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Equational Theories of Tropical Semirings

Luca Aceto∗ Zoltán Ésik† Anna Ingólfsdóttir∗

Abstract

This paper studies the equational theory of various exotic semirings
presented in the literature. Exotic semirings are semirings whose un-
derlying carrier set is some subset of the set of real numbers equipped
with binary operations of minimum or maximum as sum, and addition
as product. Two prime examples of such structures are the (max, +)
semiring and the tropical semiring. It is shown that none of the exotic
semirings commonly considered in the literature has a finite basis for its
equations, and that similar results hold for the commutative idempotent
weak semirings that underlie them. For each of these commutative idem-
potent weak semirings, the paper offers characterizations of the equations
that hold in them, decidability results for their equational theories, ex-
plicit descriptions of the free algebras in the varieties they generate, and
relative axiomatization results.

AMS Subject Classification (1991): 08A70, 08B05, 03C05, 68Q15,
68Q70.
CR Subject Classification (1991): D.3.1, F.1.1, F.4.1.
Keywords and Phrases: Equational logic, varieties, complete axioma-
tizations, relative axiomatizations, tropical semirings, commutative idem-
potent weak semirings, convexity, exponential time complexity.

1 Introduction

Exotic semirings, i.e., semirings whose underlying carrier set is some subset
of the set of real numbers R equipped with binary operations of minimum or
maximum as sum, and addition as product, have been invented and reinvented
many times since the late 1950s in various fields of research. This family of
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structures consists of semirings whose sum operation is idempotent—two prime
examples are the (max, +) semiring

(R ∪ {−∞}, max, +,−∞, 0)

(see [5, Chapter 3] for a general reference), and the tropical semiring

(N ∪ {∞}, min, +,∞, 0)

introduced in [34]. (Henceforth, we shall write ∨ and ∧ for the binary maximum
and minimum operations, respectively.) Interest in idempotent semirings arose
in the 1950s through the observation that some problems in discrete optimiza-
tion could be linearized over such structures (see, e.g., [10] for some of the early
references and [38] for a survey). Since then, the study of idempotent semirings
has forged productive connections with such diverse fields as, e.g., performance
evaluation of manufacturing systems, discrete event system theory, graph theory
(path algebra), Markov decision processes, Hamilton-Jacobi theory, asymptotic
analysis (low temperature asymptotics in statistical physics, large deviations),
and automata and language theory (automata with multiplicities). The inter-
ested reader is referred to [14] for a survey of these more recent developments,
and to [12] for further applications of the (max, +) semiring. Here we limit our-
selves to mentioning some of the deep applications of variations on the tropical
semiring in automata theory and the study of formal power series.

The tropical semiring (N ∪ {∞},∧, +,∞, 0) was originally introduced by
Simon in his solution (see [34]) to Brzozowski’s celebrated finite power property
problem—i.e., whether it is decidable if a regular language L has the property
that, for some m ≥ 0,

L∗ = 1 + L + · · · + Lm .

The basic idea in Simon’s argument was to use automata with multiplicities
in the tropical semiring to reformulate the finite power property as a Burnside
problem. (The original Burnside problem asks if a finitely generated group must
necessarily be finite if each element has finite order [7].) The tropical semiring
was also used by Hashiguchi in his independent solution to the aforementioned
problem [16], and in his study of the star height of regular languages (see, e.g.,
[17, 18, 19]). (For a tutorial introduction on how the tropical semiring is used
to solve the finite power property problem, we refer the reader to [31].) The
tropical semiring also plays a key role in Simon’s study of the nondeterministic
complexity of a standard finite automaton [36]. In his thesis [26], Leung intro-
duced topological ideas into the study of the limitedness problem for distance
automata (see also [27]). For an improved treatment of his solutions, and fur-
ther references, we refer the reader to [28]. Further examples of applications of
the tropical semiring may be found in, e.g., [24, 25, 35].

The study of automata and regular expressions with multiplicities in the
tropical semiring is by now classic, and has yielded many beautiful and deep
results—whose proofs have relied on the study of further exotic semirings. For
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example, Krob has shown that the equality problem for regular expressions with
multiplicities in the tropical semiring is undecidable [22] by introducing the
equatorial semiring (Z ∪ {∞},∧, +,∞, 0), showing that the equality problem
for it is undecidable, and finally proving that the two decidability problems are
equivalent. Partial decidability results for certain kinds of equality problems
over the tropical and equatorial semirings are studied in [23].

Another classic question for the language of regular expressions, with or
without multiplicities, is the study of complete axiom systems for them (see,
e.g., [9, 21, 32]). Along this line of research, Bonnier-Rigny and Krob have
offered a complete system of identities for one-letter regular expressions with
multiplicities in the tropical semiring [6]. However, to the best of our knowledge,
there has not been a systematic investigation of the equational theory of the
different exotic semirings studied in the literature. This is the aim of this paper.

Our starting points are the results we obtained in [1, 2]. In [1] we studied
the equational theory of the max-plus algebra of the natural numbers N∨ =
(N,∨, +, 0), and proved that not only its equational theory is not finitely based,
but, for every n, the equations in at most n variables that hold in it do not
form an equational basis. Another view of the non-existence of a finite basis for
the variety generated by this algebra is offered in [2], where we showed that the
collection of equations in two variables that hold in it has no finite equational
axiomatization.

The algebra N∨ is an example of a structure that we call in this paper com-
mutative idempotent weak semiring (abbreviated henceforth to ciw-semiring).
Since ciw-semirings underlie many of the exotic semirings studied in the liter-
ature, we begin our investigations in this paper by systematically generalizing
the results from [1] to the structures Z∨ = (Z,∨, +, 0) and N∧ = (N,∧, +, 0).
Our initial step in the study of the equational theory of these ciw-semirings is
the geometric characterization of the (in)equations that hold in them (Proposi-
tions 3.9 and 3.11). These characterizations pave the way to explicit descriptions
of the free algebras in the varieties V(Z∨) and V(N∧) generated by Z∨ and N∧,
respectively, and yield finite axiomatizations of the varieties V(N∨) and V(N∧)
relative to V(Z∨) (Theorem 3.20). We then show that, like V(N∨), the varieties
V(Z∨) and V(N∧) are not finitely based. The non-finite axiomatizability of the
variety V(Z∨) (Theorem 3.22) is a consequence of the similar result for V(N∨)
and of its finite axiomatizability relative to V(Z∨).

