring of length
� starting at position k � 
 of the string coded as �a followed by �b is given as�
b�a�ck��c� c��k � ��b mod ck��	�

The algorithm then compares the extracted coded representations and �nds
the leftmost coded words where the strings disagree in constant time and
O�dl��e	 operations by Lemma 
�
� Then� using the table CMP it �nds the
actual symbol within this memory words where the strings disagree� �

� String matching with coded strings

In this section we describe an algorithm that �nds all occurrences of a pattern
P ����m� in a text T ����n�� The input strings are assumed to be given in their
coded form with the coding parameter �� The algorithm takes O�log log�m��		
time and makes O�dn��e	 operations� If the strings are not already coded� one
can encode them as the single string S����n�m� � P ����m�T ����n��

Observe that for any text position t� � � t � n �m� �� where there is no
occurrence of the pattern� there must be at least one text position WT

t � such
that T �WT

t � 	� P �WT
t � t � ��� The position WT

t is called a witness for the
non�occurrence of the pattern at text position t�

The output of the string�matching problem consists of a length n boolean
vector whose entries indicate if there are any occurrences of the pattern start�
ing at each of the corresponding text positions� This boolean vector will be
encoded the same way as the input strings� with the same parameter �� and
the alphabet symbols � and �� In addition to the boolean vector the algorithm
provides witnesses for the non�occurrences of the pattern� Notice that since our
algorithm makes only O�dn��e	 operations it is not possible to list all witnesses
as in other string�matching algorithms�

The main idea in the new string�matching algorithm is that the witnesses
are given implicitly where any speci�c witnesses can be computed from the
output of the algorithm by a single processor in constant time whenever needed�
The algorithm is otherwise similar to the parallel string�matching algorithm
of Breslauer and Galil ���� with certain modi�cations that allow it to take
advantage of coded strings in order to match short patterns by table lookup�

Theorem ��� The string�matching problem on coded pattern and text strings
can be solved in O�log log�m��		 time making O�dn��e	 operations and using
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O�dn��e	 space�

We outline the structure of the algorithm next� Initially� there are n�m��
text positions at which an occurrence of the pattern might start� These positions
are called potential occurrences� Using Lemma ��
� one can verify in constant
time making O�dm��e	 operations if any given potential occurrence is a real
occurrence� However� verifying all O�n	 potential occurrences this way is too
costly if the pattern is long� The strategy followed by most e
cient parallel
string�matching algorithms �rst eliminates many potential occurrences and then
veri�es which of the remaining potential occurrences are real occurrences�

De�nition ��� A string S����k� has a period of length p if S�i� � S�i� p�	 for
i � �� � � � � k� p�

The shortest non�zero period length of a string S����k� is called the period
length of S����k�� Denote by � the period length of the pattern P ����m�� If p is
not a period length of the pattern P ����m�� then there must exist some pattern
position WP

p � such that P �WP
p � 	� P �WP

p � p�� The positions WP
p are called

witnesses for non�periods of the pattern� Notice that the witnesses WP
p are

de�ned for all p � �� � � � � � � ��
Vishkin ���� suggested the duel method to eliminate potential occurrences

e
ciently� His method� which is described next� has been used in all e
cient
parallel string�matching algorithms afterward as well as in sequential and par�
allel two�dimensional matching algorithms ��� ��� ��� 
��� The idea in duels is
that if there are two potential occurrence of the pattern at positions p and q
of the text� such that � � q � p � �� then since P �WP

q�p� 	� P �WP
q�p � �q � p	��

the text symbol T �p � WP
q�p � �� can not be equal both to P �WP

q�p� and to

P �WP
q�p� �q� p	�� Therefore� text position p�WP

q�p� � must be a witness for
the non�occurrence of the pattern at text position p or at text position q �pos�
sibly at both positions	 and the algorithm can eliminate one of the potential
occurrences at p or at q by making a single pairwise symbol comparison�

Observe that if the pattern occurs at positions p and q of the text� such that
� � q � p � m� then it has a period of length q � p and therefore � � q � p�
Thus� there can be no more than n�� occurrences of the pattern in the text�
Using duels� it is possible to eliminate e
ciently potential occurrences that
are close to each other� leaving at most n�� potential occurrences� Still� there
might be too many occurrences to verify separately if the period length � is
much smaller than the pattern length� In this case the algorithm must follow a
di�erent strategy� The algorithm proceeds in few steps�

