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Abstract

I solve a conjecture originally studied by M� Ajtai� It states that for di�erent

primes q� p the matching principles Count�q� and Count�p� are logically inde�

pendent� I prove that this indeed is the case� Actually I show that Count�q�

implies Count�p� exactly when each prime factor in p also is a factor in q�

� The logic of elementary counting

�She loves me� she loves me not� she loves me�� � �� The �nal answer does not depend

on the order in which the leaves are pulled of� Every child who is familiar with the

process of counting knows that� The underlying logical principle states that a set A

has a well�de�ned cardinality modulo �� Yet� the Count��	 principle can fail in quite

strong systems of Arithmetic 
���
��� Similarly for the counting principle modulo p

�Count�p		 where she can be in p states of mind�

This is very di�cult to visualise� In ���� Cohen invented the famous technique of

forcing� He used the method to show the independence of the continuum conjecture�

Inspired by these ideas Ajtai showed that the elementary pigeon�hole principle need

not hold in strong systems of Arithmetic 
��� Ajtais result was a major break through�

The main novelty was the mixture of forcing and powerful probabilistic techniques�

The Count�q	 versus Count�p	 problem has various formulations and variants�

The most famous variant is from circuit complexity theory 
���� It asks �in the

�This work was initiated at Oxford University England�
yBasic Research in Computer Science� Centre of the Danish National Research Foundation�
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base case	 whether there exist bounded depth� polynomial size circuits which counts

the number of ��s �in the input string	 modulo p� This was answered �negatively	

independently in 
��� and 
��� Later 
��� gave a near optimal exponential lower bound�

The question becomes particular challenging if we also allow gates which can count

modulo q� In 
��� the case was settled for di�erent prime numbers q and p� The

general classi�cation is still open� It has been conjectured that the answer is positive

exactly when q contains all prime factors in p 
��� However even the simple case where

q  � and p  � has now been open for more than �ve years �PC� Haastad� Krajicek�

Pudlak	�

Ajtais version of the problem is technically more involved ��presumably more dif�

�cult� to cite 
���	� One formulation �given in 
���	 concerns the question whether

for di�erent primes q and p there exist arithmetical models M � which satis�es the

Count�q	 principle� but which does not satis�es the Count�p	 principle� The method

in 
��� is not su�cient� Still circuit complexity �especially the method of collapsing

circuits by use of random evaluations	 is of major importance 
���� 
����

In this paper I answer Ajtais question� Actually I give a complete classi�cation�

It agree with what has been conjectured for the circuits� I�e� the answer is positive

exactly when all prime factors in p belong to q�

��� Non�standard Arithmetic

It it well known that there are interesting and useful geometrical structures in which

the �obvious	 parallel postulate fail� The models I construct in this paper �and the

ones constructed in 
�� and 
��	 suggests that there exist a similar phenomenon in

Arithmetic� As an illustration of this idea suppose that we live in some �non�

Euclidean� Arithmetical world M � Locally the universe M agrees with the real

universe� Statements concerning concrete �nite objects have unaltered truth value�

However� globally i�e� when it comes to the behaviour at in�nity� there can be dis�

agreement� Thus even though each concrete ���nite�	 set A of numbers has a well

de�ned cardinality this property might not be globally valid�

To illustrate the idea further suppose �as an example	 that the Count��	 principle

is valid in M � What is the status of the Count��	 principle� Or slightly less general is

it possible that there exists a � number� n� such that the ordered set f�� �� ���� �n��rg

of �numbers� can be divided into disjoint ��element subsets� and r � f�� �� �g�

Consider the following argument� We want to show �reasoning inside M 	 that a

set of numbers of the form f�� �� ���� ng can be divided into a collection of disjoint �

element subsets only when n is divisible by �� Suppose that on the contrary some

interval f�� �� ��� �n�� rg� r � f�� �� �g can be divided into a collection P of disjoint �
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element subsets� The case where r  � or r  � can be excluded for trivial reasons� To

see this sub�divide each ��element subset into two ��element subsets� This induces a

partitioning of f�� �� ���� �n��rg into disjoint ��element subsets violating the Count��	

principle�

The case where r  � require a more involved argument � � Consider all pairs of

f�� �� ���� �n���g� It only requires a quite weak part of arithmetic to prove that these

pairs are in ��� correspondence with f�� �� ����
�
�n���

�

�
g� And even less Arithmetical

assumptions to show that
�
�n���

�

�
is an odd number� To get a contradiction �by

violating the Count��	 principle	 it su�ces to show that the partitioning P induces a

partitioningR of all pairs of f�� �� ���� �n���g into disjoint � element sets� Consider the

pair fv�� v�g� If both v� and v� belongs to the same ��element subset fv�� v�� v�� v�g �

P let ffv�� v�g� fv�� v�gg � R� Otherwise suppose v� � fw�� w�� w�� w�g � P and

v� � f �w�� �w�� �w�� �w�g � P� All elements are listed after size� So there are unique

i� j � � such that v�  wi and v�  �wj� If i � j let ffv�� v�g� f �wi� wjgg � R� If i  j

let ffv�� v�g� fwi�� �wi�gg � R where ��  �� ��  �� ��  � and ��  �� This completes

the argument�

To summarise� We considered a structure SI constructed from I � f�� �� ���� ng�

In this concrete case the structure consisted of all pairs of f�� �� ��� �n� � �g� This

structure SI had the property that partial partitions of f�� �� ���� �n���g into � element

subsets induced �in a �exible way	 pairings of the elements in SI � And crucially the

structure SI contained an odd number of elements� One could try to modify the type

of argument to the case where for example q  � and p  �� At an early stage in

this research J�Krajicek showed me some ingenious constructions attempting show

that Count��	 was a consequence of Count��	� However as J�Krajicek pointed out

careful calculations always seems to give the wrong parities� Irrespectively of the

ingenuity however clever the structures S was constructed� it always seemed to end

up containing an even number of elements� So it seemed that strong �forces� wanted

Count��	 and Count��	 to be independent�

In retrospect this is of course a simple consequence of the general classi�cation�

It is a direct consequence of the fact that the Count��	 and the Count��	 principles

are independent in powerful Arithmetical structures� The �rst step in showing this

was obtained when I reduced the general Count�q	 versus Count�p	 problem to the

study of �generic systems�� And by introducing a certain re�nement technique I was

able to reduce the Count�q	 versus Count�p	 problem to questions concerning forests

of specially labelled trees�

�I learned this type of argument from J� Krajicek and P�Pudlak�
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��� A forest containing ��������	
���� trees

The �rst main result in the paper links the Count�q	 versus Count�p	 questions to a

class of purely combinatorial problems�

Suppose T�� T�� ����� Tu is a collection of specially labelled trees �i�e� a forest	�

Suppose that each type of branch appears � modulo q times� Does q divide u � This

of course depends on how the trees are labelled� I consider labels of a type which

is determined by two numbers �p� n	� A naive conjecture states that �besides some

trivial counter examples	 q indeed divides u�

It turns out that there exist �exceptional� forests which violate this naive conjec�

ture� As an example when q  � and p  �� I show that there is a forest where each

type of branch appears an even number of times� However the forest contains ���

trees �which is an odd number	� When q  � and p  � there are also exceptional

forests� In these each type of branch appears � modulo � times� yet the number

of trees is not divisible by �� The smallest concrete example I have found contains

�������������� trees�

The �rst main result in the paper shows that the existence of such exceptional

forests and the existence of �non�trivial	 implications between Count�q	 and Count�p	

are two sides of same coin� The two examples correspond to the fact that Count��	

implies Count��	 and that Count��	 implies Count��	� It turns out that Count�q	

implies Count�p	 in systems of Bounded Arithmetic when all prime factors in p ap�

pears in q� According to my �rst main result a priori there must exist exceptional

forest for all such q and p� Actually I follow an alternative route� I show how one

can construct proofs �in systems of Bounded Arithmetic	 of Count�p	 from Count�q	

directly based on such forests�

Early in this research the exceptional forests caused a major complication� At

that stage all my attempts to collapse forests to particularly nice normal forms failed�

The probabilistic arguments did not quite work� Essentially the exceptional forests

was the only obstacle� First when I managed to isolate these asymptotically� I was

able to complete the analysis�

At present I do not have a complete picture of all exceptional forests� However

it turns out that the asymptotic classi�cation in this paper is su�ciently strong to

provide a complete solution of the Count�q	 versus Count�p	 problem in the base�case

�i�e� when the terms in underlying language have polynomial growth rate	�
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��� Why are these problems important

The counting principles themselves are of course trivial� Or more speci�cally they hold

in the category of �nite sets� There are various reasons to examine these elementary

counting principles�

First of all they play an important role in Bounded Arithmetic� As already pointed

out in non�Euclidean geometry the �obvious	 parallel postulate is not assumed to hold�

Bounded Arithmetic resembles this phenomenon� Here the �obvious	 induction ax�

iom scheme is restricted� Which parts of number theory holds in models of Bounded

Arithmetic� This question was �rst studied intensively by J�Paris� A�Wilkie and

many of their students� Many basic number theoretical facts are provable in system

of Bounded Arithmetic 
��� Other facts require new proofs� I believe that Bounded

Arithmetic raises an important and serious possibility� It seems that the provabil�

ity �in speci�c systems of Bounded Arithmetic	 of elementary number theoretical

statements as a rule could be intimately linked to deeper number theoretical prob�

lems theorems� At present there are only sporadic suggestions of this� One such

is that if a certain fragment �often denoted by S�
� 
��	 proves that the set of prime

numbers is in NP �this can be proved in ordinary Arithmetic	� then the prime num�

bers must actually be polynomial time recognisable� At present this is only known

conditionally by assuming the validity of the General Riemann Hypothesis 
���� A

stronger fragment �often denoted S�	 are know to show the in�nitude of the set of

prime numbers� This fact goes hand in hand with Sylvesters prime number theorem


���� Besides this consider the quanti�er elimination phenomenon �the strength of

eliminating logic�	� Clearly Bounded Arithmetic does not have quanti�er elimina�

tion� However� one might still be able to eliminate many of its logical�like features�

It should be possible to get our hands on the underlying uni�cations features arising

from the induction schema� So perhaps Bounded Arithmetic is tight up with the

prestigious discipline of number theory �see 
��� for a further discussion	�

In any case the work by 
��� and later 
�� illustrates the central role of elementary

counting principles in Bounded Arithmetic� In general the status of the elementary

counting principles in models of Bounded Arithmetic seems to be a very deep problem�

The paper solves this in the special case where all terms of the underlying language

have polynomial growth rate� and contain at least one unspeci�ed function or relation

symbol � �

Second� systems of Bounded Arithmetic are linked to �low complexity reason�

ing�� One fundamental problem is to clarify the relation between automated versus

�One of the major challenges is to understand the case where each function and relation are fully

speci�ed�
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intelligent reasoning� It seems natural to suggest that automatic reasoning �when

this implemented in praxis	 is only able to give a proper representation of objects

of low complexity� The elementary process of counting introduces unpleasantly high

complexity� A computation involving a counting task might �asymptotically	 require

exponentially many steps as a function of the length of the input� In practice this

very soon becomes intractable for computers� Thus in low complexity reasoning we

cannot assume that we are be able to count� To verify that the cardinality of a set A

is unique� we would have verify that all bijections f � A � f�� �� ����mg requires the

same m� This is computationally intractable even for small sets A�

We can view Count�p	 as a spark of pure intelligence� The paper shows that

�mechanical	 systems� more speci�cally systems which reason �using �rst or even

second order logic	 within �nite structures in certain cases are not able to establish

any link between Count�q	 and Count�p	�

Finally another �related	 problem is to examine the e�ciency of propositional

proof systems� This type of problems has already been studied intensively in the

literature 
��� 
��� 
���� 
���� 
���� 
���� 
���� In S�Cook and Recknow 
��� it was shown

that the e�ciency of propositional proof systems is a natural way of studying the

NP versus co�NP problem� Then later 
��� these problems was linked to Bounded

Arithmetic� And then in 
�� the problems was shown also to be tight up with methods

and problems from circuit complexity� Recently a fascinating �ultra �lter construction�

by Razborov 
��� even suggest links to higher set�theory� In any case the study of

the complexity of elementary counting provides some of the strongest known results

in the �eld of circuit complexity�

The growth rate of the terms in the underlying language L of Bounded Arithmetic

is a very precise measure of the axiom systems �intelligence�� Most number theory

is provable when the language contains function of exponential growth rate� At this

level we have real intelligence� Ideally we would like to study what happens to the

relative strength of the counting principles� when the intelligence of the underlying

system approaches the level of real intelligence� The paper allows us to do this in

principle� However� until we have a general picture of the exceptional forests� this

problem remains open�

��
 The main results

In the following discussion let L be a countable �rst order language� Assume that

L contains function symbols for the basic arithmetical operations ��� and ���� Also

assume that the behaviour of terms and �the speci�ed	 relations are speci�ed through

�



a suitable set !L of purely universal axioms� And assume that L contains at least

one unspeci�ed relation symbol�

An axiom system � I"��L	 or just I"� when L is clear from the context	 of

Bounded Arithmetic consists of the axioms !L together with the celebrated induction

axiom schema� ����	 � �x ���x	 	 ��x � �			 � �z ��z	� However� in Bounded

Arithmetic �unlike in ordinary Arithmetic	� we require all quanti�ers in each � to be

bounded by terms in the language L� More speci�cally� each quanti�er is required to

appear in the context �x�x � t� ��� or 
x�x � t � ����

The elementary pigeon�hole principle �PHPp p � N	 states �in one of its many

formulations	 that for no n do there exists a bijection from f�� �� ���� ng onto f�� �� ���� n�

pg� More speci�cally� the "��PHPp axiom schema states �for each bounded formula

��x� y		 that�

�z ���x � z
�y � z � p ��x� y� z	 � ��y � z � p
�x � z ��x� y� z		�

A weak form of the pigeon�hole principle is obtained by only considering monotone

bijections� It is not hard to show that this form of the pigeon hole principle is

equivalent to the usual induction principle�

The Count�p	 principle �for a �xed number p � N	 states that if f�� �� ����� ng is

divided into disjoint subsets each containing exactly p elements� then p divides n�

More speci�cally� the "��Count�p	 principle is the schema�

�z ���x� � z
�x�� ����� xp � z �x� � x� � ��� � xp � ��x�� x�� ���� xp	

��x�  x� � ���� � �x�  xp		� 
y y � p  z	�

In the �rst section I show�

Theorem Assume that p  �� Let L be any language where all terms have sub�

exponential growth rate� Then there exists a model M � in which

��	 The Count�p� principle fails�

��	 All "��pigeon�hole principles holds�

A similar result was proved by Ajtai in 
��� but only in case where all terms was as�

sumed to have polynomial growth rate� Later Krajicek� Pudlak and Wood 
��� made

a major improvement in the underlying probabilistic method� They showed the the�

orem �in essence	 in the case where ��	 is replaced by the "��induction principle �or

equivalent the "��pigeon�hole principle for monotone bijections	� The theorem has

been shown independently by Beame and Pitassi 
���� Actually they showed a di�er�

ent �but essentially equivalent	 result concerning the length of proofs in propositional

proof systems�

�



In section �� the next section I construct the model M � � And in the next two

sections I show that M � has the required properties� Actually in section � it is shown

that�

Theorem Besides ��	 and ��	 the model M � satis�es the "��Count�q� principle ex�

actly �under some weak extra assumptions� when there are no forest T�� T�� ���Tu of