The proof of the non-existence of a finite basis for the variety V(N∧) (The-
orem 3.23) is more challenging, and proceeds as follows. For each n ≥ 3, we
first isolate an equation e∧n in n variables which holds in V(N∧). We then prove
that no finite collection of equations that hold in V(N∧) can be used to de-
duce all of the equations of the form e∧n . The proof of this technical result is
model-theoretic in nature. More precisely, for every integer n ≥ 3, we construct
an algebra Bn satisfying all the equations in at most n − 1 variables that hold
in V(N∧), but in which e∧n fails. Hence, as for V(N∨), for every natural num-
ber n, the equations in at most n variables that hold in V(N∧) do not form
an equational basis for this variety. A similar strengthening of the non-finite
axiomatizability result holds for the variety V(Z∨).
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We then move on to study the equational theory of the exotic semirings
presented in the literature that are obtained by adding bottom elements to the
above ciw-semirings. More specifically, we examine the following semirings:

Z∨,−∞ = (Z ∪ {−∞},∨, +,−∞, 0) ,

N∨,−∞ = (N ∪ {−∞},∨, +,−∞, 0) and
N−

∨,−∞ = (N− ∪ {−∞},∨, +,−∞, 0) ,

where N− stands for the set of nonpositive integers. Since Z∨,−∞ and N−
∨,−∞

are easily seen to be isomorphic to the semirings

Z∧,∞ = (Z ∪ {∞},∧, +,∞, 0) and
N∧,∞ = (N ∪ {∞},∧, +,∞, 0) ,

respectively, the results that we obtain apply equally well to these algebras. (The
semirings Z∧,∞ and N∧,∞ are usually referred to as the equatorial semiring [22]
and the tropical semiring [34], respectively. The semiring N∨,−∞ is called the
polar semiring in [24].)

Our study of the equational theory of these algebras will proceed as follows.
First, we shall offer some general facts relating the equational theory of a ciw-
semiring A to the theory of the free commutative idempotent semiring A⊥ it
generates. In particular, in Sect. 4.1 we shall relate the non-finite axiomatiz-
ability of the variety V(A⊥) generated by A⊥ to the non-finite axiomatizability
of the variety V(A) generated by A. Then, in Sect. 4.2, we shall apply our
general study to derive the facts that all tropical semirings studied in this paper
have exponential time decidable, but non-finitely based equational theory. Our
general results, together with those proven in Sect. 3, will also give geometric
characterizations of the valid equations in the tropical semirings Z∨,−∞ and
N−

∨,−∞, but not in N∨,−∞. The task of providing a geometric description of
the valid equations for the semiring N∨,−∞ will be accomplished in Sect. 4.3,
where we shall also show that V(N∨,−∞) can be axiomatized over V(Z∨,−∞) by
a single equation.

Some semirings studied in the literature are obtained by adding a top element
> to a ciw-semiring A in lieu of a bottom element. We examine the general
relationships that exist between the equational theory of a ciw-semiring A and
that of the semiring A> so generated in Sect. 5. This general theory, together
with the previously obtained non-finite axiomatizability results, is then applied
to show that several semirings with > are not finitely based either.

We conclude our investigations by examining some variations on the afore-
mentioned semirings. These include, amongst others, structures whose carrier
sets are the (nonnegative) rational or real numbers (Sect. 6.1), semirings whose
product operation is standard multiplication (Sect. 6.2), the semirings studied
by Mascle and Leung in [30] and [26, 27], respectively, (Sect. 6.3), and a min-
plus algebra based on the ordinals proposed by Mascle in [29] (Sect. 6.4). For all
of these structures, we offer results to the effect that their equational theory is
not finitely based, and has no axiomatization in a bounded number of variables.
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Throughout the paper, we shall use standard notions and notations from
universal algebra that can be found, e.g., in [8, 13].

This paper collects, and improves upon, all of the results first announced
without proof in [3, 4]. In addition, the material in Sects. 5 and 6 is new.

2 Background Definitions

We begin by introducing some notions that will be used in the technical devel-
opments to follow.

A commutative idempotent weak semiring (henceforth abbreviated to ciw-
semiring) is an algebra A = (A,∨, +, 0) such that (A,∨) is an idempotent
commutative semigroup, i.e., a semilattice, (A, +, 0) is a commutative monoid,
and such that addition distributes over the ∨ operation. Thus, the following
equations hold in A:

x ∨ (y ∨ z) = (x ∨ y) ∨ z

x ∨ y = y ∨ x

x ∨ x = x

x + (y + z) = (x + y) + z

x + y = y + x

x + 0 = x

x + (y ∨ z) = (x + y) ∨ (x + z) .

A ciw-semiring A is positive if

x ∨ 0 = x

holds in A. It then follows that

x ∨ (x + y) = x + y

also holds in A. A homomorphism of ciw-semirings is a function which preserves
the ∨ and + operations and the constant 0.

A commutative idempotent semiring, or ci-semiring for short, is an alge-
bra (A,∨, +,⊥, 0) such that (A,∨, +, 0) is a ciw-semiring which satisfies the
equations

x ∨ ⊥ = x

x + ⊥ = ⊥ .

A homomorphism of ci-semirings also preserves ⊥.
Suppose that A = (A,∨, +, 0) is a structure equipped with binary operations

∨ and + and the constant 0. Assume that ⊥ 6∈ A and let A⊥ = A∪{⊥}. Extend
the operations ∨ and + given on A to A⊥ by defining

a ∨ ⊥ = ⊥ ∨ a = a
a + ⊥ = ⊥ + a = ⊥ ,
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for all a ∈ A⊥. We shall write A⊥ for the resulting algebra (A⊥,∨, +,⊥, 0), and
A(⊥) for the algebra (A⊥,∨, +, 0) obtained by adding ⊥ to the carrier set, but
not to the signature.

Lemma 2.1 For each ciw-semiring A, the algebra A⊥ is a ci-semiring.

Remark 2.2 In fact, A⊥ is the free ci-semiring generated by A.