�� If the pattern length m � 
�� then the string�matching problem is solved
by table lookup as described in Lemma ����


� If the pattern length m � 
�� then the pattern preprocessing step de�
scribed in Section ��
 is invoked� It �nds the period length of the pattern�
�� and the witnesses WP

p �

�



�a	 If the pattern is found to be non�periodic� namely� if m � 
�� then
the algorithms �nds the occurrences of the pattern directly� as de�
scribed in Lemma ����

�b	 If the pattern is periodic� namely� if m � 
�� then the algorithm only
searches for occurrences of the non�periodic pattern pre�x P ����
���
This is done as described in Lemma ��� if this pattern pre�x is short
or as described in Lemma ��� if it is long�

The algorithm then reconstructs from the occurrences of this pattern
pre�x and by matching some short pattern su
x� the occurrences of
the complete pattern as described in Lemma ����

In the description below we show how the algorithm computes the witnesses
WP

p for non�periods of the pattern� We do not specify exactly how the witnesses

WT
t for non�occurrences of the pattern can be computed since their computation

is similar to the pattern witnesses and they can be easily reconstructed by
tracing the steps of the algorithm�

��� Text processing

The saving in the number of processors used by the algorithm is achieved mainly
by matching short patterns by table lookup�

Lemma ��� One can 
nd all occurrences of the pattern P ����m�	 such that
m � d�	 for some 
xed constant d � �	 in the text T ����n�	 in constant time
making O�dn��e	 operations and using O�dn��e	 space�

Proof� We show how the pattern occurrences can be found making a constant
number of operations when the text length n � m��� �� If the text is longer�
then the same procedure is applied simultaneously in overlapping text blocks of
length m� �� �� which start � positions apart� making O�dn��e	 operations�

The algorithm precomputes the lookup table SM� �t�� �t�� �p� l� that gives the
answer to the string matching problem with the pattern �p of length l� � � l � ��
in the text of length l���� that is coded in �t� and �t�� The SM table provides
the coded boolean vector representing all occurrences together with witnesses
for all non�occurrences that are represented in an array of size �� This table
requires O�c����	 space�

If the pattern is a longer string that is coded as �P����m� � �P�
�P� � � � �Pd�

�d � �	� � m � d�� and the text is coded as �T � �T� �T� � � � �Td��� then the
algorithm solves the string�matching problem by d table lookups� This is done
by observing that there is an occurrence of the pattern at position q of the text
�T � � � q � �� if and only if there are occurrences of �Pi at position q of �Ti �Ti���
for all i � �� � � � � d � �Pi�s have length � except for �Pd that might be shorter	�

The coded boolean vector representing all occurrences is computed bymask�
ing the coded representation of the solutions to the d smaller string�matching
problems� This can be done e
ciently by precomputing the lookup table
MASK��a��b� that gives the coded boolean vector that represents the occur�
rences that are represented in both boolean vectors �a and �b� The witnesses for
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the non�occurrences will not be combined and when there is a need for a speci�c
witness it can be found in constant time by looking it up in the output of the
d smaller string�matching problems sequentially� �

����� Periodic patterns

In this section we describe how the string�matching algorithm deals with long
periodic patterns� Namely m � max�
�� 
�	� As mentioned above� in this
case the general strategy of eliminating potential occurrences and verifying the
remaining ones is too costly since there might be too many real occurrences�
The algorithm searches only for occurrences of the pattern pre�x P ����
��� which
is non�periodic by the following lemma� and then �nds the occurrences of the
whole pattern by �counting� consecutive occurrences of this pre�x� Recall that
the occurrences of P ����
�� are found by Lemma ���� if � � �� and by Lemma
��� otherwise�

Lemma ��� �Lyndon and Schutzenberger �
��� If a string of length k has two
periods of lengths p and q and p � q � k	 then it also has a period of length
gcd�p� q	�

Breslauer and Galil ���� suggested the following method to �nd occurrences
of the full pattern given the occurrences of the pattern pre�x P ����
��� Assume
without loss of generality that the text length n � �m�
� Call an occurrence
of the pattern pre�x P ����
�� at text position i an initial occurrence if there
is no occurrence of this pre�x at position i � � and a 
nal occurrence if there
is no occurrence of this pre�x at position i � �� Let I be the largest initial
occurrence in the �rst m�
 positions of the pattern and let F be the smallest
�nal occurrence that is larger than I� It is not di
cult to verify that the only
occurrences of the pattern pre�x P ����
�� that are occurrences also of the entire
pattern are those between positions I and F � � � �bm��c � �	 and possibly
also the occurrence at position F � � � �bm��c� 
	 if there is an occurrence of
the pattern pre�x P ����l�� l � m� � � bm��c� at position F � 
��

Lemma ��	 Given the occurrences of the pattern pre
x P ����
�� in the text
T ����n�	 it is possible to 
nd the occurrences of the entire pattern in constant
time making O�n��	 operations and using O�n��	 space�

Proof� Recall that n � �m�
� If the pattern period � � �� then the ini�
tial and �nal occurrences are found by the lookup tables INIT ��t�� �t�� �� and
FINAL��t�� �t�� �� that give for the boolean vectors �t� and �t� that represent
the occurrences of the pattern pre�x P ����
��� the boolean vectors representing
only the initial or �nal occurrences� respectively� If the pattern period � � ��
then the occurrences of the pattern pre�x P ����
�� must be spread at least �
positions apart from each other and the initial and �nal occurrences are found
by examining for each occurrence of the pattern pre�x P ����
�� if there is an
occurrence � position before and after it� In both cases the initial and �nal
occurrences can be clearly found in constant time and O�n��	 operations�
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The important initial and �nal occurrences I and F are then found similarly
to Lemma ��
� Using I and F and after verifying if there is an occurrence of
the pattern pre�x P ����l�� l � m � � � bm��c� at position F � 
�� by Lemma
��
� the algorithm knows which occurrences of the pattern pre�x P ����
�� are
actually occurrences of the whole pattern� Notice that the output boolean
vector representing the occurrences of the pattern can be created e
ciently since
these occurrences are a contiguous subset of the occurrences of the pattern pre�x
P ����
��� Thus� the whole computation takes constant time� makes O�n��	
operations and uses O�n��	 space� �

����� Non
periodic patterns

In this section we describe how the string�matching algorithm deals with long
non�periodic patterns� Namely 
� � m � 
� and therefore � � ��

Lemma ��� If the pattern P ����m� has period length � � �	 then it contains a
substring P �z��z� 
�� ��	 called a synchronizing block	 with period length that
is at least ��

Proof� Recall that m � 
�� Let �� be the period length of the pattern pre�x
P ����
��� If �� � �� then this pre�x is the required substring� Otherwise� let
P ����l� be the longest pre�x of the pattern whose period length is ��� By Lemma
���� the period length of P �l � 
� � 
��l� is also �� and the period length of
P �l� 
�� 
��l� �� is at least �� �

The pattern preprocessing described in the next section computes the period
length of the pattern� the witnesses WP

p and a synchronizing block which are
used in the next lemma�

Lemma ��� The string matching problem with the coded pattern P ����m� and
text T ����n�	 such that 
� � m � 
�	 is solved in O�log log�m��		 time making
O�n��	 operations and using O�n��	 space�

Proof� The algorithm starts eliminating potential occurrences by �nding all
occurrences of the synchronizing block P �z��z � 
� � �� in the text using the
table lookup in Lemma ���� Observe that there might be an occurrence of the
pattern at text position q only if there is an occurrence of the synchronizing
block P �z��z � 
� � �� at text position q � z � �� Since the period length of
the synchronizing block is at least �� the remaining potential occurrences must
be spaced at least � positions apart and there can be at most dn��e potential
occurrences left� Namely� at most one potential occurrence left within each
coded word representing the text� The positions of the remaining potential
occurrences are written into an array of size O�n��	� Notice that the witnesses
for the non�occurrences of the potential occurrences eliminated in this step are
given implicitly by matching the synchronizing block� The other witnesses that
are computed later will be stored explicitly in an array�

The elimination of the remaining potential occurrences continues as in the
algorithm of Breslauer and Galil ����� Notice that� for technical reasons� the pat�
tern preprocessing step computes the witnesses WP

p � only for p � �� � � � � dm�
e�
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The algorithm �rst partitions the text into consecutive blocks of length
� log log�m��	� There are at most log log�m��	 potential occurrences left in
each such block� By performing duels� the algorithm eliminate all but at most
one potential occurrence in each block� This takes O�log log�m��		 time using
a single processor per block� The entire computation makes O�n��	 operations�

The algorithm then partitions the text into blocks of length dm�
e and
proceed in each block simultaneously using m�� log log�m��	 processors per
block� In each block there are at most m�� log log�m��	 potential occurrences
left� The algorithm recursively partitions blocks with h potential occurrences
into

p
h blocks with

p
h potential occurrences� giving

p
h processors to handle

each block� The recursive step leaves at most one potential occurrence in each
of the

p
h blocks� Then� using h processors for performing duels between all

pairs of the remaining
p
h potential occurrences in the block� the algorithm

eliminates all but one potential occurrence in the block� The depth of the
recursion� which is the time spent� is O�log log�m��		�

After the elimination of potential occurrences described above there are at
most O�n�m	 potential occurrences left� The algorithm veri�es these potential
occurrences to be real occurrences using Lemma ��
� The entire computation
takes O�log log�m��		 time making O�n��	 operations and using O�n��	 space�
�

��� Pattern preprocessing

The pattern preprocessing is invoked only if m � 
�� It has to �nd the
period length � of the pattern and the witnesses WP

p � For technical rea�

sons� the pattern preprocessing step computes only the witnesses WP
p � for

p � �� � � � �min�dm�
e� � � �	� In addition� if � � �� then the pattern pre�
processing step �nds also a synchronizing block�

Notice� that if the period length of the pattern � � dm�
e� then it is not
computed precisely� In this case the pattern is non�periodic and the period
length � is not used by the algorithm�

Lemma ��
 The pattern preprocessing step with the coded pattern P ����m�	
such that m � 
�	 takes O�log log�m��		 time making O�m��	 operations and
using O�m��	 space�

Proof� The pattern preprocessing step �rst �nds a synchronizing block and
then uses this block and witnesses that it has already computed to compute
more witnesses in iterations that resemble the text processing step� The indices
p for which the witnesses WP

p are not yet computed are called potential period

lengths� The witnesses WP
p � p � �� � � � �min�dm�
e� �� �	� will be given implic�

itly� where any speci�c witness can be produced from the information computed
in constant time by a single processor�

The pattern preprocessing uses a precomputed lookup table� similarly to
the SM table from Lemma ���� that gives the boolean vector representing the
period lengths and the witnesses for the non�periods of a short string� If the
pattern length m � ��� then the pattern preprocessing step will be solved
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directly by this table lookup�� Thus� from here on we assume that the pattern
length m � ���

Our �rst goal is to �nd a synchronizing block and to reduce the number of
potential period lengths to O�m��	� Recall the constructive nature of the proof
of Lemma ���� Using the precomputed table of period lengths of short strings�
the algorithm �nds the period length �� of the pattern pre�x P ����
��� If �� � ��
then the algorithm has found the synchronizing block P ����
��� Otherwise� if
�� � �� the algorithm checks if the whole pattern has period length ��� by Lemma
��
� If �� turns out to be the period length of the whole pattern� then the
only information required from the pattern preprocessing step is this period
length � � ��� and the pattern preprocessing is completed� Otherwise� the
synchronizing block P �z��z� 
�� �� has been found�

If z � �� � � dm�
e� then by the construction of the synchronizing block
in Lemma ���� the pattern pre�x P ����z � 
� � 
� has period length �� and
P ����z � 
� � �� does not have this period length� Thus� by Lemma ���� full
occurrences of the pattern pre�x P ����
�� that start in the �rst dm�
e positions
of the pattern� start at positions k�� � �� Matching the pattern pre�x P ����
��
by Lemma ���� one obtains the witnesses WP

p � except for the multiples p � k���
The position z � 
�� � where the period of length �� terminates provides the
witness WP

�� � and since the pattern pre�x P ����z � 
� � 
� has period length
��� WP

p � z � 
� � �� for all the multiples p � k��� such that � � p � dm�
e�
Thus� the witnesses WP

p can be reconstructed either by matching the pattern

pre�x P ����
��� by Lemma ���� if p is not a multiple of ��� or WP
p � z � 
�� �

otherwise�
If z���� � dm�
e� then the algorithm �nds all occurrences of the synchro�

nizing block P �z��z�
���� in the pattern� by Lemma ���� Observe that the wit�
ness to the non�occurrence of the synchronizing block at pattern position p� z

correspond to the witnessWP
p � The occurrences� which must be spaced at least

� positions apart� leave at most O�m��	 potential period lengths in the �rst half
of the pattern� �This is not completely true� If dm�
e � z�
��� � dm�
e���
then there can be no occurrences of the synchronizing block at positions that
are larger than or equal to m � z � 
�� However� it is possible to achieve
the goal by searching for occurrences of the pattern pre�x P ����
�� at position
m�z�
�� � � �� dm�
e�	 The positions of the remaining potential period lengths
are written into an array and their witnesses will be computed and stored ex�
plicitly as we show next� Observe that when a speci�c witness is called for�
it can be either reconstructed by matching the synchronizing block again or it
will be stored explicitly in a table�

The computation of the remaining witnesses proceedings in the same fash�
ion as the string�matching algorithm of Breslauer and Galil ����� We sketch
here only a non�optimal version of the algorithm making O�m log log�m��	��	
operations� The algorithm can be made optimal similarly to the algorithm of
Breslauer and Galil�

�An alternative implementation would match these short patterns by the table lookup in
Lemma ���� This would reduce the size of the lookup table we use here to �nd the period
lengths of short strings� but would not eliminate completely the need for this lookup table�
since this table is still used later to �nd the period length of the pattern pre�x P�
������
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The algorithm proceeds in iterations and maintains the invariant that at the
beginning of iteration number i� there is at most one potential period length
�yet�to�be�computed witness	 in each block of length ki� where�

ki � m
�� �

�i � � �

�i for i � �� � � � � log log�m��	�

Clearly� the invariant holds at the beginning of iteration number �� since
the potential period lengths remaining after the �rst part of the computation
are spaced at least k� � � positions apart�

At the beginning of iteration number i� there are at most ki���ki potential
period length in each block of length ki��� The algorithm checks using Lemma
��
� which of the potential period lengths in the �rst ki�� block is a period
length of the pattern pre�x P ����
ki���� Those potential period length which
are eliminated have their witness determined� while the remaining potential
period lengths� if any� are multiples of the shortest remaining period length� by
Lemma ���� This computation takes constant time and O�ki����	 operations
for each potential period� or O�k�i���ki�	 � O�m��	 operations in total�

If there are any potential period lengths remaining in the �rst ki�� block�
then the algorithm veri�es whether the shortest one is the period length of the
whole pattern by Lemma ��
� If it is found to be the period length then the
computation is complete�

Otherwise� the smallest position at which this periodicity is terminated is a
witness for all multiples of the shortest period in the �rst ki�� block� Now� it
remains only to eliminate all but at most one potential period length in each
ki�� block� before proceeding to the next iteration�

It is possible to eliminate all but at most one potential period length in each
ki�� block using duels� since at this point we have the witnesses WP

p � for all
p � �� � � � � ki��� The duels� however� are slightly di�erent from those used in the
text processing step� since occurrences might be overhanging� a duel that has
to produce one of the witnesses WP

i or WP
j � for i � j � dm�
e� will normally

produce the witness i�WP
j�i ��� if it is within the pattern� otherwise the duel

produces the witnesses WP
i �WP

j�i � j � i or WP
j �WP

j�i�
The duels are carried out in the same fashion as in the text processing

step� However� we allow the algorithm to use m�� log log�m��	 processors�
The duels will take at most O�log log�m��		 time in the �rst two iterations
of the pattern preprocessing� after which they take constant time since the
number of remaining potential period lengths will be small enough relatively to
the number of available processors�

The whole pattern preprocessing step described above takesO�log log�m��		
time� The overall number of operations used is O�m��	 except at the step
that veri�es if the shortest remaining potential period length in each iteration
is the period length of the whole pattern� This step uses O�m��	 operation
in each iteration and thus O�m log log�m��	��	 operations over all iteration�
However� this step can be implemented more economically� making only O�m��	
operations ����� �
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� Applications

In this section we present two application of the string�matching algorithm
described above in reducing the number of processors used in known parallel
algorithms for testing if a string is square�free and for �nding all palindromes
in a string� The reduction in the number of processors is achieved since the
input string S����n� has to be encoded only once while its encoded substrings
are presented several times as input to the string�matching algorithm� Recall
that the input string S����n� is encoded with the parameter � � O�logn	�

��� Testing if a string is square�free

A non�empty string of the form xx is called a repetition� A square is de�ned
as a repetition xx� where x is primitive� or in other words x 	� vh for all strings
v and integers h � �� Strings that do not contain any substring that is a
repetition are called repetition�free or square�free� For example �aa�� �abab� and
�baba� are the repetitions which are contained in the string �baababa�� It is not
di
cult to verify that any string with at least four symbols over alphabets with
two symbols contains a square� However� there exist in�nite length strings on
three letter alphabets that are square�free as shown by Thue ���� ����

In the sequential setting� algorithms for testing if a string is square�free and
for �nding all repetitions in a string were designed by Apostolico and Preparata
���� Crochemore ���� ���� Kosaraju �
��� Main and Lorentz ���� �
� and Rabin
����� Main and Lorentz ���� proved that it is possible to �nd all repetition in a
string in O�n logn	 time using pairwise comparison of input symbols that test
for equality� They have also shown that  �n logn	 equality tests are necessary
even to decide if a string is square�free� Main and Lorentz ��
� have shown using
the �four Russians technique� that if the input alphabet has constant size� then
it is possible to test if a string is square�free in O�n	 time� The same bound
was obtained by Crochemore ���� using a di�erent method� Notice that it is not
possible to list all squares in O�n	 time since there might be too many squares
�
� ����

In the parallel setting� Crochemore and Rytter ���� ��� test if a string is
square�free in O�logn	 time using n processors and O�n���	 space� Apostolico
��� designed an algorithm that tests if a string is square�free and also detects all
squares within the same time and processor bounds using only linear auxiliary
space� If the input alphabet has constant size� then Apostolico�s algorithm can
use the �four Russians technique� to tests if a string is square�free in O�logn	
time utilizing only n� logn processors�

Apostolico and Breslauer ��� gave a parallel implementation of the sequential
algorithm of Main and Lorentz ��
� to test if a string is square�free and �nd all
square in a string using equality tests in O�log logn	 time using n log n� log log n
processors� If the input alphabet has constant size� then the number of proces�
sors used by their algorithm to test if a string is square�free can be reduced to
n� log logn by using the new string�matching algorithm� These bounds com�
pare favorably also with the O�logn	 time algorithm given by Apostolico ��� for
testing if a string over a constant size alphabet is square�free� Notice that all
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the parallel algorithms mentioned above achieve an optimal speedup since their
time�processor product is the same as the time complexity of the fastest known
sequential algorithm under the same assumptions on the input alphabet�

Theorem 	�� There exists an algorithm to test if a string S����n� over a con�
stant size alphabet is square�free in O�log logn	 time using n� log logn proces�
sors and O�n	 space�

The details of the algorithm can be found in Apostolico and Breslauer�s
paper ���� The necessary modi�cations to take advantage of the coded strings
are similar to� and simpler than those of the palindrome detection algorithm
that is discusses in more details next�

��� Finding all palindromes in a string

Palindromes are symmetric strings that read the same forward and backward�
Formally� a non�empty string w is a palindrome if w � wR� where wR denotes
the string w reversed� It is convenient to distinguish between even length palin�
dromes that are strings of the form w � vvR and odd length palindromes that
are strings of the form w � vavR� where v is an arbitrary string and �a� is a
single alphabet symbol�

Given a string S����n�� we say that there is an even palindrome of radius R
centered at position k of S����n�� if S�k � i� � S�k � i � ��� for i � �� � � � �R�
We say that there is an odd palindrome of radius �R centered on position k of
S����n�� if S�k� i� � S�k� i�� for i � �� � � � � �R� The radius R �or �R	 is maximal
if there is no palindrome of radius R�� centered at �on	 the same position� In
this section we will be interested in computing the maximal radii R�k� and �R�k�
of the even and the odd palindromes which are centered at �on	 all positions k
of S����n�� Notice that if we double each input symbol� then odd palindromes
become even and thus� without loss of generality� we can concentrate on �nding
only the maximal radii of the even palindromes ����

In the sequential setting� Manacher ����� and Knuth� Morris and Pratt �
��
presented linear�time algorithms that �nd the initial palindromes �palindrome
pre�xes	 of a string� Galil �

� and Slisenko ���� presented real�time algorithms
on multi�tape Turing machines to �nd all initial palindromes� A closer look at
Manacher�s algorithm reveals that it not only �nds the initial palindromes� but
it also computes the maximal radii of palindromes centered at all positions of
the input string using pairwise symbol comparisons that test for equality� Thus
it solves the problem we consider in this section in O�n	 time� Notice that
although the similarity between the de�nitions of squares and palindromes is
obvious� the computational complexities of detecting squares and palindromes
using equality tests are inherently di�erent� The parallel algorithms discussed
in this paper� however� are quite similar�

In the parallel setting� Crochemore and Rytter ���� presented an algorithm
that �nds all palindromes in a string in O�logn	 time using n processors and
O�n���	 space� Their algorithm assumes that the alphabet symbols are small
integers� Breslauer and Galil ��
�� using an observation of Fischer and Paterson
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�
��� described an algorithm that �nds all initial palindromes in a string in
O�log logn	 time and n� log logn processors using equality tests�

Apostolico� Breslauer and Galil ��� gave an algorithm that can �nd all palin�
dromes in a string using equality tests in O�log logn	 time and n log n� log log n
processors� They also gave an optimal�speedup algorithm that �nds all palin�
dromes in a string over constant size alphabets in O�logn	 time and n� logn
processors� using the �four Russians technique�� We show next that if the
input alphabet has constant size then the number of processors used in their
O�log logn	 time algorithm can be reduces to n� log logn� achieving an optimal
speedup�

Theorem 	�� There exists an algorithm that 
nds all even palindromes in a
string S����n� over a constant size alphabet in O�log log n	 time using n� log log n
processors and O�n	 space�

We outline the main parts of the algorithm of Apostolico� Breslauer and
Galil ��� and point out where we take advantage of coded strings� The miss�
ing proofs and a more complete description of the algorithm can be found in
Apostolico� Breslauer and Galil�s paper� Notice that the algorithm sometimes
refers to reversed substrings� and thus we have to encode both the original input
string and its reverse� Alternatively� we can precompute a table that will pro�
vide for each coded block of symbols� the coded representation of the reversed
block� To simplify the presentation� assume without loss of generality that the
algorithms can access symbols whose indices are out of the boundaries of the
input string� These symbols are considered to be di�erent from each other and
from the symbols of S����n��

The main observation that allows to �nd the radii of many palindromes
together is given in the following lemma�

Lemma 	�� Assume that the string S����n� contains an even palindrome whose
radius is at least r centered at position p� Furthermore	 let S��L���R� be the
maximal substring that contains S�p � r��p� r � �� and is periodic with period
length 
r� Namely	 S�i� � S�i � 
r�	 for i � �L� � � � � �R � 
r	 and S��L � �� 	�
S��L � 
r� �� and S��R � �� 	� S��R � 
r � ���

Then the maximal radii of the palindromes centered at positions q � p� lr	
for integral positive or negative values of l	 such that �L � q � �R	 are given as
follows�


 If q � �L 	� �R � q � �	 then the radius is exactly min�q � �L� �R � q � �	�


 If q � �L � �R � q � �	 then the radius is larger than or equal to q � �L�
The radius is exactly q � �L if and only if S��L � �� 	� S��R � ���

The algorithm proceeds in independent stages which are computed simul�
taneously� In stage number 	� � � 	 � blog� nc � �� the algorithm computes all
entries R�i� of the radii array such that �l� � R�i� � �l�� for l� � 
�� Notice
that each stage computes disjoint ranges of the radii values and that all possible
radii values are computed by some stage�
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The remainder of this section describes a generic stage number 	� Partition
the input string S����n� into consecutive blocks of length l�� Stage number 	
consists of independent sub�stages that are assigned to each such block and
computed simultaneously� Each sub�stage �nds the radii of all palindromes
which are centered in the block that it is assigned to and whose radii are in
the range computed by stage 	� Sometimes palindromes whose radii are out of
this range can be detected� but these radii do not have to be written into the
output array since they are guaranteed to be found in an other stage�

The sub�stage that is assigned to block number h starts with a call to
the string�matching algorithm to �nd all occurrences of the four consecutive
blocks S��h � �	l� � ���hl��� reversed� in S��h � 
	l� � ����h � �	l� � ��� Let
p� � p� � � � � � pr denote the indices of all these occurrences� The next lemma
states that we essentially found all �interesting� palindromes�

Lemma 	�� There exists a correspondence between the elements of the fpig
sequence and all palindromes that are centered in block number h and whose
radii are large enough�


 If pi � hl� is odd	 then pi corresponds to an even palindrome which is
centered at position �pi � hl� � �	�
�


 If pi � hl� is even	 then pi corresponds to an odd palindrome which is
centered on position �pi � hl�	�
�

Each palindrome whose radius is at least �l�� � has some corresponding pi	
while palindromes that correspond to some pi are guaranteed to have radii that
are at least �l��

Lemma 	�	 The sequence fpig	 which is de
ned above	 forms an arithmetic
progression�

By the last lemma the sequence fpig can be represented by three integers�
the start� the di�erence and the sequence length� This representation can be
computed from the output of the string matching algorithm in constant time
and O�dl���e	 operations since it su
ces to �nd the positions of the �rst� second
and last occurrences� De�ne the sequence fqig� for i � �� � � � � l� to list all centers
of the even palindromes that correspond to elements in fpig� By Lemma ����
the sequence fqig also forms an arithmetic progression and therefore it can also
be computed and manipulated e
ciently�

If the fqig sequence does not contain any element� then there are no even
palindromes whose radius is at least �l� that are centered in the current block�
If there is only one element q�� then by Lemma ��
� we can �nd in constant time
and O�dl���e	 operations what is the radius of the palindrome that is centered
at q� or we can conclude that it is too large to be computed in this stage� If
there are more elements� let q denote the di�erence of the arithmetic progression
fqig� The next lemma shows how to �nd the radii of the palindromes centered
at fqig e
ciently�
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Lemma 	�� It is possible to 
nd the radii of all even palindromes centered
at positions in fqig	 which are in the range that is computed in this stage	 in
constant time and O�dl���e	 operations�

Proof� Let 
L be the smallest index such that q���l� � 
L � q� and S�
L��q��
�� � S�
L�
q��q��
q���� and 
R be the largest index such that ql � 
R � ql��l�
and S�ql � 
q��
R � 
q� � S�ql��
R�� The indices 
L and 
R are computed in
constant time and O�dl���e	 operations by Lemma ��
� By Lemma ���� the
radius of the palindrome centered at position qi is at least �i � min�qi�
L� 
R�
qi��	� If �i � �l�� then the radius of the palindrome centered at qi is too large
to be computed in this stage and it does not have to be determined exactly�
Otherwise� the radius is exactly �i except for at most one of the qi�s which
satis�es qi� 
L � 
R� qi��� For this particular qi� by Lemma ��
� we can �nd
in constant time and O�dl���e	 operations what is the radius of the palindrome
or we can conclude that it is too large to be computed in this stage� �

The number of radii that are computed in some given sub�stage can be as
large as O�l�	� This might cause a scheduling problem since even if the overall
algorithm can make enough operations to update the whole radii array� it can
not make more than O�dl���e	 operations in the given sub�stage� To overcome
this problem we agree that the algorithm will output only few representatives for
each group of radii that are found in the same sub�stage� These representative
will contain enough information to reconstruct the radii of all palindromes later�

The algorithm partitions the output array R�h� into contiguous blocks of
length �� When some palindromes are discovered� it writes only one representa�
tive for each palindrome group per each block� The representative will contain a
description of the part of the fqig sequence that falls within the block together
with 
L and 
R� Thus� the algorithm does not write more than O�dl���e	
representatives�

After all stages and sub�stages are completed� in each ��block of the output
array R�k�� the number of palindromes to be reconstructed from the represen�
tatives is counted� This can be done in O�log�	 time using �� log� processors
per block by Lemma 
��� Then� the � processors that are available in each
block of length � can be properly assigned to create the complete output array
with the radii of all palindromes�

Proof of Theorem	��� Stage number 	 has bn�l�c sub�stages� Each sub�stage
solves a string�matching problem and then by Lemma ���� it �nds the palin�
dromes that correspond to the occurrences discovered� Thus� each sub�stage
takes O�log log�l���		 time and makes O�dl���e	 operations using O�dl���e	
space� Therefore� stage number 	 takes T� � O�log log�l���		 time and makes
O�dl���e � bn�l�c	 operations using O�dl���e � bn�l�c	 space�

Recall that � � O�logn	� The algorithm takes maxT� � O�log log n	 time�
In all the log n stages� the algorithm makes O�n	 operations and uses O�n	
space� The last step that reconstructs all entries of the output radii array from
their representatives also takes O�log logn	 time making O�n	 operations and
using O�n	 space� �
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� Conclusions

The string�matching algorithm presented in this paper takes advantage of the
bounded alphabet size to reduce the number of processor used� Since the
lower bound of Breslauer and Galil ���� �
� does not hold if the alphabet has
constant size� one can hope to design an optimal�speedup algorithms for sev�
eral string problems� such as the string�matching� the square�detection and the
palindrome�detection problems� that will achieve faster running times over con�
stant size alphabets�

An other interesting open question remaining is whether there exists a fast
optimal�speedup palindrome detection algorithm using only pairwise symbol
comparisons�
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