�p� n	�labelled trees where all branches appear � modulo q times� but u � � modulo q�

The precise formulation of the result link the growth rate of terms in the underlying

language L to an extra condition on the asymptotic hight of the trees�

In section � I develop a general method to produce exceptional forests� It is shown

that exceptional forests exist �for q and p	 when all prime factors in p divides q�

Furthermore the construction of such forests can be carried out inside any model of

Bounded Arithmetic� so we get the following positive part of the classi�cation�

Proposition Let M � be a model of Bounded Arithmetic in which the "��Count�q�

principle holds� If all prime factors in p divides q� then M � satis�es the "��Count�p�

principle�

In section � I return to the main problem� This is to show that Count�p	 not is a

logical consequence of Count�q	 when p contains a prime factor not in q� This is

shown �in the case all terms have polynomial growth rate	 by showing

��	 For each exception q�forests T�� T�� ���� Tu of �p� n	 trees� one can construct an

exceptional q�forest T �
�� T

�
�� ��� T

�
u� of labelled trees related to the PHPqk �principle� No

tree in this new forests has higher hight than all trees in the old forest�

��	 Suppose that T �
�� T

�
�� ���� T

�
u� is an exceptional q�forest of decision trees for the

PHPqk �principle� Then at least one of the trees has hight  k�

Combining this we get�

Theorem Suppose that q and p are �xed� Suppose that p contains a prime factor

which does not divide q� For each k there exists nk such that for each n  nk there

are no exceptional q�forests of �p� n	�labelled trees�

Finally in section � I combine this result with theorem ��� and proposition ���� This

gives the full classi�cation�

Main Theorem �formulation �� Let T be any system of Bounded Arithmetic over

some countable language L� Suppose that L in addition to containing the language

of arithmetic also contains at least one unde�ned relational symbol� Suppose that all

terms t in L have polynomial growth rate� Then for all q� p � N the following are

equivalent�

�



�a	 there exists a model M of T in which Count�q� holds and Count�p� fails�

�b	 All prime factors in p divide q�

The result has various essentially equivalent formulations�

Main Theorem �formulation �� Let ACAtop be the following modi�cation of the

celebrated system ACA� As ACA the system ACAtop has the full arithmetical com�

prehension� And it is equipped with the full induction axiom for sets� The 	only


di�erence between this system and the normal second order Arithmetic is that the

basic universal axioms are modi�ed so the that universe contains a largest �unspeci�

�ed� number c� All basic operations are modi�ed �e�g� c � �  c�� Any list of purely

universal axioms might also be added� Suppose that the axiomatisation is non�trivial

e�g� allows an in�nite model� Then the following are equivalent�

�a	 Count�p� holds in all structures which satis�es ACAtop and the Count�q�

principle�

�b	 All prime factors in p appear in q�

Another formulation states that�

Main Theorem �formulation �� Let P be one of the usual textbook systems in

Hilbert style propositional logic� Let Countscheme�q	 denote the substitution axiom

scheme which arrives from the canonical Booleanization of the Count�q� principle�

Let P � � P� Countschema�q	� Then there are polynomial�size bounded depth P ��

proofs of Count�p� exactly when all prime factors in p divide q�

In all formulations the negative part of the classi�cation has a heuristic explanation�

The analysis shows that when k becomes large� it becomes arbitrarily di�cult �

�but as it turns out never impossible	 to show PHPqk from Count�q	� On the other

hand if p contains a prime factor not in q it is uniformly �in k	 easy to show PHPqk

from Count�p	� So Count�p	 is not a consequence �a bounded depth polynomial�size

consequence in formulation �	 of Count�q	 in this case�

Finally I mention the recent and independent developments in 
�� and 
���

� Constructing the model

��� Translating formulas into circuits

Let M be a countable non�standard model of Th�N	 over a countable �rst order

language L �which extends the language of arithmetic	� Let p � �� p  � and let

�Measured by the hight of the corresponding forest�
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I � f�� �� ���� ng � M � n � M n � be �xed� Here � denote the set of standard integer

in M � As is common a set A � M is said to be M �de�nable if there exists m � M

such that a � A if and only if a belong to the sequence coded by m�

De�nition ����� For each A � I with j A j p we introduce a variable pA� The set

of all such variables is denoted by VARI�p� �

De�nition ����� A �Boolean� circuit � �with input variables in X	 of size s��	 and

depth d��	 is de�ned inductively as follows�

�a	 The constants ��� and ��� are circuits with s����	  s����	  d����	  d����	  ��

�b	 Each p � X is a circuit with s�p	  d�p	  ��

�c	 If � is a circuit� then �� is a circuit with s���	  s��	�� and d���	  d��	���

�d	 If ��� ��� ���� �r are circuits� then �j�j and �j�j are circuits with s��j�j	 

s��j�j	  � � #j s��j	 and d��j�j	  d��j�j	  � �maxjd��j	� �

De�nition ����� Let Bd�X	 denote the �Boolean	 circuits � with input variables X

of depth d��	 � d� Let B���X	 � �d�� Bd�X	� �

De�nition ����	 For � � B���VARI�p	 and � � VARI�p � f�� �g �not required to be

M �de�nable	� we de�ne the truth�table evaluation �� inductively as follows�

�a	 ����  �� ����  ��

�b	 p
�
A  � i� ��pA	  ��

�c	 ���	�  � i� ��  ��

�d	 ��j�j	
�  � i� ��j  � for all j�

�e	 ��j�j	�  � i� ��j  � for some j� �

Let LM be L extended by a constant ca for each a � M � Let LM �P 	 be LM ex�

tended with an p�ary relation symbol� There exists a canonical translation of Bounded

LM �P 	�sentences into circuits in B���VARI�p	�

De�nition ����
 For each sentence � � LM �P 	 we de�ne 	� � B���VARI�p	 induc�

tively as follows�

�a	 For any k�ary relation symbol �� P 	� 	R�a������ak	 ���� if M j R�a�� ��� ak	� ���

otherwise�

�b	 	P �a������ap	 � pA if A  fa�� ���� apg � I and j A j p� ��� otherwise�

�c	 	�� � �	��

�d	 	���� � 	� � 	��

�e	 	���� � 	� � 	��

�f	 	�x�x�u�	�x�u		 � �a�u 		�a�u	�

�g	 		x�x�u
	�x�u		 � �a�u 		�a�u	� �

��



Notice that if � � LM �P 	 has � d quanti�ers� all bounded by t � M � and � contains

k logical connectives� then s�	�	 � ktd and d�	�	 � d � k�

Lemma ����� Suppose that P is a partitioning of f�� �� ���� ng into disjoint classes

each containing exactly p elements� Let �P � VARI�p � f�� �g be de�ned by A � P �

�P �pA	  �� Then for � � LM �P 	 the following statements are equivalent�

�a	 �M � P 	 j ��

�b	 �	�	�P  ��

Proof� Induction on the number of logical constants in �� �

��� The forcing set up

As above let M be a countable non�standard model of Th�N	 over a countable �rst

order language L which extends the language of arithmetic� We have �xed p  � and

I � f�� �� ���� ng � M � n � M n �� Let LM and LM �P 	 be de�ned as above�

De�nition ����� We say that � is a partial p�partitioning i�

�a	 �A � � A � I�

�b	 �A � � j A j p�

�c	 �A�B � � A � B � A �B  ��

Let Set��	 � �A�� A � I� �

De�nition ����� For k � N let

Pk � f� � � is a partial p �partitioning and �n� j Set��	 j	k  ng�

We de�ne P � �k�N Pk� The elements in P are ordered under inclusion� An element

� � P is called a �forcing� condition� We use letters A�B� C� ��� to denote subsets of

P� �

Notice that P� � P� � ���� � Pr � ���� � P� for each r � �� The idea is to use �P��	

as the set of forcing conditions� As in 
����

De�nition ����� We say that D � P is dense i� �g � P
h � D h � g�

We say that D is quasi�de�nable i� there exists a formula ��x	 � LM �R�	 such

that D � fm � M � M j ��m	g �the relation R� is de�ned by R��a	� a � �	� �

Example ����	 P is dense and quasi�de�nable� P is not LM �de�nable�

��



De�nition ����
 We say that �G � P is a generic �lter i�

�i	 �
 � �G�� � P � � 
� � � �G�

�ii	 �
� � � �G
� � �G � � 
 � � � ��

�iii	 For D � P dense and quasi�de�nable �G � D � ��

We use the abbreviation ��G � �
��G 
� �

��� Generic objects

Lemma ����� If �G � P is a generic �lter� then ��G de�nes a partition of f�� �� ���� ng

into disjoint p�subsets�

Proof� The only problem is to show Set��G	  I� For an arbitrary u � I let

Du � f
 � P � u � set�
	g� It is straightforward to show that Du is dense and

quasi�de�nable so Du � �G � �� Thus for each u � I there exists 
u � Du � �G� and

thus each u � Set���G	� �

Lemma ����� For each �� � P there exists a generic �lter �G � P such that �� � �G�

Proof� Recall that both M and L are assumed to be countable� so there are only

countably many quasi�de�nable dense sets� Let these be D��D�� ���� According to the

de�nition of denseness there exists a sequence of conditions �� � �� � ���� � P with

�j � Dj� j  �� �� ��� and �� � ��� Clearly �� � �G � f� � � � �k for some k � �g is

a generic �lter� �

De�nition ����� For a sentence � � LM �P 	 we de�ne the forcing relation j� by

letting

� j� � i� �M � ��G	 j � for all generic �lters �G � �� �

Lemma ����	 If �M � ��G 	 j � for a generic �lter �G� then there exists �� � P such

that �� j� ��

Proof� By use of induction on the logical complexity of a general formula ��x	� it is

not hard to show that f�a� �	 � M r �P � � j� ��c�a	g is quasi�de�nable� Continuing

this argument for each LM �P 	�sentence �� D � f� � P � � j� � � � j� ��g is both

quasi�de�nable and dense� For the required �� take any �G � D� �

De�nition ����
 For �� � � B���VARI�p	 and � � P� � �� � if �
�G  �
�G for each

generic �lter �G � ��

For � � B���VARI�p	 and � � P we say that � forces �P  � ��P  �	 if for all

generic �G � �� �
�G  � ��
�G  �	� This is written � j� �P  � �� j� �P  �	� �

��



The next lemma shows how each appearance of � can be eliminated�

Lemma ����� Suppose that i� � A�A � I� j A j p�

Suppose that �� � �pA and �� � �B pB� where B runs through all B � I with

j B j p�A � B and i� � B� Then �� �� �� for all � � P�

Proof� Direct veri�cation� �

Lemma ���� For any Boolean circuit � � Bd�VARI�p	� there exists a negation�free

circuit �� � Bd�VARI�p	 such that � ��
�� for any � � P� Furthermore� s���	 �

s��	 �
�
n��
p��

�
�

Proof� First notice that � �i �i �� �i ��i� and that � �i �i �� �i ��i� So without

loss of generality we can assume that negations appear only in front of the input

variables� For each input variable pA pick i� � A and replace each appearance of �pA

with �B� i��B�B �A pB� According to lemma ����� � ��
��� This new circuit ��� still has

depth d� Furthermore� s���	 � s��	 �maxi��s��B� i��B�B �A pB		  s��	 �
�
n��
p��

�
� �

Lemma ����� For each bounded � � LM �P 	� � j� � i� � j� �	�	P  ��

Proof� Induction on the number of logical constants in �� �

De�nition ����� Two conditions 
 and � are incompatible �
 � �	 if


A � 

B � � A � B �A �B � ��

Two conditions 
 and � are compatible �
 jj �	 if

�A � 
�B � � A � B � A �B  �� �

De�nition ������ B � P is a basis for P i�

�a	 �
� � � B 
 � � � 
 � ��

�b	 �� � P

 � B � jj 
� �

De�nition ������ jj B jj� max��B�j Set��	 j	� �

Lemma ������ Suppose that jj B jjk� n for all k � � �or in short�hand notation

jj B jj� n
�

� �� If � � P and � jj �� then � � � � P�

Proof� Assume that � � P� Thus there are k� � � such that �n� j Set��	 j	k�  n�

Also assume that � � B� where jj B jj� n
�

� � Clearly j Set��	 j�k�� n� Suppose � jj ��

We have to show � � � � P� To show this� it su�ces to show that

�n� j set�� � �	 j	�k�  �n� j set��	 j � j Set��	 j	�k�

��



 �n
�

k� � n
�

�k� 	�k�  n�

To do this notice that �kn
�

� � n for any k � �� �

The next lemma shows an important technical point in Ajtai�s choice of P� It

allows us to assume that � j� � in cases where �� j� � for some �� � P� To see this

replace I � f�� �� ���� ng by I � � f�� �� ����� n�g where n� � n� j Set���	 j� The lemma

shows that if P� is de�ned as P but with the underlying set I replaced by I �� then P�

can be identi�ed with the set of conditions in P which extends ���

Lemma ������ Fix � � P� De�ne

P� � f�� � �� is a partial p�partition of I n set��	 and �� � � � Pg�

Pk�J	 � f�� � �� is a partial p�partition of J and �n�� j Set���	 j	k  n�g where J � I

and n� �j J j�

Let P�J	 � �k�� Pk�J	�

If J  Set��	 for � � P� then P�  P�Set��		�

Proof� First we show the inclusion P� � P�Set��		� Suppose that �� � P�� By

de�nition for some k� � �� such that n� � n � �n� j Set��� � �	 j	k�

 �n� j Set���	 j � j Set��	 j	k�  �n�� j Set���	 j	k� � so �� � P�Set��		�

Second� we show that the inclusion P�Set��		 � P�� According to the assumption

that � � P there exists l� � � such that �n� j Set��	 j	l�  n� According to the

assumption that �� � P�� there exists l� � � such that �n� j Set��	 j � j Set���	 j

	l�  n� j Set��	 j� Now �n� j Set�� � ��	 j	l�l�  �n� j Set��	 j � j Set���	 j	l�l�

 �n� j Set��	 j	l�  n� so � � �� � P� �

Lemma �����	 Suppose that B is a basis for P and H � B� Suppose also that

jj B jj� n
�

� � Then

�a	 � j� ��h�H h	P  � i� � is incompatible with all conditions h� � B n H�

�b	 � j� �� �h�H h	P  � i� � is incompatible with all conditions h� � H�

Proof� �a		� Suppose that � j� ��h�H h	P  �� but � is compatible with h� � BnH�

By use of lemma ������ �� � � � h� � P� By using property �a	 of a basis �de�nition