Let Eciw denote the set of defining axioms of ciw-semirings, Eci the set of
axioms of ci-semirings, and E+

ciw the set of axioms of positive ciw-semirings.
Note that Eciw is included in both Eci and E+

ciw. Moreover, let Vciw denote the
variety axiomatized by Eciw, Vci the variety axiomatized by Eci and V+

ciw the
variety axiomatized by E+

ciw. Thus, Vci is the variety of all ci-semirings and V+
ciw

the variety of all positive ciw-semirings. Since Eciw ⊆ Eci and Eciw ⊆ E+
ciw,

it follows that Vciw includes both V+
ciw and the reduct of any algebra in Vci

obtained by forgetting about the constant ⊥.

Remark 2.3 If an equation t = u can be derived from Eciw or E+
ciw, then the

set of variables occurring in t coincides with the set of variables occurring in u.
In light of axiom x+⊥ = ⊥, this does not hold true for the equations derivable
from Eci.

Notation 2.4 In the remainder of this paper, we shall use nx to denote the
n-fold addition of x with itself, and we take advantage of the associativity and
commutativity of the operations. By convention, nx stands for 0 when n = 0.
In the same way, the empty sum is defined to be 0.

For each integer n ≥ 0, we use [n] to stand for the set {1, . . . , n}, so that [0]
is another name for the empty set.

Finally, we sometimes write t(x1, . . . , xn) to emphasize that the variables
occurring in the term t are amongst x1, . . . , xn.

Lemma 2.5 With respect to the axiom system Eciw, every term t in the language
of ciw-semirings, in the variables x1, . . . , xn, may be rewritten in the form

t =
∨

i∈[k]

ti

where k > 0, each ti is a “linear combination”

ti =
∑

j∈[n]

cijxj ,

and each cij is in N.

Terms of the form
∨

i∈[k] ti, where each ti (i ∈ [k], k ≥ 0) is a linear combination
of variables, will be referred to as simple terms. When k = 0, the term

∨
i∈[k] ti

is just ⊥. (Note that k = 0 is only allowed for ci-semirings.)
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Lemma 2.6 With respect to the axiom system Eci, every term t in the language
of ci-semirings, in the variables x1, . . . , xn, may be rewritten in the form

t =
∨

i∈[k]

ti

where k ≥ 0, each ti is a “linear combination”

ti =
∑

j∈[n]

cijxj ,

and each cij is in N.

For any commutative idempotent (weak) semiring A and a, b ∈ A, we write
a ≤ b to mean a ∨ b = b. In any such structure, the relation ≤ so defined
is a partial order, and the + and ∨ operations are monotonic with respect to
it. Similarly, we say that an inequation t ≤ t′ between terms t and t′ holds in
A if the equation t ∨ t′ = t′ holds. We shall write A |= t = t′ (respectively,
A |= t ≤ t′) if the equation t = t′ (resp., the inequation t ≤ t′) holds in A. (In
that case, we say that A is a model of t = t′ or t ≤ t′, respectively.) If A is
a class of ciw-semirings, we write A |= t = t′ (respectively, A |= t ≤ t′) if the
equation t = t′ (resp., the inequation t ≤ t′) holds in every A ∈ A. Note that,
if A is in the variety V+

ciw, then the inequation 0 ≤ x holds in A.

Definition 2.7 A simple inequation in the variables x1, . . . , xn is of the form

t ≤
∨

i∈[k]

ti ,

where k > 0, and t and the ti (i ∈ [k]) are linear combinations of the vari-
ables x1, . . . , xn. We say that the left-hand side of the above simple inequation
contains the variable xj, or that xj appears on the left-hand side of the simple
inequation, if the coefficient of xj in t is nonzero. Similarly, we say that right-
hand side of the above inequation contains the variable xj if for some i ∈ [k],
the coefficient of xj in ti is nonzero.

Note that, for every linear combination t over variables x1, . . . , xn, the inequa-
tion t ≤ ⊥ is not a simple inequation.

Corollary 2.8 With respect to the axiom system Eciw, any equation in the
language of ciw-semirings is equivalent to a finite set of simple inequations.
Similarly, with respect to Eci, any equation in the language of ci-semirings is
equivalent to a finite set of simple inequations or to an inequation of the form
x ≤ ⊥ (in which case the equation has only trivial models).

Proof: Let t = u be an equation in the language of ciw-semirings. By
Lemma 2.5, using Eciw we can rewrite t and u to simple terms

∨
i∈[k] ti and
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∨
j∈[l] uj (k, l > 0), respectively. It is now immediate to see that the equation

t = u is equivalent to the family of simple inequations

{ti ≤
∨

j∈[l]

uj , uj ≤
∨

i∈[k]

ti | i ∈ [k], j ∈ [l]} .

Assume now that t = u is an equation in the language of ci-semirings. By
Lemma 2.6, using Eci we can rewrite t and u to simple terms

∨
i∈[k] ti and∨

j∈[l] uj (k, l ≥ 0), respectively. If k, l are both positive or both equal to zero,
then the equation t = u is equivalent to the finite set of simple inequations given
above. (Note that, if k and l are both 0, then this set is empty, and the original
equation is equivalent to ⊥ = ⊥.) If k = 0 and l > 0, then the equation is
equivalent to x ≤ ⊥. �

Notation 2.9 Henceforth in this study, we shall often abbreviate a simple
inequation

∑

j∈[n]

djxj ≤
∨

i∈[k]

∑

j∈[n]

cijxj

as d ≤ {c1, . . . , ck}, where d = (d1, . . . , dn) and ci = (ci1, . . . , cin), for i ∈ [k].
We shall sometimes refer to these inequations as simple ∨-inequations.

In the main body of the paper, we shall also study some ciw-semirings that,
like the structure N∧ = (N,∧, +, 0), have the minimum operation in lieu of
maximum as their sum. The preliminary results that we have developed in this
section apply equally well to these structures. In particular, the axioms for
ciw-semirings dealing with ∨ become the standard ones describing the obvious
identities for the minimum operation, and its interplay with +, i.e.,

x ∧ (y ∧ z) = (x ∧ y) ∧ z

x ∧ y = y ∧ x

x ∧ x = x

x + (y ∧ z) = (x + y) ∧ (x + z) .

Note that, for ciw-semirings of the form (A,∧, +, 0), the partial order ≥ is
defined by b ≥ a iff a ∧ b = a. In Defn. 2.7, we introduced the notion of
simple ∨-inequation. Dually, we say that a simple ∧-inequation in the variables
x = (x1, . . . , xn) is an inequation of the form

d · x ≥
∧

i∈[k]

ci · x ,

where d and the ci (i ∈ [k]) are vectors in Nn. We shall often write

d ≥ {c1, . . . , ck}
as a shorthand for this inequation.
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3 Min-Max-Plus Weak Semirings

Our aim in this section will be to study the equational theory of the ciw-
semirings that underlie most of the tropical semirings studied in the literature.
More specifically, we shall study the following ciw-semirings:

Z∨ = (Z,∨, +, 0)
N∨ = (N,∨, +, 0)
N∧ = (N,∧, +, 0)

equipped with the usual addition operation +, constant 0 and one of the op-
erations ∨ for the maximum of two numbers and ∧ for the minimum of two
numbers, i.e.,

x ∨ y = max{x, y}
x ∧ y = min{x, y} .

We shall sometimes use the fact that Z∨ and N∧ are isomorphic to the ciw-
semirings

Z∧ = (Z,∧, +, 0) and
N−

∨ = (N−,∨, +, 0) ,

respectively, where N− stands for the set of nonpositive integers.
Our study of the equational theory of these algebras will be based on the

following uniform pattern. First, we offer a geometric characterization of the
simple inequations that hold in these ciw-semirings (Sect. 3.2). These character-
izations pave the way to concrete descriptions of the free algebras in the varieties
generated by the algebras we study, and yield relative axiomatization and de-
cidability results (Sect. 3.3). Finally we show that none of the ciw-semirings we
study is finitely based (Sect. 3.4). All of these technical results rely on a study
of properties of convex sets, filters and ideals in Zn and Nn presented in the
following section.

3.1 Convex Sets, Filters and Ideals

Suppose that v1, . . . , vk are vectors in Zn or, more generally, in Rn. A convex
linear combination of the vi (i ∈ [k]) is any vector v ∈ Rn which can be written
as

v = λ1v1 + · · · + λkvk ,

where λi ≥ 0, i ∈ [k], are real numbers with
∑k

i=1 λi = 1.

Definition 3.1 Suppose that U is any subset of Zn. We call U a convex set if
for all convex linear combinations v = λ1v1 + · · ·+λkvk with k > 0 and vi ∈ U ,
i ∈ [k], if v ∈ Zn, then v ∈ U .

9



Suppose that U ⊆ Nn. We call U an (order) ideal if for all u, v in Nn, if
u ≤ v and v ∈ U then u ∈ U . Moreover, we call U a filter, if for all u and v
as above, if u ∈ U and u ≤ v then v ∈ U . A convex ideal (respectively, convex
filter) in Nn is any ideal (resp., filter) which is a convex set.

Note that order ideals and filters are sometimes referred to as lower and upper
sets, respectively.

The following fact is clear:

Proposition 3.2 The intersection of any number of convex sets in Zn is con-
vex. Moreover, the intersection of any number of convex ideals (convex filters)
in Nn is a convex ideal (convex filter, respectively).

Thus each set U ⊆ Zn is contained in a smallest convex set [U ] which is the
intersection of all convex subsets of Zn containing U . We call [U ] the convex
set generated by U , or the convex hull of U . When u ∈ Zn, below we shall
sometimes write [u] for [{u}] = {u}.

Note that we have [U ] ⊆ Nn whenever U ⊆ Nn.

Proposition 3.3 Suppose that U ⊆ Zn and v ∈ Zn. We have v ∈ [U ] iff v is
a convex linear combination of some nonzero number of vectors in U .

Suppose now that U ⊆ Nn. By Proposition 3.2, there is a smallest convex ideal
ci(U) and a smallest convex filter cf(U) in Nn containing U . We call ci(U) and
cf(U) the convex ideal and the convex filter generated by U , respectively.

For each set U ⊆ Rn, define the ideal (U ] generated by U thus:

(U ] = {d ∈ Nn : ∃c ∈ U. d ≤ c} .

Similarly, the filter [U) generated by U is defined as:

[U) = {d ∈ Nn : ∃c ∈ U. d ≥ c} .

The following proposition will be useful in what follows. In its proof, and
throughout this study, we shall use ui (i ∈ [n]) to denote the ith unit vector in
Rn, i.e., the vector whose only nonzero component is a 1 in the ith position; 0
will denote the vector in Rn whose entries are all zero. When u ∈ Nn, below we
shall sometimes write (u] and [u) for ({u}] and [{u}), respectively.

In the following proposition, and in its proof, we write [U ]Rn for the convex
hull in Rn of a set U included in Nn.

Proposition 3.4 Suppose that U ⊆ Nn. Then:

1. ci(U) = [(U ]] = ([U ]Rn ], and

2. cf(U) = [[U)] = [[U ]Rn).

Proof: We prove the two claims separately.
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1. Note, first of all, that

[(U ]] ⊆ ci(U) ⊆ ([U ]Rn ]

clearly holds. To complete the proof, it is therefore sufficient to show that
([U ]Rn ] is included in [(U ]]. This is clear if n = 1. In order to prove this
claim, suppose that

d ≤ λ1c1 + · · · + λkck

for some k > 0, d ∈ Nn, c1, . . . , ck ∈ U and λ1, . . . , λk > 0 with
∑

i∈[k] λi =
1. It suffices to show that d is in the convex hull of the set (V ], where
V = {c1, . . . , ck}. We shall prove this by induction on

r = n +
∑

i∈[k]

|ci| ,

where we use |ci| to denote the weight of the vector ci (i ∈ [k]), i.e., the
sum of its entries.

The base case is when r = 1. Then n = 1 and we are done.

For the inductive step, suppose that r > 1. We proceed with the proof by
distinguishing two cases.

Case 1. If there exists some j ∈ [n] with dj = 0, then since we aim at
showing that d ∈ [(V ]], without loss of generality, we may assume that,
for this j, we have cij = 0 for all i ∈ [k]. We can then remove the jth
components of all the vectors to obtain d

′
and c′1, . . . , c

′
k of dimension n−1

with d
′ ≤ λ1c

′
1 + · · · + λkc′k. Let W = {c′1, . . . , c′k}. By induction, d

′
is in

the convex hull of (W ], so that d is in the convex hull of (V ]. The case
that n = 1 is trivial.