������	 h� is incompatible with all conditions inH� Clearly �� � h so �� is incompatible

with all conditions in H� But then ��h�H h	
�G  � for each generic �lter �G � ��

�which exists by lemma �����	� This contradicts � j� ��h�H h	P  ��

�a	�� Assume that � is incompatible with all h� � B n H� and let

D � f�� � P � ��� is compatible with some h� � H	 or ��� is incompatible with �	g�

By de�nition ������� D � P is dense� Also D is quasi�de�nable� So according to

��



lemma ������ there exists a generic �lter �G � �� By de�nition ����� �iii	 there exists


 � D � �G� so there exists h � H with h � 
 � ��G�

�b		  �b	� are proved as �a		  �a	�� �

Lemma �����
 Let 	�� 	�� ����� 	u u � M � be an M �de�nable sequence of Boolean

circuits� each of the form 	j �� �h�Hj
h� Let B�� ����Bu be an M �de�nable sequence

and suppose that t � n
�

� such that�

�a	 for each j  �� �� ���u Bj � P� is a basis for P�

�b	 for each j  �� �� ��� u jj Bj jj� t�

�c	 for each j  �� �� ���� u� Hj � Bj�

Then for every generic �lter �G either

�a	 for all j � f�� �� ��� ug� 	
�Gj  �� or

�b	 there exists j� � u such that 	
�Gj�  � and 	
�Gj  � for each j � j��

Proof� Let

D � f� � P � �
j�
� � Hj� � jj � � �� � �j�j�Hj � � �	 or ��� � �j�uHj � � �	g�

ClearlyD is quasi�de�nable� For each �� � P� if �� is compatible with some � � �jHj�

then there must be a smallest j� such that �� is compatible with some � � Hj� � Here

we uses that the least number principle is valid in M � Now � � h��� � P �by lemma

������	� and thus � � D� So D is dense� By de�nition ����� �iii	 there exists � � �G�D�

This condition � is incompatible with all h � Hj� j � j�� As ��G � � � h � Hj�

clearly ��h�Hj�
h	
�G  �� �

��
 The key lemma

Recall that M is a countable non�standard model of Th�N	 over a countable �rst order

language L� As above we have �xed p � �nf�g� and I � f�� �� ���� ng � M � n � M n��

As above the set P of forcing conditions consists of partial p�partitions � of I with

j Set��	 j� n� n
�

� for some k � ��

Lemma ��	�� �key lemma� Let ��� ��� ���� �u be an M �de�nable sequence of depth

� d � � circuits with #u
j�� s��j	 � nt for some t � n

�

� �i�e� tk � n for all k � �	�

Let �� � P� There exists � � ��� � � P and an M �de�nable sequence 	�� 	�� ���� 	u

of circuits together with an M �de�nable sequence B��B�� ���Bu such that

�a	 for j  �� �� ��� u each Bj� is a basis for P�

�b	 for j  �� �� ���u each 	j is of the form �h�Hj
h for some Hj � Bj�

�c	 for each j  �� �� ���� u� �j �� 	j�

�d	 for some s � t � log�t	 �actually for some s � � � t�� jj � jj� s�

��



If we combine the key lemma with lemma ������ we get�

Corollary ��	�� If ��� ��� �����u is an M �de�nable sequence of depth d � � circuits

with #n
j�� s��j	 � nt for some t � n

�

� � then for any generic �lter �G � P either

�a	 for all j � u �

�G
j  �� or

�b	 there exists j� � u� such that �
�Gj�  � and ��
�Gj  � for all j � j��

Before we prove the key lemma� we need to do some preparatory work�

��	 Random conditions

My aim is to add a suitable probability distribution � on the space P of forcing

conditions�

Lemma ��
�� For k  �p � �� k � N� and �x m � n such that �n � m	k�� �

n  �n � m	k� Let �sym be the symmetrical probability distribution �perceived from

inside M � on the set f� � P �j Set��	 j mg� For each h � P with j h j� n
�

� �

Pr�h � �	 � n
�

� Pr�h jj � � ��h � �		�

Proof� Notice that for �xed J � I with j J j m the number ��m� p	 of partial

p�partitions � with Set��	  J is

��m� p	 
m�

�p�	
m
p �m

p
	�

when m is divisible by p and � otherwise� The set f� � P �j Set��	 j mg contains�
n

m

�
� ��m� p	 elements� If h � P� j Set�h	 j up and J � I n Set�h	 with j J j b�

then

Pr�h � ��J�Set��	  �	 

�
n�up�b
m�up

�
��m� up� p	�

n

m

�
��m� p	


�n� up � b	��n�m	��p�	u�m

p
	�

n��n�m� b	��m
p
� u	�

Now suppose n� n
�

k � m � n� n
�

k�� � and b� u � n
�

� � There exists a suitable real �in

the sense of M 	 c � 
�� �� such that Pr�h � � � J � Set��	  �	

 � �
n
	u�p��	�b���

�

k�c
	�Here we use the fact that a su�ciently strong part of real analysis

can be developed inside M � Now

Pr�h jj � � ��h � �		  #u��
j��#h��h�jh�j�j Pr�h

� � � � �Set�h	 n Set�h�	 � Set��	  �		

 #u��
j��#h��h�jh�j�j �

�

n
	�

p
k�c

��	j�pu��� �

k�c
	

��



 #u��
j��

�
u

j

�
�
�

n
	�

p
k�c

��	j�pu��� �

k�c
	

In general #u��
j��

�
u

j

�
aj  �a� �	u � au� Let a � n��

p

k�c � and notice that #u��
j��

�
u

j

�
aj �

�uau��� Thus

#u��
j��

�
u

j

�
�
�

n
	�

p

k�c
��	j�pu��� �

k�c
	  �u�

�

n
	pu���

�

k�c
	 � �

�

n
	�

p

k�c
��	�u��	

 �u � �
�

n
	�p��		u����

p

k�c
	

 Pr�h � �	 � �u�
�

n
	���

p

k�c
	 � Pr�h � �	 � �

�

n
	
�

�

when k  �p � �� In all estimates c is chosen as a suitable real constant in 
�� ��� �

Lemma ��
�� Fix k � N� Also �x t � n
�

� � Then there exists a �global� probability

distribution �glo on the M �de�nable set consisting of all partial p�partitions� such that

for each h � P with j h j� t

�i	 If C��	 is a monotone property �i�e� C��	 � � � �� � C���	�� then

Pr�C��	 j h jj �	 
�

�
� Pr�C��	 j h jj � � ��h � �		�

�ii	 there is s � M n � such that Pr�� �� P�k � �� �� P n Pk		  � � exp�ns	�

Proof� Notice that in general Pr�C j B� � B� � ��� � Bk	 � maxjPr�C j Bj	� so if

h � �i�F fAig� it su�ces to construct a suitable �glo which besides �ii	 has Pr�C j

�i�F Ai � �	  Pr�C j ��i�G Ai � �	 � ��j�FnG Set��	 � Aj  �		 for any G � F �

Let A �� �i�F �Ai � �	� B �� �i�G �Ai � �	 � ��i�FnG �Ai � Set��	  �		� C � C��	�

and for l  �� �� �� ��� let Dl ��j � j l� Let Pl �� Pr�Dl	� and let g �j G j� We

choose �glo symmetric on each each set f� � Dlg� We de�ne �glo by choosing suitable

numbers p�� p�� ���pu with #jpj  �� Notice that any �glo de�ned this way� for any

l  g� g � �� ����� u has Pr�C j A � Dl	  Pr�C j B � Dl�g	� To see this notice that

any monotone property C can be written as a disjunction � �� � �	� Thus for

l  g� g � �� ���� u we have

��	
Pr�C �A �Dl	

Pr�A �Dl	


Pr�C �B �Dl�g	

Pr�B �Dl�g	

We have to show that Pr�C�A	
Pr�A	  �

 �
Pr�C�B	
Pr�B	 � Now

Pr�C � A	

Pr�A	


#l Pr�C �A �Dl	 � pl
#l Pr�A �Dl	 � pl

 �� � #g��
l�� 	

�� �
#u
l�g Pr�C �A �Dl	 � pl

#u
l�g Pr�A �Dl	 � pl

��



The inequality holds because A is a monotone property and #g��
l�� Pr�A � Dl	pl �

#g�l
l��Pr�A � Dg	pl � #�g

l�g Pr�A � Dl	pl � #u
l�gPr�A � Dl	pl� This holds because

�g � n
�

� � l� as long as pl�g  pl for l � g� But by ��	

#u
l�g Pr�C �A �Dl	 � pl

#u
l�g Pr�A �Dl	 � pl


#u�g
� Pr�C �B �Dl	 � pl�g

#u�g
l�� Pr�B �Dl	 � pl�g


#l Pr�C �B �Dl	 � pl �minl�

pl�g
pl

	

#l Pr�B �Dl	 � pl �maxl�
pl�g
pl

	
 minl�

pl�g

pl
	 �minl�

pl

pl�g
	 �

Pr�C �B	

Pr�B	
�

Now we are ready to de�ne p�� p�� ���� Recall that g �j h j� t�

For l � l� let pl�� � �
�

t � pl� and for l� � l let pl�� � ��
�

t pl� Now minl�
pl�t
pl

	 

minl�
pl
pl�t

	  �
�
and �� � #t��

l��pj	
�� � �

�
so

Pr�C � A	

Pr�A	


�

�
�
Pr�C �B	

Pr�B	
�

Thus �i	 holds� Furthermore notice that if �n � pl�	k  n � �n � pl�	k�� then the

probabilities are su�ciently concentrated around l� to ensure that �ii	 is satis�ed� �

The factor �

can be replaced by any standard rational q � �� Also notice that there

are many other choices of the distribution p�� ���� pu� One can for instance choose the

binomial distribution with mean l�� The point is that minl�
pl�t
pl

	 �minl�
pl
pl�t

	 is not too

small� while at the same time the probability distribution tails o� su�ciently fast�

Notice that a phenomenon reminiscent of the complementary principle� is involved�

If �glo is focussed on some Pk then �i	 cannot hold� On the other hand if �glo is

unfocussed and global �ii	 cannot hold� As an example of the �rst claim consider the

property C��	 �� 
� �j � j l�� j h j �� � Set��	� Set�h	  � � � � �� If pl�  � then

Pr�C j h � �	  � while Pr�C j h jj � � ��h � �		  �� By lemma ����� this is a

violation of condition �i	�

Corollary ��
�� For k  �p � �� k � N and t � n
�

� there exists a M �de�nable

probability distribution � on P�k� such that

��	 for each h � P with j h j� t� Pr�h � �	 � n
�

� � Pr�h jj � � ��h � �		�

��	 for each monotone property C��	

Pr�C��	 � � �� P�k j h jj �	  �
 � Pr�C��	 � � �� P�k j h jj � � ��h � �		�

Proof� Let � be the �normalised	 probability distribution obtained by restricting �glo

to P�k� �

We need the following elementary fact�

��



Lemma ��
�	 For each number w�

Pr�A j B � C	  w � Pr�A j B	 i� Pr�C j A �B	  w � Pr�C j B	�

Proof� Both sides holds i� Pr�A �B � C	Pr�B	  w � Pr�A �B	Pr�B � C	� �

Corollary ��
�
 If � is chosen on P�k such that condition ��� and �� in corollary

���� hold� then

Pr�hj � � � � �� P�k j hj jj � � ���h�	 � ����� ���hj��		 
�

�
� Pr�hj � � j hj jj �	�

Proof� Let A �� ��j � �	� B �� hj jj � and let C � ���h�	���������hj��	��� � P�k�

The lemma now follows by use of condition ��	 in corollary ����� and lemma ������ �

��� Collapse of circuits

In order to prove the key lemma we prove that�

Lemma ����� Suppose that � �� ���h�H h	 where s��	 � nt for some t � n
�

� � Let

s � n
�

� � Suppose that � is a probability distribution satisfying ��� and �� in corollary

���� on P�k for some k  �p � �� k � �� Then there exists an M �de�nable set

C � Pk such that C � f� � P�k � 
 �H � P� jj �H jj� ps such that � �� �h� 
H h with

s��h� 
H h	 � ntg and such that

��C	  � � �
�

n
	
ks��ps

�k

Corollary ����� Let 	�� 	�� ���� 	u be an M �de�nable sequence of depth � d circuits

with #j s�	j	 � nt for some t � n
�

� � Let �� � P� There exists � � ��� � � P

and an M �de�nable sequence 	��� ����� 	
�
u of depth � d � � �when d  �� circuits� with

#j s�	�j	 � nt such that s�	�j	 � s�	j	 j  �� �� �� ����� When d  � there exists an

M �de�nable sequence 	��� 	
�
�� ���� 	

�
u of depth � � circuits of the form 	�j �� �h�Hj

h�

Furthermore� each set Hj � P contains conditions h which have all j Set�h	 j� ps

for some s with s � � � t� and s � n
�

� �

Proof� �lemma ����� 	 corollary �����	� By use of lemma ����� we can assume

	�� 	�� ���� 	u are all negation�free� There is an M �de�nable sequence �	�� �����	u of depth

� d � � circuits� where all �input nodes� are depth � � circuits� Let ��� ��� ���� �r be

the M �de�nable sequence of these� Clearly r � nt� Without loss of generality� each �j

is either a �disjunction of conjunctions� or is a �conjunction of disjunctions�� Notice

#j s��j	 � nt� By use of lemma ����� �which according to lemma ������ also holds

��



when the underlying set I is replaced by I � � I n Set���		 for some �xed k  �p� ��

for each j � r there exists an M �de�nable sequence C�� ���� Cr � Pk each with

��Cj	  �� �
�

n� j Set��	 j
	
ks��ps

�k

such that for j  �� �� ��� r and all � � Cj �j �� �h�H �h if �j is a disjunction of

conjunctions� and �j �� ���h�H � h	 if �j is a conjunction of disjunctions�

Now ��C� � C� � ���� � Cr	  � � r � � �
n
	
ks��ps

�k � � �when s  �kt	� So there exists

� � C�� �����Cr with � � ��� Replace each depth � � �input� circuits with a suitable

depth � � circuit� �

Repeated use of this corollary �applied at most d times	 reduces problem of proving

the key lemma to that of proving lemma ������

��� The switching lemma

De�nition ���� For i � I let

Ei � fh� � h� � h � Set�h�	 � Set�h	 � fig� j h� j�j h j ��g�

�

De�nition ���� We say that H� � P is an atomic tree�like re�nement of H� �

P� �H� �ATR H�	 if 
h � H�
i � I H�  �H� � Ei�h		 n fhg�

We say that �H is a tree�like re�nement of H� �H �TR
�H	 if there exists an

M �de�nable sequence �H��H�� ����Hr	 such that H�  H� Hr  �H and for each

j � r Hj �ATR Hj��� �

De�nition ���� B � P is a tree�like basis if f�g �TR B� �

Lemma ���	 Suppose that B � P is M �de�nable and that jj B jj� nt for some �xed

t � �
�
� If B is a tree�like basis� then B is a basis for P�

Proof� First notice that each 
� � � B �
 � �	 are incompatible� Suppose that

�� � P is incompatible with all � � B� Let �B�� ����Br	 be an M �de�nable sequence

with B� � f�g� Br � B and where Bj �ATR Bj�� for j  �� �� ���� r � �� M satis�es

the least number principle so there must be a smallest j� such that �� is incompatible

with all � � Bj�� There exists �� � Bj��� compatible with ��� As j set���	 j� n
�

� by

lemma ������ �  �� � �� � P� Let i� � I such that Bj�  �Bj��� � Ei���
��		 n f���g�

Now as � �like ��	 is incompatible with all conditions in Bj� � �� �� Bj� and thus

��  ���� We get the required contradiction by noticing that � � P must be compatible

with some �� � Ei���
�	 �

��



De�nition ���
 For H � P and for � � P let

H� � fh� � P � h�  h n � for some h � H with h jj �g�

We say that B re�nes H if for each � � B and each h � H if � jj h� there is h� � H

such that h� � �� �

Lemma ���� If B is a basis which re�nes H� and HB � f� � B � 
h � H � � hg

then �h�H h �� �h��HB
h� for all � � P�

Proof� Straightforward� �

Lemma ��� Let H � P be a collection of conditions with �h � H� j Set�h	 j� nt

for some �xed t � n
�

� � Let �� � Pk� k � �� and let � be a probability distribution on

P�l�I n Set���		 �l  �p � �	 which satis�es the conditions in corollary �����

If � � P�l�I n Set���		 is chosen randomly according to the probability distribution

�� then for each s � n
�

� � with probability  ��� �
n�jSet���	j

	
ks��ps

�k there exists a tree�like

basis B which re�nes H� such that jj B jj� ps�

This lemma immediately implies lemma ������ To see this let

C � f� � 
B a tree� like basis which re�nes H and jj B jj� psg�

Notice C is M �de�nable� According to lemma ������ the � in lemma ������ has � ��

�h�HB
h where HB � f� � B � 
h � H � � hg� Thus to show the key lemma it

su�ces to show lemma ������

��� Some games involving forcing

As above assume M to be a countable non�standard model� Assume also that p �

N n f�g and I � f�� �� ���� ng � M � with n � M n � be �xed� Let P� � P� � ���� �

Pr � ���� � P� r � �� be the strati�cation of P de�ned above� Our aim is to show

lemma ������

De�nition ����� Suppose that t � s where s � n
�

� �e�g� t� s are small	 and let

� h�� h�� ���� hv �� M � v � M be a sequence of conditions with j Set�hj	 j� t� j � v�

Suppose also that fh�� h�� ���� hvg is complete for P �i�e� �� � P 
j � v � jj hj	� The

game G�n� k� t� s�� h�� h�� ���� hv �	 is played by two players I and II as follows�

Round �� Player I selects a condition � � Pk�

��



Round �� Consider the �rst i � v where h� � hi is compatible with � �which exists

because the collection fh�� ��� hvg is assumed to be complete for P	�

If � � h� player I wins and the output of the game is ��

If Set�h�	 n Set��	 � � let a� � min�Set�h�	 n Set��		 � I� Player II selects an

p�element set A � I such that�

��	 fAg is compatible with � �fAg jj �	�

��	 fAg is incompatible with h� �fAg � h�	�

��	 a� � A�

Let �� � fAg and proceed to the next round�

Round j��� Consider the next condition hj�� � hij�� � ij�� � ij compatible with ���j

�according to lemma ������ such exists because ���j � P when j � s� and fh�� ���� hvg

is complete for P	�

If � � �j � hj�� player I wins and the output of the game is �j�

If Set�hj��	 n Set��	 � � let aj�� � min�Set�hj��	 n Set��		 � I� Player II selects

a p�element set A � I such that�

��	 A � Set��	  ��

��	 fAg is incompatible with hj���

��	 aj�� � A�

Let �j�� � �j � fAg� and proceed to the next round�

Round s��� If this round is reached� player II wins and the game is terminated� �

Notice that player I does in�uence the game after the choice of �� The strategies

of player I can thus be identi�ed with the conditions in Pk�

De�nition ����� We call � � Pk a winning strategy for player I� if player wins

irrespectively of what player II chooses� �

Lemma ����� Suppose that H  H��H� is complete for P �i�e� �� � P 
h � H � jj

h�� Suppose that H� � fh�� ���� hug and H� � fhu��� ���� hvg u � v � M � Consider

the game G�n� k� t� s�� h�� h�� ���� hv �	� and suppose that � � Pk is a winning strategy

for player I� Let B be the set of possible outputs �when player II varies his�her possible

plays�� Then B is a tree�like basis relative to I n Set��	� Furthermore� B re�nes H�
�

and has jj B jj� ps�

Proof� We are given a winning strategy � for player I� We have to show that B is a

tree�like basis� We view each � constructed at a certain stage in an actually played

game� as a �uniquely de�ned	 �situation�� Let S��	 denote the situations which can

be reached from �� We want to construct B as a sequence

f�g �ATR B� �ATR �����ATR Bj �ATR Bj�� � ����� B�

��



Suppose that Bj has been constructed� Pick any situation �� which has not been

reached so far� but which can be reached from a situation corresponding to a � � Bj

which has already been considered� Let Bj�� � �Bj � Ea��		 n f�g where a �

min�Set�h	 n Set��		� Here h denotes the next hi compatible with � in the situation

corresponding to �� As � was assumed to be a winning strategy for player I� this

procedure terminates� and all � � B get j Set��	 j� ps�

Finally we show that B re�nes H�
�� We have to show that if h jj � for some h � H�

�

and � � B� then there exists h� � H�
� such that h� � �� So suppose � is compatible

with �hj	� � f�h�	�� �h�	�� ���� �hu	�g� If � � �hj	� we are done� If ��� � �hj	� the

game which produced �� must have terminated before hj so there must be j� � j such

that �hj
�
	� � �� As the sequence h�� h�� ���� hu� hu��� ���� hv had all the elements from

H� listed in the beginning� �hj
�
	� � H�

�� �

The next theorem shows that �almost all� �in the sense of �	 strategies � are winning

strategies for player I� More speci�cally�

Theorem ����	 Consider the game G�n� k� t� s�� h�� h�� ���� hv �	� Let WI � Pk be

the set of winning strategies for player I �we only consider M �de�nable strategies�� If

� is a probability distribution on P�k which satis�es condition ��� and �� in corollary

����� then

��WI	  �� �
�

n
	
ks��ps

�k �

Notice that t does not enter the estimate as long as t � n
�

� �

We show theorem ����� by comparing the game G�n� k� t� s�� h�� h�� ��� hv �	 with

another game G��n� k� t� s	�

De�nition ����
 The game G��n� k� t� s	 is played by two players I and II as follows

�all sets etc� are M �de�nable	�

Player II selects J � I� with j J j� ps� and selects a sequence h�� h�� ��� hl of

conditions each with Set�hi	 � I n J � and j Set�hi	 j� t�

Player I then selects a condition � � Pk� Consider the �rst condition h � hj

compatible with � �if there is no such player I wins	� If h � � player I wins� otherwise

player II wins� �

In this game player II makes the choices before player I� Clearly player I always has a

winning reply �just choose � � h�	� We claim almost all player I�s replies are winning�

Theorem ����� Let �WI�� 	 be the set �M �de�nable	 of replies � which ensure a win

for player I after player II made a choice � � Then if � is a probability distribution

which satis�es condition ��� and �� in corollary �����

�� �WI�� 		  � � �
�

n
	
�

� �

��



Proof� First notice

�� �WI �� 		  minj Pr�hj � � j hj jj � � � � h� � ��� � � � hj��	�

According to lemma ����� and condition ��	 in corollary ����� for any j

Pr�hj � � j hj jj � � �� � h�	 � ����� �� � hj��		  Pr�hj � � j hj jj �	

�let A � �hj � �	� B � hj jj � and C � � � h� � ���� � � � hj��	� But by condition

��	 in corollary �����

Pr�hj � � j hj jj �	 
Pr�hj � �	

Pr�hj � �	 � Pr�hj jj � � ��hj � �		
 � � �

�

n
	
�

� � �

Lemma ���� Suppose that � satis�es condition ��� and �� in corollary ����� Let

w  max� ��� �WI �� 		� Then for each strategy v of player II in the �rst game

�� �WI�v		  �� ��� w	s  � � �
�

n
	
s
� �

Proof� The task for player II to survive round � of the game G��n� k� t� s	 �if player

I selects the reply � randomly	 is �easier� than the task of surviving any speci�c

round j of the game G�n� k� t� s�� h�� h�� ���� hv �	� More formally the probability

Pr�survives round k j history of the game	 is

 minjPr�h
j � � j hj jj � � �� � h�	 � ���� �� � hj��		  minj Pr�h

j � � j hj jj �	�

�

Lemma �����

��WI 	  � � �#v��� �WI �v				  � � �
�

n
	
s
� � n

ps

k  �� �
�

n
	
ks��ps

�k � �

when k  �p � ��

Proof� The number of strategies for player II in the �rst game is � n
ps
k � �

This completes the proof of theorem ������ Now lemma ����� follows by combining

lemma ����� and theorem ������

��� Some consequences

Suppose that M is a countable non�standard model of Th�N	 in some countable �rst

order language L� Suppose L extends the language of Arithmetic� Let p  �� p � �

and let n � M n �� Assume that n not is divisible by p� Let

M �
n � fm � M � t�n	 � m for some term t � Lg�

So far we are able to prove�

��



Theorem ����� �weak version� If all terms t � L have sub�exponential growth

rate� then for each generic �lter �G �M �
n � ��G	 j �Count�p	� On the other hand

�M �
n � ��G	 satis�es induction for bounded LP �formulas� As above ��G � �
��G 
�

In the next two sections I strengthen this result� I show that the the model �M �
n � ��G	

satis�es the Count�q	 principle exactly when certain exceptional forests do not exists�

Proof� The argument is very similar to the argument in 
��� So I only outline the

argument�

It su�ces to show that the least number principle is valid for bounded LP �formulas

with parameters in M �
n � Now translate each instance of the least number principle

into a Boolean circuit of the form LNPu���� ��� ��� �u	 � �u� ��j�u���j � ��k�j �k			�

According to the general collapsing result from section �� each �j can be replaced

�and this can be done simultaneously	 by disjunction of small positive conjunctions

�or by negations of disjunctions of small positive conjunctions	� According to the

key lemma �lemma �����	 for any generic �lter �G if ��u	
�G  � there exists j� � u

with ��j�	

�G  � and with ��j	
�G  � for all j � j�� A simple argument shows that

LNPu���� ���� �u	
�G  �� By lemma ����� �M �
n � ��G	 satis�es induction for bounded

LP �formulas with parameters in M �
n � �

� Forests of decision trees

The specially labelled trees we are going to consider can also be viewed as decision

trees � � In our case the decisions concern a �hypothetical	 partitioning of a �nite set

I � f�� �� ���� ng into disjoint p element subsets� To avoid trivial counter examples we

always assume n is much larger than both p and the hight of the trees� All trees are

rooted and �nite �in later parts of the argument ��nite� in the sense of a non�standard

model of �rst order Arithmetic	� When we follow a branch from the root towards the

leafs we make successive decisions building up �parts of	 some mathematical object�

In this case a partial partitioning of I into disjoint p�element subsets� At each vertex

v� except at the leafs� there is assigned a �question� iv � I� At the vertex v we are

asked to decide which p element subset A � I the element iv belongs to� All possible

choices which de�ne the partitioning at iv have to be represented� There is a one to

one correspondence between possible choices �at iv	 and the sons from iv� The label


 of a branch is identi�ed with the �nal object �here a partial partitioning	 which

has been constructed�

Suppose that we are given a forest T�� T�� ���� Tu of decision trees� If each object �label

�I think that this view is due to P�Beame and T�Pitassi

��



on branch	 appears � modulo q times� does q divide u� If there exists a global object

�in this case when p divides n	 the answer is always positive�

This type of question has not previously been considered in the literature� For almost

any mathematical structure� it is possible to de�ne such decision trees� They specify

the local diagrams� In section � our analysis naturally leads us to consider another

type of decision trees� Now let us focus on �p� n	�labelled trees� Notice �rst that each

�p� n	�labelled tree is a graphical representation of a tree�like basis� Because of this�

the concepts from section � �like conditions and restrictions 	 will keep their obvious

meaning�

My aim is show that we have the following characterisation�

Theorem Let q� p  � and h � N� Suppose that h � q� Then the following statements

always hold simultaneously�

�a	 All prime factors in p divide q�

�b	 There exists n� such that for all n � n� which are not divisible by p there is a

�p� n	�labelled forest T�� T�� ����� Tu such that�

�i	 All trees have hight � h�

�ii	 Each type of branch appears � modulo q times�

�iii	 u � � modulo q�

Later I also discuss the general case where there are less restrictions on the �asymp�

totic	 hight of the trees�

��� Some easy results

First let me illustrate the de�nition with a few trivial observations�

Example ����� Suppose that p divides q and that p does not divide n� Consider the

forest

L
LL

�

�
��

�
��

�
��

�L
LL
�
�� �

��L
LL
�
��

� � n

It contains n trees �� � modulo q� trees� Each branch appears exactly q ��� modulo

q� times�

This type of forests are so simple that we don�t consider them as exceptional� They

correspond to the fact that in the special case where p divides q� Count�p	 is a �trivial	

consequence of Count�q	�

��



Observation ����� Suppose that F is a forest of �p� n	�labelled trees� Suppose that

each branch appears � modulo q times� Then there exists a forest F � of �p� n � p	�

labelled trees such that

�i	 The forest F � contains the same number of trees as F �

�ii	 Each branch in F � appears � modulo q times�

�iii	 The hight of the highest trees in F � is at most � higher than the highest tree

in F �

This immediately shows that if there exists an exceptional forest F for some n� this

will also be the case for all larger n� as long as n�  n modulo p� Here are two easy

negative results�

Theorem ����� Suppose that p divides n� Suppose that T�� T�� ���� Tu is a �p� n	�

labelled forest where each branch appears � modulo q times� Then u  � modulo

q�

Proof� According to the assumption p divides n so there exists a partitioning �global

of f�� �� ���� ng into disjoint sets A�� A�� ��� An
p
� f�� �� ��� ng each containing p elements�

The partition �global extends exactly one branch from each tree� Clearly� �global allows

us to de�ne a partitioning of the trees T�� T�� ���� Tu into disjoint classes each containing

exactly q trees� �

Using a similar idea we notice

Theorem ����	 Suppose that T�� T�� ���� Tu is a forest of �p� n	�labelled trees� Suppose

that the sum of the heights of all trees is smaller than n
p
� If all branches appear �

modulo q times� then u  � modulo q�

Proof� Select a branch �� � 
� from the tree T�� The branch must be compatible

with at least one branch 
� � T�� Let �� � �� � 
�� This branch �condition	 must

be compatible to at least one branch 
� � T�� Eventually we construct a condition �

which extends exactly one branch in each tree� �

One can try to elaborate on this type of argument� A �very naive	 strategy is to try

to choose short branches from each tree� It is not hard to see that this method breaks

down when u � n�

In 
��� I presented a graph theoretical argument� It used a generalisation of a

well�known theorem from graph theory� This theorem states that if in a graph G all

vertex have degree at least as large as �
�� j Gvertex j� then G contains a Hamiltonian

circuit� This type of argument breaks down even when u is signi�cantly smaller than

n�� Very early in this work it was clear that results relevant for Bounded Arithmetic

all would require techniques which at least would be able to deal �when n tends to

in�nity	 with the case where u � nk for arbitrarily �xed k�

��



��� Breaking down trees

Let T be a �p� n	�labelled tree� Consider the following �move��

�
�
�
�

�
�

�
�

�
��

�
�� �

���
�� �

��
�

��
�
���

���

�

T
TT

�
��

�

� � � � �

T T T

T

T T T

� � v

v��

�

T T T T T
� � � � �

Suppose that F � fT�� ���� Tug is any forest� Repeated application of this allows us

to break down the trees in F � Eventually all trees can be brought on the following

normal form�

�
�

�
�

��

�JJ ��
�

� �

JJ ��

�
�

�
�

�

JJ ��

�
�

�
�

��JJ

JJ ��

�
�

�
�

JJ ��

JJ ��

� � � �

Let us call such trees perfectly unbalanced �PU	� Clearly we have�

Lemma ����� Fix q  �� q � N� Let F � fT�� ���� Tug be any forest� There exists a

forest F � � fT �
�� T

�
�� ����� T

�
u�g in which each �type of� branch counted modulo q appears

the same number of times as in F � Furthermore �also counted modulo q� the number

u� of trees in F � equals the number u of trees in the forest F �

Notice that the PU�trees have a very simple representation� The PU�tree represented

by�

�u���� fu���� ���� u��pg	�u���� fu���� ���� u��pg	����uh����� fuh����� ���� uh���pg	�uh	�

where ui�j � I�

��� Bringing the forest on a special normal form

Now here are some nice operations on PU�trees�

Example ����� Consider the PU�trees

T � ��� f�� �g	��� f�� �g	��	

��



and

T � � ��� f�� �g	��� f�� �g	��	�

Notice that T and T � contain the same branches of length �� The branch � �

ff�� �� �g� f�� �� �gg does not appear in T and T �� Except for the branch � the tree

T contains the same branches of length � � as the tree ��� f�� �g	��	� Also� except

for the branch � the tree T � contains the same branches of length � � at the tree

��� f�� �g	��	�

This can be expressed by the equation�

��� f�� �g	��� f�� �g	��	  ��� f�� �g	��� f�� �g	��	 � ��� f�� �g	��	 � ��� f�� �g	��	�

The equation expresses the fact that both sides of the identity contain � tree �counted

with signs�� And it expresses the fact that both sides contain exactly the same set of

branches�

Here is another operation�

Example ����� We have the identity�

��� f�� �g	��	  ��� f�� �g	��	 � ��	 � ��	�

The identities from the examples can be expressed generally�

Lemma ����� We have the following identities�

��	 �w��W�	�w��W�	����b�B	�a�A	����wh	 

�w��W�	�w��W�	����a�A	�b�B	����wh	��w��W�	�w��W�	����a	��w��W�	�w��W�	����b	�

��	 �w��W�	�w��W�	����a�� fa�� a�� ��� apg	����wh	 

�w��W�	����a�� fa�� a�� ��� apg	����wh	� �w��W�	����a�	 � �w��W�	����a�	�

It follows immediately from these principles that�

Lemma ����	 Let F � � fT �
�� ��� T

�
u�g be a forest where all trees are PU�trees� Then

there exist a forest F �� � fT ��
� � ���T

��
u��g where all trees are of the form

�u���� fu���� ��� � u��pg	����ui��� fui��� ���� ui�pg	����uh	

where u��� � u��� � ��� � uh����� and where ui�� � ui�� � ��� � ui�p for i  �� �� ��� h� ��

Furthermore�

�i	 The forests F � and F �� contain the same number of trees �modulo q��

�ii	 Each �type of� branch appears the same number �modulo q� of times in the

forests F � and F ���

We will come back to this normal form�

��



� The �rst main result

Suppose that M is a countable non�standard model of Th�N	 over a countable �rst

order language L� which extends the language of Arithmetic� Suppose that p  � and

I � f�� �� ���� ng � M for some n � M n �� Assume that n is not divisible by p� As

above� let M �
n � fm � M � t�n	 � m� for some term t � Lg�

Theorem 	���
 �Main result� Suppose that all terms t � L have sub�exponential

growth rate� Then for each generic �lter �G �see de�nition ���� page ���

�a	 �M 	�n � ��G	 j � Count�p��

�b	 �M �
n � ��G	 satis�es induction for bounded LP �formulas�

�c	 �M �
n � ��G	 satis�es �all versions of� the pigeon�hole principle for bounded LP �

formulas�

Furthermore� there exists a sequence sk�x	� k  �� �� ���� of �arithmetical� functions

�which depend on the exact growth rate of the terms in L�� such that �under the

harmless extra assumption that the underlying language L might need an extension�

the following are equivalent�

�i	 �M �
n � ��G	 satis�es the Count�q� principle�

�ii	 Each forest T�� T�� ��� Tu of �p� n	�labelled trees in which all trees have hight

� sk�n	 where each branch appears � modulo q times� has u  � modulo q�

�iii	 As �ii� but for �p� n	�labelled PU�trees�

Suppose that all terms in L have �at most� polynomial growth rate� Then sk�x	 � k

gives the required characterisation�

In general sk�x	 can be chosen such that �sk�n		l � n for all l � N�

Our overall question is when systems of Bounded Arithmetic extended by an axiom

scheme for the Count�q	 principle� are able to prove Count�p	� The �rst main result�

links this to an understanding of the structure of exceptional forests� Furthermore�

it shows that the asymptotic hight of the trees in the minimal exceptional forests is

directly linked to the strength of the underlying axiom system�

I have already proved �a	 and �b	� I have also showed �iii	 	 �ii	� To show

�i	 	 �iii	 assume that there is a forest F which violates �iii	� Assume that the

language contains a suitable relation symbol which allows us to de�ne the forest by a

Bounded formula �this is the harmless extra assumption	� I claim that the Count�q	

principle fails in �M �
n � ��G	� To see this� notice that there is a Bounded LP �formula

with parameters in M �
n which de�nes �by use of ��G a partitioning of the trees in the

��



forest F � And this in such a way that each class contains exactly q trees� But by

assumption F contains trees T�� T�� ���� Tu for some u with u � � modulo q�

The di�cult implication is �iii		 �i	� As it turns out our proof of �c	 also provides

a �rst step in showing the implication �i	 	 �iii	�

Lemma 	���� Suppose that for some a � M �
n � some bounded LM �P 	�formula ���� �	

�with parameters in M �
n � de�nes a bijection from a to b� Let �� � �G be given� Then

there exists an M �de�nable sequence Hi�j and Bi�j� �i� j	 � a� b such that for some

� � ��� � � P�

�i	 for all �i� j	 � a� b� Bi�j is a tree�like basis on I n Set��	�

�ii	 for all �i� j	 � a� b� jj Bi�j jj� t for some �xed t � n
�

� �

�iii	 for all �i� j	 � a� b� Hi�j � Bi�j�

�iv	 For each i� � a � B
i� � �j�b Hi��j is a basis for P�

�v	 For each j� � b � B�j� � �i�a Hi�j� is a basis for P�

Proof� Suppose that some Bounded LM �P 	�formula ���� �	 de�nes a bijection from

h � f�� �� ��� ag onto f�� �� ��� bg for a � b� According to lemma ����� there exists d � �

and t � M �
n and a M �de�nable sequence of circuits �i�j �i� j	 � a� b� such that each

��i�j	
�G holds exactly when �M �
n � ��G	 j ��i� j	� Now according to the key lemma

�lemma �����	 there exists � � ��� � � P� an M �de�nable sequence Bi�j �i� j	 � a� b

where each Bi�j is a tree�like basis� and an M �de�nable sequence Hi�j � Bi�j �i� j	 �

a� b such that for each �i� j	 � a� b�

�i�j �� �h�Hi�j
h�

We claim that the sequences Bi�j and Hi�j satisfy �i	��v	� By use of the fact that h

is an injective function it is straightforward to show that the conditions in B
i must

be pairwise incompatible� The fact that h is a �mono�valued	 function ensures that

conditions in B�j are pairwise incompatible�

The only problem is to show that each B
i and each B�j are complete for P�I n

Set��		 �i�e� satis�es condition ��	 in de�nition �����	� We can simplify the notation

by assuming that �  �� This simpli�cation is possible by lemma ������ because the

lemma allows us to replace I by I n Set��	�

Suppose that �� � P is incompatible with all conditions in B
i for some �xed

i � a� Let �G be a generic �lter �without the simpli�cation we assume �G � �	� Now

for each j � b� ��G is incompatible with all conditions in Hi�j� so by use of lemma

������ �
�Gi�j  � for all j � b� This is in contradiction with lemma ����� which ensures

that � �or � in the un�simpli�ed case	 forces h to take a value j � b�

��



The completeness of the conditions in each B�j follows by use of the assumption

that h was forced onto� �


�� Using a combinatorial phenomenon

My aim here is to show that �i	��v	 in lemma ����� can be only satis�ed when a  b�

First we show

Lemma 	���� Suppose that for some a� b � M �
n there exist M de�nable sequences

Bi�j and Hi�j �i� j	 � a� b� If they satisfy condition �i���iii� in lemma ������ together

with�

�iv	� For each i� � a � B
i� � �j�b Hi� �j is a tree�like basis�

�v	� For each j� � b � B�j� � �i�a Hi�j� is a tree�like basis�

Then a  b�

Proof� First� notice that we can assume that all conditions h� h� � Hi�j have j h jj

h� j� Otherwise make suitable tree�like re�nements� Second� notice that P �the set

of forcing conditions	� has the property that the number N�n� p� c	 of conditions in a

tree�like basis where all conditions h have j h j c� only depends on n� p and c� Now

ac  #i�a j B
i j #i�a�j�b j Hi�j j #j�b j B
�
j j bc� so a  b� �

Suppose that we could replace �is a basis for P� with �is a tree�like basis� in

lemma ������ Then according to lemma ����� this would ensure that the pigeon�hole

principle could never be forced false� So if a basis B for P in general would be tree�like�

we would be done� Unfortunately� the reality is more complex�

Example 	���� The converse of lemma ���� does not hold in general� The following

example �p  �� is due to Krajicek �personal communication�� The collection

B � fff�� �gg� ff�� �gg� ff�� �gg� ff�� ig� f�� jg� f�� kggi�j�k���jfi�j�kgj��g

is a basis for P� However B is not a tree�like basis �there is no i� � I such that all

� � B has i� � Set��		�

Observation 	���� Consider example ����� Let B� � �B�E��ff�� �gg	nfff�� �ggg�

so B �TR B�� Notice that B� is a tree�like basis� To see this� notice that B� can be

obtained from f�g by the atomic tree�like re�nements�

E���	�

��



E��f�� �g	� E��f�� �g	� ����� E��f�� ng	�

E��ff�� �g� f�� �gg	� E��ff�� �g� f�� �g	� ���� E��ff�� �g� f�� ngg	�

E��ff�� �g� f�� �gg	� E��ff�� �g� f�� �gg	� ����� E��ff�� �g� f�� ngg	�

����

E��ff�� ng� f�� �gg	� E��ff�� ng� f�� �gg	� ����� E��ff�� ng� f�� n� �gg	�

This observation is part of a general phenomenon� It turns out �and this was the

combinatorial discovery which made my general approach possible	� that any basis B

for P has a tree�like re�nement to a tree�like basis�

Lemma 	���	 Assume that B is a basis for P� and that u � I� Then there exists a

tree�like re�nement B� of B such that for all �� � B� u � Set���	�

Proof� Let B� � ���B Eu��	� Notice that this is actually a tree�like re�nement of

B� and that B� has the required properties� �

De�nition 	���
 For U � I� we let CU denote the tree�like basis

f
 � �A � 
 
u � U u � A � Set�
	 � Ug� We say B is a tree�like basis on U � I if

for each 
 � CU � there exists � � B with � � 
� �

Lemma 	���� Suppose that B is a basis for P� and U � I with j U j� n
�

� � There is

a tree�like re�nement B� of B� such that B� is a tree�like basis on U �

Proof� Let U  fu�� u�� ���� urg� According to lemma ����� there exists a sequence

B  B� �TR B� �TR �����TR Br�

such that for all � � Bj uj � Set��	� Let B� � Br� We have to show that for each


 � CU there exists � � B�� � � 
� Now by use of a calculation similar to the one

in the proof of lemma ������� B� is a basis for P� so each 
 � CU is compatible with

some � � B�� Now as Set��	 � U actually � � 
� �

Lemma 	��� Suppose that jj B jj� t for some t � n
�

� � Also suppose that the

conditions in B are pairwise incompatible� Then B is a basis for P i� each condition

� � P� is compatible with some � � B�

Proof� Repeated application of lemma ������ �

Lemma 	���� If B is a basis for P� and jj B jj� t for some t � n
�

� � then there exists

a tree�like basis �B such that jj �B jj� pt�t� �	 and such that B �TR
�B�

��



Proof� First we construct �B�� Pick a set V � I such that V � Set��	 for some � � B�

According to lemma ����� there exists a tree�like re�nement B� of B such that B� is

tree�like on V � Now �x � � CV and consider B�
� � P�I nV 	� It is not hard to show B�

�

is a basis for P�I n V 	� Now by use of lemma ����� we notice that we can prove the

lemma by use of induction after t inside M � Let B���	 � f� � �� � �  �� � � � B�
�g�

Notice that B���	 is a tree�like re�nement of �� Finally let �B � �� B���	� By

induction after t we have jj �B jj�j Set��	 j �p�t��	t� Now j Set��	 j� pt� from which

the required inequality follows� �

We need a two�dimensional version of lemma ������

Lemma 	���� Suppose that there exists an M �de�nable 	generic system
� That is a

sequence Hi�j� �i� j	 � a� b such that�

�i	 For each i � a B
i � �j�b Hi�j is a basis for P�

�ii	 For each j � b B�j � �i�a Hi�j is a basis for P�

�iii	 max�i�j	�a�b jj Hi�j jj� t for some t � n
�

� �

Then there exists an M �de�nable 	tree�like generic system
� That is a sequence
�Hi�j �i� j	 � a� b such that�

�i	� For each i � a �B
i � �j�b �Hi�j is a tree�like basis�

�ii	� For each j � b �B�j � �i�a �Hi�j is a tree�like basis�

�iii	� max�i�j	�a�b jj �Hi�j jj� p��t� �	��

Proof� Fix i � a� According to lemma ����� there exists a tree�like re�nement B�
i
of B
i � which is a tree�like basis� For each j � b this procedure induces a tree�like

re�nement H�
i�j of Hi�j� This way we get an M �de�nable sequence H�

i�j� �i� j	 � a� b�

so �i	�� �ii	 and jj H�
i�j jj� pt�t� �	�

Now �x j � b� Again according to lemma ����� there exists a tree�like re�nement
�B�j of B��j � which is a tree�like basis� For each i � a this procedure induces a tree�like

re�nement �Hi�j of H�
i�j� Now notice that �B
i remains tree�like basis� and thus the

M �de�nable sequence �Hi�j� �i� j	 � a � b satis�es �i	�� �ii	�� Clearly also �iii	� holds

because jj �Hi�j jj� p�pt�t� �	 � �	�pt�t� �		 � p��t� �	�� �

This immediately shows �c	 in theorem ������ in the case of the bijective pigeon�

hole principle� The other versions of the pigeon�hole principle are treated with minor

changes�

��




�� Reducing the Countq� versus Countp� problem

The implication �i	 	 �iii	 follows by the same type of argument�

Lemma 	���� Suppose that ��x�� x�� ���� xq	 is a bounded L�P 	�formula with q free

variables� and all its parameters in �M �
n � ��G	� If � de�nes a partition of Ia �

f�� �� ��� ag� a � M �
n � then there exists an M �

n �de�nable map A � HA� which to

each q�subset A of Ia assigns a collection of conditions HA � P such that for some

t � n
�

� � maxA�jj HA jj	 � t� Furthermore� for each v � Ia�Bv � �A�Ia�jAj�q�v�A HA

is a basis for P�

Proof� Suppose that some bounded L�P 	�formula ��x�� x���� xq	 de�nes a partition of

f�� �� ���� ag into disjoint q�subsets� and q does not divide a� According to ����� there

exists d � �� t � n
�

� and an M �de�nable sequence of circuits �v������vq � v�� ���� vq � Ia�

such that �

�G
i������iq

exactly when �M �
n � ��G	 j ��i�� ���� iq	� Now according to the key

lemma �lemma �����	� there exists � � �� �for any given ��	� and an M �de�nable

sequence Bv�����vq v�� ��� vq � Ia where each Bv�����vq � P is a tree�like basis with jj

Bv������vq jj� t� Furthermore� there exists a M �de�nable sequence Hv��v������vq � Bv�����vq
such that for each v�� ���� vq � Ia�

�v��v�����vq �� �h�Hv��v� ����vq
h�

Fix v � Ia and consider Bv � �A�Ia �v�A HA� For 
� � � Bv� 
 � � we claim 
���

To see this notice that otherwise there would exist � � 
 � �� and � � P would force

both �v������vq and �v�������v�q true� Now v � fv�� ���� vqg�fv��� ���� v
�
qg so this is only possible

when fv�� ���� vqg  fv��� ���� v
�
qg� Thus both 
 and � belong to Hv�����vq � Bv�����vq � As

Bv������vq is a �tree�like	 basis� 
���

It remains to show that Bv� v � Ia is complete for P�f�� �� ��� ngnSet���		� Assume

for the simplicity of the notation that ��  �� According to lemma ������� this

assumption is harmless� We have to show that no � � P is incompatible with all

the conditions h � Bv� Now using lemma ������ each generic �lter �G contains some

h � Bv������vq for each v�� v�� ��� vq � Ia� But this contradicts the assumption that �� �in

our case �	 forces � to de�ne a total partition of Ia into disjoint q subsets� �

We conjecture that Count�q	 is always forced true �when p and q are di�erent

primes� To show that Count�q	 is never forced false� it su�ces to show that if HA is

an M �de�nable assignment as in lemma ������ then q must divide a�

Example 	���� Suppose that a �� n� Consider Ia � f�� �� ���� ag� Pick �� � �� �

���� � �a such that for each v � a there is 
v � Bv such that 
v � �v� This is possible

whenever �v � P� v  �� �� ���� a �which is the case when a �� n�� Notice that �a

��



induces an M �de�nable partition of Ia into disjoint q�subsets� As M shares its �rst

order properties with N� this is only possible when q divides a�

As a major step in solving the Count�q	 versus Count�p	 problem� I show that we

can strengthen the conclusion by replacing �each Bv is a basis for P�� with �each Bv

to be a tree�like basis��

Lemma 	���� Let t � n
�

� � a � M � Let P be the set of forcing conditions de�ned as

on page ��� Suppose that A� HA is an M �de�nable map which assigns a collection

of conditions HA � P� to each q�subset A of Ia  f�� �� ��� ag such that

�i	 maxA�jj HA jj	 � t

�ii	 Bv � �A�Ia�jAj�q�v�A HA is a basis for P �v  �� �� ���� a	�

Then there exists a M �de�nable map A � �HA which assigns a tree�like re�nement
�HA of HA� to each q�subset A of Ia � f�� �� ��� ag such that

�i	� maxA�jj HA jj	 � qpt�t� �	

�ii	� �Bv � �A�Ia�jAj�q�v�A �HA is a tree� like basis �v  �� �� ���� a	�

As a �rst attempt of a proof consider the following argument� According to lemma

����� there exists a tree�like basis B��	
� which is a tree�like re�nement of B� � ���A HA�

This re�nement induces tree�like re�nements HA �TR H
��	
A for each A � Ia� j A j q

�when � �� A� H
��	
A  HA	� For each v � Ia let B��	

v � �v�A H
��	
A �

Again by lemma ����� there exists a tree�like basis B��	
� which is a tree�like re�ne�

ment of B��	
� � This re�nement induce a tree�like re�nement H��	

A �TR H
��	
A for each

A � Ia� j A j q �when � �� A� H��	
A  H��	

A 	� For each v � Ia let B��	
v � �v�A H

��	
A �

Eventually �again using lemma �����	 there exists a tree�like basis B
�a	
� which

is a tree�like re�nement of B�a��	
a � This re�nement induces a tree�like re�nement

H�a��	
A �TR H

�a	
A for each A � Ia� j A j q �when a �� A� H�a	

A  H�a��	
A 	� For each

v � Ia let B�a	
v � �a�A H

�a	
A �

Let �HA � H
�a	
A � We claim that each �Bv � �v�A �H�a	A is a tree�like basis� To see

this notice �Bv  B�a	
v � By construction each B�v	

v is a tree�like basis� Now

B�v	
v �TR B

�v��	
v �TR ����TR B

�a	
v

so B�a	
v is a tree�like basis�

This argument has to be adjusted� We have to ensure that all conditions h are

small throughout the construction� To this end we need some more lemmas�

��



De�nition 	���	 For H�H� � P let H�H� � fh � h� � h � H� h� � H�g� �

Lemma 	���
 Let A�HA and A� H�
A be two M �de�nable maps� Suppose that

�i	 for each condition in HA is compatible with some condition in H�
A and vice versa�

�ii	 for A�B with A � B and A �B � �� all conditions in HA are incompatible with

all conditions in H�
A and vice versa�

Suppose that both the maps A � HA and A� H�
A satisfy conditions �i� and �ii�

in lemma ����� Then the M �de�nable map A� HA �H�
A ensures that �i� and �ii�

remain valid with t replaced by �t�

Proof� Direct veri�cation� �

Lemma 	���� Suppose that B� is a basis for P� If both B� and B� are tree�like

re�nements of B�� then B� � B� is a tree�like re�nement of both B� and B��

Proof� Proved by induction on the number of atomic tree�like re�nements needed to

get from B� to B� added to the number of atomic tree�like re�nements needed to get

from B� to B�� �

The following proof simpli�es an argument in an earlier and preliminary version of

this paper�

Proof of lemma 	����� For each v � Ia let Hv
A be the tree�like re�nement of

HA induced when Bv � �A�v HA is re�ned to a tree�like basis Bv
v� Consider the

M �de�nable map

A� �HA � Ha�
A �Ha�

A � �����H
aq
A �

where A  fa�� a�� ���� aqg� Now Bv
v � �A�v Hv

A is a tree�like basis� Furthermore�
�H � Hv

A � �Ha�
A � ��� � H

aq
A 	 where A  fv� a�� a�� ���� aqg� To see this notice that

according to lemma ����� for �xed a�� ��� aq� ��A�v Hv
A	 � �Ba� � Ba� � ��� � Baq	

is a tree�like re�nement of �A�v Hv
A� This tree�like re�nement induces a tree�like

re�nement

Hv
A �TR Hv

A � �Ha�
A � ����H

aq
A 	�

Thus for each v � Ia� �Bv � �A�v �Hv
A is a tree�like re�nement of �A�v Hv

A� which

was constructed as a tree�like basis� Thus each �Bv is a tree�like basis� �

Combining these results it is not hard to show that �i	 	 �iii	�

��



� The positive part

In this section I develop a method of constructing exceptional forests� And the exis�

tence of these forests immediately gives us the positive part of the classi�cation�

De�nition 
��� By 
i�� ���� il�p we denote the �p� n	�labelled trees which contain all

the branches 
 of the form 
  fA�� ���� Arg where Aj � I� j Aj j p� j  �� �� ��� r

and where Aj �Ak  � for j � k� Besides that we require that�

�a	 Aj � fi�� i�� ���� ilg � � for j  �� �� ���� r�

�b	 �k � l 
j � r ik � Aj� ��

De�nition 
���� Let p� q  �� The forest FHom
p�r�n �Hom for homogeneous	 consists of

all the trees 
i�� i�� ���� ir�p where i� � i� � ��� � ir � n� �

De�nition 
���� By Ap�l�r we denote the number of ways it is possible to select r

elements from the sets f�� �� ���� pg� fp��� p��� ���� �pg� ���� fpl�p��� pl�p��� ���� plg�

such that at least one element is chosen from each of the p elements sets� �

Lemma 
����� The forest FHom
p�r�n of �p� n	�labelled trees� contains

�
n

r

�
trees� Each

branch 
 with j 
 j l appears in Ap�l�r trees�

Proof� Clearly j FHom
p�r�n j

�
n

r

�
� Suppose that


  fi��� i
�
�� ���� i

�
pg� fi

�
�� �����i

�
pg� ���� fi

l
�� i

l
�� ���� i

l
pgg where i�� � i�� � ���� � il� and where

ij� � ij� � ��� � ijp for j  �� �� ���� l� Now there is a one to one correspondence between

the r element subset of �
� which contains at least one element from each member

in 
� and the trees in FHom
p�r�n which contain 
� �

Lemma 
����� Let q be a �xed prime number� Let s be any �xed number� Then for

each v  �� Count�qv � s� � Count�qv�� � s��

Proof� Without loss of generality we can assume that q is not a prime factor in s�

Consider the forest F which contains qv�� copies of the forest FHom
p�r�n where p � qv���s�

r � qv� The critical cases �the only non�trivial cases	 are when n  qv��n� � r � qv�

r  �� �� ���� q��� The forest contains k �qv�� modulo qv trees �for k � f�� �� ��� p��g	�

The most critical case is branches of length �� They appears qv�� �
�
qv���s
qv

�
 � modulo

qv times� Longer branches also appears � modulo qv times� �

This gives the positive part of the classi�cation�

Corollary 
����� If p� q  and all prime factors in p appears in q then� Count�q� �

Count�p��

��



	�� Some examples

Before I show the negative part of the classi�cation I will examine the structure of the

exceptional forests when these are on the PU�form� Each �irreducible	 exceptional

forest F of PU�trees I have found can be derived from the forests given in de�nition

������

Example 
���� Let q  �� p  � and n  �n� � �� n�  �� Consider the forest

F����n of ��� n	�labelled PU�trees which contains�

All PU�trees of the form �i��W�	�i�	 where i� � i� � n and where W� � f�� �� ���� ng

has � elements�

The PU�trees ��	� ��	� ��	� ������ ��n� � �	�

Each branch of length � appears �� times� A branch fj�� j�� j�� j�g of length ��

appears in mod�j�� �� � mod�j�� �� � mod�j�� �� � mod�j�� �� trees of hight �� And

the branch appears in
�
n��
�

�
� �n � � � j� � j� � j� � j� trees of hight ��

The forests F����n contain
�
n

�

��
n��
�

�
� n

� trees� This is always an odd number� When

n�  � the forests contain ���� trees�

Example 
���� Let n  �n� � �� For each n�  � there exists a ��exceptional forest

of ��� n	�labelled trees� The forest contains all trees�

�j�� fj�� j�� j�g	�j�	 where j� � j� � j� � j� and where j� � j� � j� or j� � j� � j��

��	� ��	� ����� ��n�� �	�

Each branch of length � appears an even number of times�

The branch ffi�� i�� i�� i�g� fi�� i�� i�� igg appears a number of times depending on the

number of vertical lines in the following kind of �gure�
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The branch ffi�� i�� i�� i�gg appears in all trees �of hight �� except �i� � i�	 � �i�� i�	

which counted modulo � is i� � i� � i� � i�� This is the same number �modulo �� it

appears in trees of hight ��

When n�  � this is a forest of ��� trees� I conjecture that for q  � this is the

smallest exceptional forest of PU�trees�

The next example is derived from lemma ������
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Example 
���� Let q  �� p  � and n  �n� � �� n�  �� Consider the forests

F����n which contain the ��� n	�labelled PU�trees�

��	 The trees of the form �i��W�	�i��W�	�i�	 where i� � i� � i� � n and where

W��W� are two disjoint ��element subsets of f�� �� ���� ng n fi�� i�� i�g�

��	 Two copies of each tree of the form �i��W�	�i�	 where i�  � modulo � and

i� � i� � n�

��	 Each tree of the form �i��W�	�i�	 where i�  � modulo � and i� � i��

��	 Each tree of the form �i�	 where
�
n�i�
�

�
 � modulo ��

��	 Two copies of each tree of the form �i�	 where
�
n�i�
�

�
 � modulo ��

A careful checking shows that each branch appears � modulo � times� The forests

contains � modulo � trees� In the smallest case �i�e� when n���� the forest contains�
��

�

��
��

�

��
��

�

�
� #i#j � i� j � � � � #i#j�i�j��� � � #i mod�

�
n� i

�

�
� �	

trees� This is a forest of ��������������� trees� It is not the smallest exceptional

forest for q  ��

There are smaller exceptional forests

Example 
���	 Consider the forest F which contains�

t copies of each tree �i�� fi�� i�� ���� i�g	�j�� fj�� ���j�g	�k	 where i� � i� � ��� � i�� i� � j�

� j� � j� � ��� � j� and if ir � k � ir�� and js � k � js�� then r � s  t modulo ��

t copies of each tree �i�� fi�� ���i�g	�j	 where i� � i� � ��� � i� and if ir � j � ir��

then t  r modulo ��

t copies of each tree �i	 where t  i modulo ��

I claim �without proof� that each branch appears � modulo � times� However for

each n  �n��� n�  � j F j� � modulo �� More speci�cally j F j �
� �
�
n

�

��
n��
�

�
� �n�

��	� In the case when n�  � F only contains �������������� PU�trees� I conjecture

that this is the smallest exceptional forest for q  ��

From the examples we notice a general feature� The trees of maximal hight h are

very homogeneously organised and easy to describe� The Trees of hight h�� are still

quite regular but each such tree�s frequency � � v � q is slightly more complicated to

describe� The collection of trees of hight � have the frequencies which are the most

complicated to calculate�

In the next section I show that all exceptional forests asymptotically �when n��

and the hight of all trees is bound by a constant	 can be assumed to have the same

feature�
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� The negative part

The negative part of the classi�cation states that Count�q	 does not imply Count�p	

when p contains a prime factor which is not in q� We consider the case where all

terms in the underlying language L have �at most	 polynomial growth�rate� By the

�rst main result theorem ����� it su�ce to show that for each h � N asymptotically

�when n � �� and h�F	 � h	 there are no q�exceptional forests T�� T�� ���� Tu of

�p� n	�labelled trees�

This is shown by considering forests T �
�� T

�
�� ���� T

�
u of specially labelled trees corre�

sponding to the Count�q	 versus PHPqk

De�nition ����
 A �D�R	�labelled tree T is a decision tree for constructing a partial

bijection f � D � R� We always assume that D � R  �� Each vertex v � T

corresponds to a certain stage fv in the construction of f � At the root vroot we have

fvroot  ��

At each vertex v �except the top node	 there is a assigned a �question�� i�e� an

element u � D � R n �dom�fv	 � ran�fv		� Each �answer� corresponds to the sons of

v� If u � D� there is an edge to a son� for each r � R n ran�fv	� Each of these edges

lead to a vertex v� in which fv� � fv� and fv��u	  r �and j fv� jj fv j ��	� Similarly

if u � R� In this case there is an edge for each d � D n dom�fv	� Each of these edges

lead to a vertex v� in which fv� � fv� and fv��d	  u �and j fv� jj fv j ��	�

The type of a branch through T is identi�ed with the partial map fv constructed

at the leafs v� �

This labelling is more manageable than the �p� n	�labelling�

De�nition ����� The hight h�F	 of the forest F denotes the maximal hight of a

tree T � F � �

De�nition ���� A �D�R	�labelled tree T is a PU�labelled tree � on PU�form	 if

at each level all but possible one vertex is a top node� �

Observation ����� A �D�R	�labelled tree T on PU�form can be written of the form�

�u��� u
�
�	�u

�
�� u

�
�	����u

l��
� � ul��� 	�ul	

If ui� � D then ui� � R and if ui� � R then ui� � D � i  �� �� ���� l� ��� The element ul

belongs to either D or R� In the �rst case we say T is of D�type� while we say that

T is on R�type�

As an example consider the following �obvious	 proposition�

��



Proposition ����� Suppose that F solely consists of �D�R	�labelled trees of D�type�

Suppose also �as usual� that j D j�j R j� Suppose that each branch 
 in F appears �

modulo q times� Then the forest F contains � modulo q trees�

Proof� Let � � D � R be an �total	 injection� Each tree T � F contains exactly one

branch 
 with 
 � �� Thus � induces a partitioning of the trees in F into disjoint

classes which each contains � modulo q trees� �

If the forest F contains trees of both D�type and R�type the situation becomes more

complicated�

Example ������ Let q � N� Consider the following forests F of �D�R	�labelled

trees� For each d � D it contain �q � �	 copies of �d	� and for each r � R it contain

the tree �r	�

This forests F contains j R j � j D j modulo q trees� Each type of branch appears

� modulo q times� So trivially if j R j�j D j modulo q� there exists a forest F in which

all branches appears � modulo q times� but j F j� � modulo q�

This type of forest is trivial� It corresponds to the obvious fact that Count�q	 implies

PHPp when p � � modulo q� This type of forests are so simple that we will not

consider them as exceptional�

De�nition ������ A forest F of �D�R	�labelled trees is called �q� l	�exceptional if

�i	 Each type branch appears � modulo q times�

�ii	 j R jj D j �ql�

�iii	 The number of trees in F � is not divisible by q� �

Example ������ Suppose j R j � j D j �p� � � for some p� � N� Assume that

j R j is an odd number� Let F denote the �D�R	�labelled forest which contains the

following PU�trees�

��	 All trees of the form �d� r�	�r�	 where d � D and r� � r� when j r�� r� j is odd�

and r� � r� when j r� � r� j is even�

��	 All trees of the form �d�� r	�d�	 where r � R and d� � d��

Each branch appears an even number in F � However� the forest F contains

j D j

�
j R j

�

�
� j R j

�
j D j

�

�

trees which is always an odd number� The smallest example of this form is when

j D j � and j R j �� In this case F contains ��� trees� I claim without proof

that this is the smallest ��� �	�exceptional forest� The forest resemble the fact that

Count��� implies PHP��

��



There are �q� l	�exceptional forests for each q� l � N� q � � �we do not need this fact	�

This follows by combining�

��	 We have a version of theorem ����� for the Count�q	 versus PHPql problem�

��	 Trivially PHP� follows from Count�q	

��	 By 
��� PHPql follows from PHP��

It is interesting to notice that this proof is non�constructive� It only shows that

the exceptional forests exists� It does not shows how to constructs them� It turns out

that they can be constructed along the same lines as the constructions in section ��

��� Projecting forests

Let T be a �p� n	�labelled tree� Suppose n  pn�� ql for q � N n f�g and l � N� Then

we can transform it to a �D�R	�labelled tree by the following procedure�

First divide I � f�� �� ���� ng into p disjoint sets D��D�� ����Dp�� and R such that

j D� jj D� j ���� j Dp�� j n� and j R j n��ql� LetD � D�� For j  �� �� ���� p��

chose bijections yj � Dj � D� Let us call a subset fi�� i�� ��� ipg � I for regular if

ip � R� ij � Dj � j  �� �� ��� p � � and y��i�	  y��i�	  ���  yp���ip��	� A branch

fA�� ��� Arg is regular if each Aj� j  �� �� ��� r is regular� By use of this de�nition it

is straight forward to show that�

Lemma ����� Let T be a �p� n	�labelled tree� Suppose that n  pn� � ql and let

D�� ���Dp�� and R be given as above� Then the set of regular branches in T form a

new tree T � which is �D�R	�labelled� Furthermore h�T �	 � h�T 	�

If T is on PU�form� then T � will also be on PU�form�

Instead of projecting a single tree we can project forests� The important point is that

the projection of an q�exceptional forest of �p� n	�labelled trees produces an �q� l	�

exceptional forest of �D�R	�labelled trees�

Lemma ����� Let F � fT�� T�� ��� Tug be a forest of �p� n	�labelled trees� Suppose F

is an q�exceptional forest� Or more speci�cally that p does not divide q and each branch

in F appears � modulo q times� but u � � modulo q� Suppose also that n  pn� � ql�

The projection of the trees T�� ���� Tu gives an �q� l	�exceptional �D�R	�labelled forest

�with j D j n� and j R j n� � ql�� Furthermore h�F �	 � h�F	�

Proof� This is left to the reader to verify� �

The condition that n  pn� � ql might not in general be satis�ed for a given n�

However� usually we do not lose any generality by assuming n is of this form� To see

this consider the following procedure�

��



De�nition ����� Suppose that � is a partial partition of I � f�� �� ���� ng into dis�

joint p�element subsets� Consider a �p� n	�labelled tree T � For each branch �con�

dition	 
 through T consider the following procedure� If 
 is incompatible with �

remove it� Otherwise replace it by � � 
 n ��

Suppose that �� is a partial bijection from D to R� Consider a �D�R	�labelled tree

T � For each branch �condition	 
� through T consider the following procedure� If


� is incompatible with �� remove it� Otherwise replace it by �� � 
� n ��� �

Lemma ����	 �Stability� Suppose that T is a �p� n	�labelled tree� Let � be a partial

partition of I  f�� �� ���� ng into disjoint p�element subsets� Suppose that

p � �h�T 	� j � j	 � n� Then the collection of all branches � which are produced from

some 
 � T �as described in de�nition ������ can be organised into a �p� n�	�labelled

tree T � where n�  n� p j � j�

Suppose that T � is a �D�R	�labelled tree� Let �� be a partial bijection from D to R�

Suppose that h�T 	� j �� j� n� Then the collection of all branches �� which are produced

from some 
� � T �as described in the second part of de�nition ������ can be organised

into a �D�� R�	�labelled tree T ��� where D� � D n dom���	 and R� � R n ran���	�

If T �T �� is a PU�tree then T � �T ���� is a PU�tree�

Proof� It su�ce to show the lemmawhen j � j �� Suppose that � � ffi�� i�� ���� ipgg�

Let V be the set of vertex in T which have assigned v � fi�� ��� ipg� Let E� denote

the set of edges in T which has assigned p�subset A � I with non�trivial intersection

with fi�� ��� ipg �i�e� � � and � A	� Let Ejj be the set of edges which have assigned

A  fi�� i�� ��� ipg�

For each vertex �question	 in V all edges �but exactly one	 edge �answer	

belongs to E�� Remove all these edges �and the sub�tree above this	� Then contract

the edge in Ejj� Finally� after having exhausted this procedure� remove all edges in

E� �and the sub�tree above this	� The condition that p�h�T 	� j � j	 � n is exactly

what in general is required to ensure that T � actually becomes a properly labelled

tree� The second part of the lemma is showed similarly� The last claim is also straight

forward to check� �

The lemma is one of many stability results which are important for the overall argu�

ment� In short it shows that trees �PU�trees	 remains on this form when they are

�hit� by a restriction ��

The main lemma gives us an understanding of the asymptotic behaviour of exceptional

�D�R	�labelled trees�
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Lemma ����
 �Main lemma� Let q be a prime number� Let k� l � N� There exists

d� � N such that for any �qk� l	�exceptional forest of �D�R	�labelled trees� where

d� �j D j�j R j� we have h�F �	  ql�k�

Corollary ����� Let p be any prime number which does not appear in q  q
�� q
�� ���q
rr �

Fix h � N� There exists n� such that for each n  n� each forest F � fT�� T�� ���� Tug

of �p� n	�labelled trees never simultaneously satis�es�

��	 All branches appears � modulo q times�

��	 h�F	 � h�

��	 u � � modulo q�

Proof� Suppose that ��	 and ��	 hold� Choose j � f�� �� ��� rg such that u � � modulo

q

j
j � According to the assumptions F is an q


j
j �exceptional forest of �p� n	�labelled

trees� By lemma ����� we can assume that n  pn� � qlj for any l given in advance

�of course l has to be reasonable i�e� ql �� n etc	� Choose l such that q
l�
j
j � h�

By lemma ����� the projected forest F � is �q

j
j � l	�exceptional and h�F �	 � h�F	�

According to lemma ����� h�F �	  ql�
j � h� Now h�F �	 � h�F	 so this contradicts

��	� �

��� Creating order among trees of maximal hight h

Lemma ����� Fix q � N n f�g� and �x l� h � N� For each d� � N with d�  h�

there exists �a very large� d� � N such that for each forest F  fT�� T�� ���� Tug of

�D�R	�labelled trees with j R jj D j �ql and j D j d� the following is true�

There exists a partial bijection � � D � R� such that the forest F� � fT �
� � T

�
� � ��� T

�
ug

of �D�� R�	�labelled trees� with D�  D n dom��	 and R�  R n ran��	� satis�es�

��	 For each h � � element subset fd�� d�� ��� dh��g � D� with d� � d� � ��� � dh��

and for each permutation � � f�� �� ��� hg � f�� �� ��� hg the number �modulo q� of trees

�in the forest F�� of the form

�d�� r���		�d�� r���		�����dh��� r��h��		�r��h		

does not depend on the elements r� � r� � ��� � rh in R��

��	 For each �h � �	�element subset fd�� d�� ���� dh��g � D� �where d� � d� �

��� � dh���� for each element dh � D� n fd�� d�� ��� dh��g� and for each permutation

� � f�� �� ���� h� �g � f�� �� ���� h� �g the number �modulo q� of trees of the form

�d�� r���		�d�� r���		�����dh��� r��h��		�dh	

does not depend on the elements r� � r� � ��� � rh�� in R��

��	 j D� j d��

��



Proof� Let D� � D be a subset with j D� j d�� for some number much larger

than d�� The size of d�� can be expressed in terms of the estimates arising from the

second part of the argument �where we ensure the validity of property ��		� For each

h � � element subset fd�� d�� ���� dh��g � D� with d� � d� � ��� � dh�� and for each

permutation � � f�� �� ��� hg � f�� �� ���� hg we de�ne a map F �d�� d�� ���� dh��$�	 which

maps h�element subsets of R to the set f�� �� �� ��� q � �g� It is de�ned by letting

F �d�� d�� ���� dh��$�	�fr�� r�� ���� rhg	 �where r� � r� � ��� � rh	 denote the number

�modulo q	 of the PU�trees

��	 �d�� r���		�d�� r���		�����dh��� r��h��		�r��h		

These maps induce as a map �F which to each h element subset fr�� r�� ���� rhg � R

takes one of q�
jd� j
h��	h��values� This value expresses uniquely for each h�� element subset

of D� and each permutation � � f�� �� ��� hg � f�� �� ���� hg� the number �modulo q	 of

PU�trees of the form ��	�

Now by Ramseys theorem � if d� is su�ciently large �not depending on F 	 there

must be a set R� � R which is homogeneous for the �collaring� �F � By possible

making R� slightly smaller we can ensure that j D nD� jj R nR� j� Choose a partial

bijection � � D � R such that dom��	  D nD� and ran��	  R n R�� This ensure

that the new restricted forest satis�es property ��	�

This procedure is now repeated �with d�� replaced by d�	 such that property ��	

are satis�ed� Notice that application of a new �� does not destroy property ��	� �

De�nition ����� Two tuples � r�� r�� ��� rh � and � r��� r
�
�� ���� r

�
h � have the same

order structure if for the same permutation � we have that r���	 � r���	 � ��� � r��h	

and r����	 � r����	 � ��� � r���h	� �

Lemma ����� �Stability� Suppose that F � fT�� T�� ���� Tug is a forest of �D�R	�

labelled PU�trees� Suppose all trees of maximal hight h satis�es ��� and �� in lemma

����� For any partial bijection � � D � R� with h� j � j�j D j� the forest F � �

fT �
� � T

�
� � ���� T

�
ug of �D�� R�	�labelled trees �D� � D n dom��	� R� � R n ran��	� also

satis�es ��� and ���

Proof� By the second part of lemma ������ we only have to check that ��	 and ��	 in

lemma ����� will be satis�ed� To show ��	 we have to prove that the PU�trees

�d�� r�	�d�� r�	����dh��� rh��	�rh	

�The application of Ramseys theorem seems to play a similar role in ����

��



and

�d��� r
�
�	�d

�
�� r

�
�	����d

�
h��� r

�
h��	�r

�
h	

appears the same number of times �modulo q	 when d� � d� � ��� � dh��� when

d�� � d�� � ��� � d�h��� and when the order type of � r�� r�� ��� rh � and � r��� r
�
�� ���� r