Case 2. If the previous case does not apply, then dj > 0 for all j ∈ [n].
Suppose that there exists some j such that cij = 1 for all i ∈ [k], where cij

denotes the jth component of ci. Then also dj = 1 and we may remove
the jth components of the vectors to obtain d

′
and c′i, i ∈ [k], as before.

Using the inductive hypothesis, it follows as in case 1 above that d in the
convex hull of (V ].

Suppose now that for each j ∈ [n] there is some ij ∈ [k] with cijj > 1. Let
e = λ1c1 + · · · + λkck. If for some j

d ≤ λ1c1 + · · · + λij−1cij−1 + λij (cij − uj) + λij+1cij+1 + · · · + λkck

= e − λij uj ,

then, by induction, d is contained in the convex hull of (W ], where W is
the set {c1, . . . , cij−1, cij − uj , cij+1, . . . ck} ⊆ (V ]. It follows that d is in
the convex hull of (V ]. Otherwise, we have that

ej − λij ≤ dj ≤ ej ,
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for all j ∈ [n]. This means that d is inside the n-dimensional rectangle
determined by the vectors

vK = e −
∑

j∈K

λij uj ,

where K ranges over all subsets of [n]. Since these vectors vK are all in
the convex hull in Rn of (V ], it follows that d belongs to the convex hull
of (V ], which was to be shown.

2. It is clear that
[[U)] ⊆ cf(U) ⊆ [[U ]Rn) .

To complete the proof, we show that [[U ]Rn) is included in [[U)].

To this end, let d ∈ [[U ]Rn). This means that there is a convex linear
combination c = λ1c1 + · · · + λkck with d ≥ c and {c1, . . . , ck} ⊆ U . Let
e be a vector in Nn which is maximal with respect to the pointwise order
such that

d ≥ λ1(c1 + e) + · · · + λkck .

Then d ∈ [[{c1 + e, . . . , ck}]Rn). As

[{c1 + e, . . . , ck}) ⊆ [{c1, . . . , ck}) ⊆ [U) ,

to prove the claim it is sufficient to show that d ∈ [[{c1 + e, . . . , ck})].
Therefore, without loss of generality, we may assume that e = 0. Now
we proceed with the proof as follows. Let j ∈ [n]. Since d is not greater
than or equal to a convex linear combination of c1 + uj, c2, . . . , ck, where
uj denotes the jth unit vector in Nn, we have

d 6≥ c + λ1uj = λ1(c1 + uj) + λ2c2 + · · · + λkck .

Thus, for dj , viz. the jth component of d, it holds that

k∑

i=1

λjcij ≤ dj < λ1 +
k∑

i=1

λjcij .

As before, for any i ∈ [k], cij denotes the jth component of ci. For each
K ⊆ [n], define

cK = c +
∑

j∈K

λ1uj = λ1(c1 +
∑

j∈K

uj) + λ2c2 + · · · + λkck ,

so that c∅ = c and each cK is a convex linear combination of vectors in
[{c1, . . . , ck}). The vectors cK determine an n-dimensional cube, and, by
the above, d is in this cube. Therefore, d is a convex linear combination
of the cK . In conclusion, d is a convex linear combination of vectors in
[{c1, . . . , ck}) ⊆ [U), which was to be shown. �
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Remark 3.5 It is interesting to note that the equalities ci(U) = ([U ]] and
cf(U) = [[U ]) fail. In fact, the ideal and the filter generated by a convex set
are, in general, not convex. Consider, for example, the case n = 2 and U =
{(0, 2), (3, 0)}. Then U is convex (cf. Defn. 3.1) since no nontrivial convex
combination of the two vectors in U yields a point in N2. Hence ([U ]] = (U ]
which contains (0, 2) and (2, 0). However, the convex combination

1
2
(0, 2) +

1
2
(2, 0) = (1, 1)

does not belong to (U ]. Similarly, the filter [[U ]) = [U) contains (1, 2) and (3, 0),
but not

1
2
(1, 2) +

1
2
(3, 0) = (2, 1) .

Thus, it is not convex and cannot be equal to cf(U) or to [[U)].

Henceforth, we shall use [(U ]] and [[U)] to denote the convex ideal and the
convex filter generated by U , respectively. This notation is justified by the
above proposition.

Corollary 3.6 A set U ⊆ Nn is a convex ideal (respectively, convex filter) iff
for every d ∈ Nn, whenever d ≤ λ1c1 + · · ·+ λkck (resp., d ≥ λ1c1 + · · ·+ λkck)
where k > 0, λi ≥ 0, ci ∈ U (i ∈ [k]) and

∑k
i=1 λi = 1, it follows that d ∈ U .

Corollary 3.7 Each convex filter in Nn is finitely generated.

Proof: The set of minimal elements, with respect to the pointwise partial
order, in any convex filter in Nn is finite, since any antichain in Nn is finite.
Moreover, it clearly generates the filter. �

Remark 3.8 Each finite convex set in Zn has a unique minimal generating set.
Similarly, each finite ideal and each filter in Nn has a unique minimal (finite)
set of generators.

3.2 Characterization of Valid Inequations

Recall that a simple ∨-inequation in the variables x = (x1, . . . , xn) is an inequa-
tion of the form

dx ≤ c1x ∨ · · · ∨ ckx , (1)

where k > 0, and d, c1, . . . , ck ∈ Nn. Similarly, a simple ∧-inequation is of the
form

dx ≥ c1x ∧ · · · ∧ ckx , (2)
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where k, d, and ci (i ∈ [k]) are as above. We recall that (1) holds in a ciw-
semiring A∨ = (A,∨, +, 0) if the equation

dx ∨ c1x ∨ · · · ∨ ckx = c1x ∨ · · · ∨ ckx

does, i.e., when for all v ∈ An,

dv ≤ c1v ∨ · · · ∨ ckv .

Similarly, we say that (2) holds in a ciw-semiring A∧ = (A,∧, +, 0) if the
equation

dx ∧ c1x ∧ · · · ∧ ckx = c1x ∧ · · · ∧ ckx

does. Let U denote the set {c1, . . . , ck}. We recall that we shall sometimes
abbreviate (1) as d ≤ U and (2) as d ≥ U . For some structures, such as Z∨, it
also makes sense to define when a simple inequation d ≤ U holds in Z∨, where
d ∈ Zn and U = {c1, . . . , ck} is a finite nonempty set of vectors in Zn.

We now proceed to characterize the collection of simple inequations (pos-
sibly with negative coefficients) that hold in the algebra Z∨ (and, thus, in its
isomorphic version Z∧).

Proposition 3.9 Suppose that d ∈ Zn and U = {c1, . . . , ck} is a nonempty,
finite set of vectors in Zn. A simple inequation d ≤ U holds in Z∨ iff d belongs
to the set [U ].

Proof: It is sufficient to prove this claim when d = 0, for otherwise we can
replace d by 0, the vector in Zn whose components are all 0, and U by U − d =
{u − d : u ∈ U}, respectively.

Suppose that 0 ∈ [U ], i.e., that there exist real numbers λ1, . . . , λk ≥ 0 with∑k
i=1 λi = 1 such that

0 = λ1c1 + · · · + λkck .

Thus, 0 = λ1c1u + · · ·+ λkcku for all u ∈ Zn. Since the λi are nonnegative and
at least one of them is nonzero, this is possible only if for each u ∈ Zn there
exists some i0 ∈ [k] with 0 ≤ ci0u. It thus follows that 0 ≤ U holds in Z∨.

To prove the other direction, suppose that 0 6∈ [U ]. We shall exhibit a vector
u ∈ Rn such that ciu < 0, for all i ∈ [k], i.e., such that for every i ∈ [k], ci and
v = −u make an acute angle. But such a v is easy to find: let v be a vector
in the convex hull in Rn of U whose endpoint is closest to the origin. By the
continuity of the extension of the term functions to the reals, it is now possible
to find a vector with rational coefficients and then a w ∈ Zn such that ciw < 0,
for all i ∈ [k]. (See the proof of Lemma 6.1 for more details.) This shows that
d ≤ U does not hold in Z∨, which was to be shown. �

Our order of business now will be to offer characterizations of the collections of
simple inequations that hold in the algebras N∨ and N∧. The following result
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connects the simple inequations that hold in these algebras, and will be useful
to this effect.

Lemma 3.10 For any d, c1, . . . , ck in Nn, where k > 0,

d ≤ {c1, . . . , ck} (3)

holds in N∨ iff

e − d ≥ {e − c1, . . . , e − ck} (4)

holds in N∧, where for each i ∈ [n], the ith component of e ∈ Nn is the maximum
of the ith components of d and the cj (j ∈ [k]). In the same way,

d ≥ {c1, . . . , ck}
holds in N∧ iff

e − d ≤ {e − c1, . . . , e − ck}
holds in N∨, where e is defined as above.

Proof: We only prove the first statement of the lemma. Equation (3) holds in
N∨ iff

∀x ∈ Nn. dx ≤ c1x ∨ · · · ∨ ckx

⇔ ∀x ∈ Nn∃j ∈ [k]. dx ≤ cjx

⇔ ∀x ∈ Nn∃j ∈ [k]. (e − d)x ≥ (e − cj)x
⇔ ∀x ∈ Nn. (e − d)x ≥ (e − c1)x ∧ · · · ∧ (e − ck)x ,

viz. iff (4) holds in N∧. �

The above lemma expresses a “duality” between the equational theories of N∨
and N∧. Note, however, that the equational theory of N∧ is not the formal
dual of the theory of N∨, since the equations

x ∨ 0 = x

and

x ∧ 0 = 0

are not formal duals of each other.
Using Lem. 3.10 and results from [1], we are now in a position to offer the

promised characterizations of the valid simple inequations in N∨ and N∧.

Proposition 3.11 Suppose that d ∈ Nn and U is a finite nonempty set of
vectors in Nn.

15



1. The simple inequation d ≤ U holds in N∨ iff d belongs to the set [(U ]].

2. The simple inequation d ≥ U holds in N∧ iff d belongs to the set [[U)].

Proof: The first claim is proved in [1]. The second follows from the first and
Lemma 3.10. Let U = {c1, . . . , ck}, say. Let e ∈ Nn denote the vector whose
jth component is the maximum of the jth components of d and the ci, for each
i ∈ [k]. We know that d ≥ {c1, . . . , ck} holds in N∧ iff e−d ≤ {e−c1, . . . , e−ck}
holds in N∨. But by the first claim in the lemma this holds iff there exist real
numbers λj ≥ 0, j ∈ [k], with

∑k
j=1 λj = 1 and

e − d ≤ λ1(e − c1) + · · · + λk(e − ck) ,

i.e., when

d ≥ λ1c1 + · · · + λkck ,

which was to be shown. �

As a corollary of Propositions 3.9 and 3.11, we obtain decidability results for
the equational theories of the algebras Z∨,N∨ and N∧.

Corollary 3.12 There exists an exponential time algorithm to decide whether
an equation holds in the structures Z∨,N∨ and N∧. Moreover, it is decidable
in polynomial time whether a simple inequation holds in these structures.

Proof: The problem of deciding whether an equation holds in Z∨, N∨ and
N∧, can be reduced to deciding whether a finite set of simple inequations holds
(Cor. 2.8). The obvious reduction may result in a number of simple inequations
that is exponential in the number of variables. However, the validity of a simple
inequation can be tested in polynomial time by using linear programming (see,
e.g., [33]). The interested reader is referred to [1] for more information. �

Remark 3.13 The decidability of the equational theories of the structures
Z∨,N∨ and N∧ also follows from well-known results in logic on the decidabil-
ity of Presburger arithmetic—the first-order theory of addition on the natural
numbers.

It is interesting to compare the above result on the complexity of the equational
theory of N∨ and N∧ with the classic results by Fischer and Rabin [11] on the
complexity of the first-order theory of the real numbers under addition, and
of Presburger arithmetic. There is a fixed constant c > 0 such that for every
(non-deterministic) decision procedure for determining the truth of sentences
of real addition and for all sufficiently large n, there is a sentence of length n
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for which the decision procedure runs for more than 2cn steps. In the case of
Presburger arithmetic, the corresponding lower bound is 22cn

. These bounds
apply also to the minimal lengths of proofs for any complete axiomatization in
which the axioms are easily recognized. Such complexity results apply mutatis
mutandis to the first-order theory of the algebras N∨ and N∧.