�
h �

are the same� This follows from the fact that none of the representations can have

been altered by �� �

��� Creating order among trees of hight h� � h

Let F be a forest of �D�R	�labelled trees of PU�form� Suppose that all trees satis�es

condition ��	 and ��	 in lemma ������ Wright F as the union F� � F� � ��� � Fh�

where the sub�forest Fh� contains all trees of hight h�� By the same argument as in

lemma ����� there exists �provided D and R are su�ciently large compared to h�F		

a restriction � �i�e� a partial bijection	 such that for each h� � f�� �� ��� hg all trees in

F�
h� satis�es ��	 and ��	 in lemma ����� with h replaced by h��

Consider the trees in F� of some hight h� � h� Clearly there is a �ux of trees from

each Fh�� with h� � h�� � h�

De�nition ����� �Strong normal form� A forest F � fT�� T�� ���� Tug is on strong

normal form if for each h� � h�

��	 For each d� � d� � ��� � dh��� and for each permutation � � f�� �� ���� hg �

f�� �� ��� hg the number �modulo q	 of trees of the form

�d�� r���		�d�� r���		����dh��� r��h��		�r��h		

only depends on residue classes modulo qh�h
�
of the elements r� � r� � ��� � rh�

��	 For each d� � d� � ��� � dh���� for each dh� � D n fd�� d�� ��� dh���g and for each

permutation � � f�� �� ���� h�� �g � f�� �� ��� h�� �g the number �modulo q	 of trees of

the form

�d�� r���		�d�� r���		����dh���� r��h���		�dh�	

only depends on residue classes modulo qh�h
�
of the elements r� � r� � ��� � rh��� �

Lemma ����� �Stability� If F is on strong normal form� then F� is on strong

normal from �provided that h�F	� j � j�j D j�j R j��

Proof� There are � ways the representation of a PU�tree T

�d�� r�	�d�� r�	�����dl��� rl��	�dl� hl	����dh��� rh��	�rh	

��



might change� In all cases suppose that the lowest place where it get �hit� is on level

l�

��	 � dl� rl �� �� The tree T � is of the form �d�� r�	����dl��� rl��	�dl��� rl��	����rh	� If

this tree get �hit� by � again there are � ways this can happen����repeat the reduction	�

��	 � dl� r
� �� � where r� � rl� The tree T � has the representation

�d�� r�	�d�� r�	����dl��	�

��	 � d�� rl �� � where d� � dl� The tree T � has the representation

�d�� r�	�d�� r�	�����dl��� rl��	�dl	�

From this observation it is not hard to see that the regularity among the trees of

hight l� are inherited �after the restriction	 by trees of smaller hight� �

If we combine this lemma with lemma ������ ����� and lemma ����� we get�

Lemma ����� �Strong normal form� Fix q � Nnf�g� For all h� l � N there exists

d � N such that the following hold�

Suppose that F � fT�� T�� ���� Tug is a �D�R	�labelled forest where all trees have hight

� h and where d �j D j and where j R jj D j �ql� Then there exists a partial

bijection � � D � R such that F� � fT �
� � T

�
� � ���� T

�
ug is a forest of �D�� R�	�labelled

trees �where D� � D n dom��	 and R� � R n ran��	� on the strong normal form�

Furthermore if F is �q� l	�exceptional� then F� is �q� l	�exceptional�

��
 Proof of the main lemma

Now we are ready to show the main lemma �lemma �����	 in this section�

Proof� According to lemma ����� we lose no generality by assuming that F is on

strong normal form� For each d � D and r � R we can consider the branch f� d� r �g

of length �� It appears � modulo qk times so we have the identity�

��	 �d� �	� ��d� r	� ��r	  � modulo qk�

Here �d� �	� of course denotes the number of PU�trees of the form

�d� r�	�u
�
�� u

�
�	�����u

l��
� � ul��� 	�ul	

Similarly �d� r	� denotes the number of PU�trees of the form

�d� r	�u��� u
�
�	�����u

l��
� � ul��� 	�ul	�

and �r	 denote the number of appearances of the tree �r	� The trees in �d	 does not

enter the equation because we assume j R j � modulo qk�

The number u of trees in the forest F is given by�

��



��	 u  #d�D �d� �	� �#d�D �d	 � #r�R �r	

Now for each d � D consider d�� d�� ��� dl��� dl� Consider the set of trees of the

form �d� r�	�d�� r�	����dl��� rl��	�rl	 or �d� r�	�d�� r�	����dl��� rl��	�dl	 where r�� r�� ��� rl

belongs to a certain type �expressed by the relative size of r�� ��� rl� but also taking

their residue classes modulo qk into account	� The number of such trees is � modulo

ql�k provided j R jj D j �ql� But then�

��	 �d� �	� � modulo qk for each d � D�

But according to ��	

��	 �d� r	� �r	 modulo qk for all d � D and r � R�

According to ��	 and the assumption that u � � modulo qk� for each d � D

��	 #d��D �d�	 � #r�R�d� r	�� � modulo qk�

But in general

��	 #r�R �d� r	� �d� �	�

so by combining ��	 and ��	

��	 #d�D �d	 � � modulo qk�

But by the normal form theorem we can assume that D is divided into disjoint

classes D��D�� �����Dr which each have � modulo ql�h elements� And thus if l�h  k

the sum #d�D �d	  #r
j��#d�Dj

�d	� By the normal form theorem �d	 the number of

trees in �d	 is constant on each Dj� j  �� �� ��� r so the must equal � modulo ql�h�

This a is contradiction if l � h  k� �

��	 Brief discussion of the general problem

The method in the last subsection only give an asymptotic classi�cation of exceptional

forest� This is good enough for a complete classi�cation of the Count�q	 versus

Count�p	 problem in the case of polynomial growth rate�

The fact that forests on the strong normal form remains on this form when �hit�

by a �randomly chosen�	 restriction is very important� And it is very promising for

the full classi�cation �when n is large	� The critical question is whether we can create

order fast enough� Is it possible to create su�ciently much regularity before we have

used the elements in I  f�� �� ���� ng� This seems to be a race between di�erent forces�

In the �rst version of this paper I tried to bring a hypothetically given exceptional

forests F on a strong normal form� This was done by selecting a suitable collection

G of group actions on F � For each g � G I de�ned a forest Fg containing the same

number of trees as F � Now by a suitable choice of G �so u� j G j� � modulo q	

the forest �g�G F g remains exceptional� By a proper choice of G I was able to show

��



that the resulting forest gets e�ciently closer to the strong normal form� This idea

does not a priory require any strong assumptions on the hight of the forest� However

the argument depend on the validity of a certain modular identity� At present this

validity is open� Its validity could be important for the full classi�cation in the general

case of sub�exponential growth rate�

� Some applications

There are various alternative formulations of the classi�cation� It is well known

that complexity theory can be viewed as recursion theory done within a �nite set

of unspeci�ed size� The levels in Arithmetical Hierarchy correspond to the levels in

Polynomial Hierarchy 
��� It can be argued that low complexity reasoning is reasoning

which can be formalised within �arbitrarily large	 �nite structures� Suppose that the

universe is such an unspeci�ed �nite set� Although this is almost impossible to picture

it is consistent� Such an �axiomatic �nite� universe can be axiomatised in various

ways� Its models �which are highly non�recursive	 are of course not really �nite�

As an example consider the following axiomatisation over second order logic� Sup�

pose that we have the full Arithmetical comprehension axiom schema�

�z 
 X ��x� z	� x � X�

Here � is any �rst order formula� We allow � to contain set�variables� And assume

that we have the usual induction axiom

� � X � �n �n � X � n� � � X	� �n n � X�

If the underlying universe was not assumed to be �nite this would be the celebrated

and powerful system ACA of analysis� If the underlying universe is axiomatic �nite

�e�g� satis�es the pigeon�hole principle	 we denote the axiom system by ACAtop� For

this system

Theorem ���� Count�p� holds in all structures of ACAtop � Count�q� exactly

when all prime divisors in p appear in q�

Proof� Combine the conservation results in 
����
��� with results for Bounded Arith�

metic� By these results the system has the same deductive strength as Bounded

Arithmetic axiomatised without functions symbols� By use of the usual coding meth�

ods the system is able to handle terms of polynomial growth rate� Thus the positive

part of the classi�cation can obtained� �

It is also possible to link the result to length of proofs in propositional logic� This

type of link was �rst pointed out in 
����

��



De�nition ���� A Boolean formula is a Boolean circuit where for each disjunction

�j �j and for each conjunction �j �j a particular bracketing is speci�ed� The size

and the depth of a Boolean formula is de�ned in the obvious way� In the calculation

of the depth� disjunctions �j�j and conjunctions �j�j are chosen maximally� �

De�nition ���� A general propositional proof system P consists of�

��	 A �nite number of substitution schemes�

A substitution scheme is a Boolean formula � which only contains special variables

�substitution variables	� A substitution instance of � is obtained by substituting the

substitution variables y�� ���� yk by Boolean formulas ��� ���� �k�

��	 A �nite number of deduction rules�

A deduction rule 	� �	������	k
	

where ��� ���� �k and � are substitution schemes� A sub�

stitution instance is obtained by substituting the substitution variables y�� ���� yk by

Boolean formulas ��� ���� �k�

A P�proof �in Hilbert style	 of � is a sequence ��� ���� �u  � of Boolean formulas� such

that each �j � j  �� �� ����� u is either a substitution instance of a substitution scheme�

or there are i�� ���� ik � j such that
�i� ������ik

�j
is a substitution instance of a deduction

rule�

We only consider general propositional proof systems which are consistent and

prove the usual tautologies�

The size s of a propositional proof is s � #js��j	� and the depth d is d �

maxj d��j	� �

De�nition ���	 A Frege proof system �or a textbook proof system	 is a general

propositional proof system� where modus ponens y� ��y��y�
y�

is the only deduction rule�

�

De�nition ���
 Let Countn�p	 denote the tautology�

��i�n �fA�i�Ag �fB�i�B�A�Bg �pA � pB		 � ��i�n �fi�Ag �pA	

where the sets A and B run through the p subsets of f�� �� ���� ng� �

Theorem ���� Fix p � N� Let Ap be the collection of all substitution schemes of

the Count�q� principle for q � N which contain all prime factors of p� Let P be any

general proof system to which all the schemes in Ap are added� Then the tautologies

Countn�p	� do not have bounded depth polynomial size P�proofs�

��



Proof� Suppose that for arbitrarily large n � N� there exists a P�proof of depth � d

and size � exp�n��n		� Let R be a suitable relation with domain Nr� r � �� which

codes these proofs� Let M be a countable non�standard model of Th�N	 over some

countable language L which extends the language of Arithmetic and contains R� By

overspill there exists a non�standard number n � M which is not divisible by p� and

there exists an M �de�nable sequence ��� ��� ���� �u of formulas� which �within M 	 is a

general propositional P�proof of Countn�p	� Furthermore� we can assume that the

depth of the proof is � d� and that the size of the proof is � exp�nt	 for some t � �
�

�the map 	 � N � Q� can without loss of generality be assumed to be L�de�nable�

because otherwise L can be extended with a relation which de�nes 		�

Now choose a generic truth�table evaluation ��G� Such an evaluation exists accord�

ing to lemma ������ Consider the sequence ��� ���� �u �considered as circuits	 and notice

that ��u	
�G  �Countn�p		
�  �� According to corollary ����� there exists j� � u such

that ��j�	

�G  � but ��j	
�G  � for all j � j�� Now each substitution instance �j of

a substitution scheme has ��j	�  � for each general truth�table evaluation �� If �j

is obtained from a deduction rule then ��j	
�  � provided that all the premises also

have truth�value ��

Finally I claim that all substitution instances of the Count�q	 principle also get

truth�value �� Now if it got the truth value �� then by the work in section � there

would be a M �de�nable generic system� By our re�nement technique this would

imply the existence of a specially labelled �I� p	�forest in which all branches appear �

modulo q times� And the forest would contain a number of trees not divisible by q�

According to the combinatorial results in section � this ��rst order	 statement fails

in the standard universe� We chose M to be a model of �rst order arithmetic� so this

is a contradiction� �

Theorem ��� Let M be a countable non�standard model of Th�N� over a countable

�rst order language L �which contains the language of arithmetic�� Suppose that

p � N� p  � and I � f�� �� ���� ng � M �for some n � M n � not divisible by p�� Let

M �
n � fm � M � t�n	 � m for some term t � Lg�

For any generic �lter �G the partition ��G �see de�nition ��� page �� partitions I

into disjoint classes� each containing exactly p elements� If the terms t � L all have

polynomial growth rate

�a	 �M�
n� �G	 j �Count�p	�

�b	 �M�
n� �G	 satis�es induction for bounded L�P 	�formulas�

�c	 �M�
n� �G	 j Count�q	 for all q which contains all prime factors in p�

��



Proof� It su�ces to show that the least number principle is valid for bounded L�P 	�

formulas with parameters in M �
n � Now each instance of the least number principle gets

translated into a Boolean circuit �or Boolean formula if we specify the bracketing	 of

the form LNPn���� ���� �u	 � �u � ��j�u���j � ��k�j�k			� Furthermore� according to

earlier observation� each translated instance gets depth � � and size � exp�nt	 for

some t � n
�

� � According to the key lemma �lemma �����	 for any generic �lter �G if

��u	
�G  �� there exists j� � u with ��j�	
�  � and ��j	�  � for j � j�� A simple

argument shows that LPNn���� ����� �u	
�G  �� Using lemma ����� �M � ��G 	 satis�es

induction for bounded L�P 	�formulas with parameters in M �
n �

Again all Count�q	 much be forced true when p contains a prime factor not in q�

If not there would exists an M �de�nable generic system� And thus by the re�nement

argument there would be a �I� p	 forest with � � modulo q trees� in which each �type

of	 branch appears � modulo q times� This is a contradiction when p does not divide

q� �

Theorem ���� Suppose that all terms in L have polynomial growth rate� and con�

tains at least one unspeci�ed relation symbol� Then I"��L	� Count�q	 prove Count�p�

exactly when all prime factors in p divides q�

Proof� �M �
n � ��G	 j I"��L	 � � Count�p	 � Count�q	� �

	 Final remarks

The �rst version of this paper contained the complete reduction of the Count�q	 versus

Count�p	 problem� This reduced the problem to a purely combinatorial problem� The

revised version solves this problem explicitly �in the case of polynomial growth�rate	�

In addition the revised paper develops the underlying theory in more details�

To end� I am happy to learn that the topic is related to Hilberts Nullstellensatz 
���

and by 
�� also to representations of symmetrical groups� I hope these very interesting

links will be further clari�ed and developed in the future�
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