3.3 Free Algebras and Relative Axiomatizations

Let C(Nn), CI(Nn) and CF (Nn) denote the sets of all finite nonempty con-
vex sets, finite nonempty convex ideals, and nonempty convex filters in Nn,
respectively. We turn each of these sets into a ciw-semiring. Suppose that
U, V ∈ C(Nn). First of all, recall that the complex sum of U and V , notation
U ⊕ V , is defined thus:

U ⊕ V = {u + v : u ∈ U, v ∈ V } .

We define

U ∨ V = [U ∪ V ]
U + V = [U ⊕ V ]

0 = [0] = {0} .

We define the operations in CI(Nn) and CF (Nn) in a similar fashion. Suppose
that U, V ∈ CI(Nn) and U ′, V ′ ∈ CF (Nn). We set

U ∨ V = [(U ∪ V ]]
U + V = [(U ⊕ V ]]

U ′ ∧ V ′ = [[U ′ ∪ V ′)]
U ′ + V ′ = [[U ′ ⊕ V ′)] .

Moreover, we define 0 = (0] = {0} in CI(Nn), and 0 = [0) = Nn in CF (Nn).

Proposition 3.14 Each of the structures

C(Nn) = (C(Nn),∨, +, 0) ,

CI(Nn) = (CI(Nn),∨, +, 0) and
CF (Nn) = (CF (Nn),∧, +, 0)

is a ciw-semiring. In addition, CI(Nn) satisfies the equation

x ∨ 0 = x , (5)

and CF (Nn) the equation

x ∧ 0 = 0 . (6)

17



Proof: These facts can be derived easily from properties of closure operators
and the complex sum operation ⊕, using Propositions 3.3 and 3.4. �

Note that (5) can be rephrased, with respect to Eciw , as the inequation 0 ≤ x,
and (6) as x ≥ 0. Also, writing ∨ for ∧, equation (6) takes the form x ∨ 0 = 0
that one should have if ∨ is considered to be the signature symbol instead of ∧.

For any structure A, we use V(A) to denote the variety generated by A,
i.e., the class of algebras that satisfy the equations that hold in A. Our order
of business will now be to offer concrete descriptions of the finitely generated
free algebras in the varieties generated by Z∨, N∨ and N∧.

Theorem 3.15 For each n ≥ 0, C(Nn) is freely generated in V(Z∨) by the sets
[ui], i ∈ [n].

Proof: Each C ∈ C(Nn) may be written as
∨

c∈C{c}, and, for each c =
(c1, . . . , cn) ∈ Nn, it holds that {c} =

∑n
i=1 ci[ui]. It follows that C(Nn) is

generated by the sets [ui]. Suppose now that h is a function {[u1], . . . , [un]} → Z,
say h : [ui] 7→ xi, i ∈ [n]. We need to show that h uniquely extends to a
homomorphism h] : C(Nn) → Z∨. For each set C ∈ C(Nn), define

h](C) =
∨

c∈C

cx ,

where x is the vector (x1, . . . , xn). It is clear that h]([ui]) = xi, for all i ∈ [n],
and that h](0) = 0. Also, if F is a nonempty finite subset of Nn, then, by
Proposition 3.9,

h]([F ]) =
∨

u∈[F ]

ux

=
∨

u∈F

ux .

Thus, for C, D ∈ C(Nn),

h](C ∨ D) = h]([C ∪ D])

=
∨

u∈C∪D

ux

=
∨

c∈C

cx ∨
∨

d∈D

dx

= h](C) ∨ h](D) .

Also,

h](C + D) = h]([C ⊕ D])
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=
∨

u∈C⊕D

uc

=
∨

c∈C

cx +
∨

d∈D

dx

= h](C) + h](D) ,

since + distributes over ∨. This proves that h] is a homomorphism. The fact
that h] is the only homomorphic extension of h is clear.

We still need to verify that C(Nn) belongs to V(Z∨). To this end, for each
x = (x1, . . . , xn) ∈ Zn, let hx denote the homomorphism C(Nn) → Z∨ described
above taking [ui] to xi, i ∈ [n]. If C, D ∈ C(Nn) with d ∈ D − C, say, then, by
Proposition 3.9,

dy >
∨

c∈C

cy ,

for some y ∈ Zn. Thus, it holds that hy(D) > hy(C). It follows that the target
tupling of the functions hx is an injective homomorphism from C(Nn) to a direct
power of Z∨, proving that C(Nn) belongs to V(Z∨). �

Free algebras in V(N∨) and V(N∧) have a similar description.

Theorem 3.16 For each n ≥ 0, CI(Nn) is freely generated in V(N∨) by the
sets (ui], i ∈ [n]. Moreover, CF (Nn) is freely generated in V(N∧) by the sets
[ui), i ∈ [n].

Proof: The argument is similar to the proof of Theorem 3.15. We outline the
proof of the second claim.

First, the convex filters [ui), i ∈ [n], form a generating system of CF (Nn).
This follows from Corollary 3.7 by noting that if U is the convex filter generated
by the finite nonempty set F , then

U =
∧

c∈F

[c) .

Moreover, for each c = (c1, . . . , cn) ∈ Nn, it holds that

[c) =
n∑

i=1

ci[ui) .

Let h be the assignment [ui) 7→ xi ∈ N, i ∈ [n]. By the above argument, h has
at most one extension to a homomorphism h] : CF (Nn) → N∧. Define h] by

h](U) =
∧

c∈U

cx ,
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where x = (x1, . . . , xn). Thus, h](U) is the least element of the set

{cx : c ∈ U} ⊆ N .

(Actually, the above definition makes sense for any nonempty set U ⊆ Nn.) The
proof of the fact that h] preserves the operations follows the lines of the similar
verification in the proof of Theorem 3.15. One uses Proposition 3.11 in lieu of
Proposition 3.9. The fact that CF (Nn) belongs to V(N∧) can be shown as the
corresponding fact in the proof of Theorem 3.15. �

Remark 3.17 A complete proof of the first part of Theorem 3.16 is given in
[1].

Remark 3.18 In any variety, any infinitely generated free algebra is the direct
limit of finitely generated free algebras. More specifically, for any cardinal num-
ber κ, the free algebra on κ generators in V(Z∨) can be described as an algebra
of finite nonempty convex sets in Nκ consisting of vectors whose components,
with a finite number of exceptions, are all zero. The free algebras in V(N∨)
and V(N∧) have similar descriptions using finitely generated convex ideals and
filters, respectively.

Since N∨ is a subalgebra of Z∨, we have that V(N∨) ⊆ V(Z∨). Also, since N∧
is isomorphic to the subalgebra N−

∨ of Z∨, it holds that V(N∧) ⊆ V(Z∨).

Definition 3.19 Let V and V ′ be two varieties of algebras such that the signa-
ture of V extends that of V ′. Let E be a collection of equations in the language
of V. We say that V is axiomatized over V ′ by E if the collection of equations
that hold in V ′ together with E form a basis for the identities of V. We say that
V has a finite axiomatization relative to V ′ if V is axiomatized over V ′ by some
finite set of equations E.

In the next result we show that both V(N∨) and V(N∧) possess a finite axiom-
atization relative to V(Z∨). Of course, V(Z∨) is just V(Z∧), since Z∨ and Z∧
are isomorphic.

Theorem 3.20 The following statements hold:

1. V(N∨) is axiomatized over V(Z∨) by the equation (5).

2. V(N∧) is axiomatized over V(Z∧) by the equation (6).

Proof: Suppose that n is any nonnegative integer. By Theorem 3.15, the map
[ui] 7→ (ui], i ∈ [n], extends to a unique homomorphism h : C(Nn) → CI(Nn).
Comparing the definitions of the operations in C(Nn) and CI(Nn) and using
the first part of Proposition 3.4, it is easy to see that h is in fact the function
U 7→ [(U ]], U ∈ C(Nn). We prove that the kernel of h is the least congruence
on C(Nn) such that the quotient satisfies (5), which implies the first claim.
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It is clear that the kernel of h satisfies (5). To complete the proof, we need
to show that if ϕ is a homomorphism C(Nn) → B, where B is in V+

ciw, then
the kernel of h is included in the kernel of ϕ. But, since B is in V+

ciw, for every
U ∈ C(Nn), it holds that

ϕ(U) =
∨

u∈U

ϕ([u]) =
∨

u∈(U ]

ϕ([u]) =
∨

u∈[(U ]]

ϕ([u]) = ϕ([(U ]]) ,

so that if [(U ]] = [(V ]], then ϕ(U) = ϕ(V ).
The proof of the second claim follows similar lines, using the second part of

Proposition 3.4. �

3.4 Non-Finite Axiomatizability Results

Our order of business in this section is to show that the varieties generated by
the ciw-semirings Z∨ and N∧ are not finitely based. Our starting points are the
results in [1] to the effect that the variety V(N∨) is not finitely based. These
we restate below for ease of reference and for completeness.

Theorem 3.21

1. The variety V(N∨) is not finitely based.

2. For every n ∈ N, the collection of all the inequations in at most n variables
that hold in V(N∨) does not form an equational basis for it.

We begin by using these results, and the first part of Theorem 3.20 to prove:

Theorem 3.22 The variety V(Z∨) is not finitely based. Moreover, V(Z∨) has
no axiomatization by equations in a bounded number of variables, i.e., there
exists no natural number n such that the collection of all equations in at most
n variables that hold in V(Z∨) forms an equational basis for V(Z∨).

Proof: The first claim is an immediate consequence of the second. To prove
the second claim, we argue as follows. Assume, towards a contradiction, that
there is a nonzero natural number n such that the collection of all equations in
at most n variables that hold in V(Z∨) forms an equational basis for V(Z∨).
Then, by the first part of Theorem 3.20, this collection of equations together
with (5) forms an equational basis for V(N∨) consisting of equations in at most
n variables. However, this contradicts the second statement in Theorem 3.21.
�

An alternative proof of the above result will be sketched in Remark 3.38 to
follow.

We now proceed to apply the results that we have developed so far to the
study of the axiomatizability of the equational theory of the algebra N∧.
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Our aim in the remainder of this section is to prove the following result to
the effect that the variety V(N∧) has no finite equational basis.

Theorem 3.23 The variety V(N∧) has no finite (equational) axiomatization,
i.e., there is no finite set E of equations, which hold in V(N∧), and such that
for all terms t1, t2,

V(N∧) |= t1 = t2 iff E proves t1 = t2 .

To prove Theorem 3.23, we begin by noting that the following equations e∧n hold
in N∧, for each n ≥ 2:

e∧n : rn ∧ sn = sn , (7)

where

rn = x1 + · · · + xn

sn = (2x1 + x3 + x4 + · · · + xn−1 + xn)
∧ (x1 + 2x2 + x4 + · · · + xn−1 + xn)
...
∧ (x1 + x2 + x3 + · · · + xn−2 + 2xn−1)
∧ (x2 + x3 + x4 + · · · + xn−1 + 2xn) .

In what follows, we shall define a sequence of ciw-semirings Bn (n ≥ 3) such
that following holds:

For any finite set E of equations which hold in V(N∧), there is an
n ≥ 3 such that

Bn |= E but Bn 6|= e∧n .

In fact, as we shall see in due course, the algebra construction that we now
proceed to present also yields the following stronger result.

Theorem 3.24 There exists no natural number n such that the collection of all
equations in at most n variables that hold in V(N∧) forms an equational basis
for V(N∧).

Using Theorem 3.24, it is a simple matter to prove Theorem 3.23.

Proof of Theorem 3.23: Given a finite set E of equations that hold in
V(N∧), let n denote an integer larger than the number of variables in any
equation belonging to E. Since the equations in at most n variables that hold
in V(N∧) do not form an equational basis for V(N∧), the equations in E do not
give an equational axiomatization of V(N∧) either. �
The remainder of this section will be devoted to the proof of Theorem 3.24. We
begin with some preliminary definitions and results that will pave the way to
the construction of the algebras Bn.
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Definition 3.25 The weight of a vector v = (v1, . . . , vn) in Nn is defined as
v1 + · · · + vn. The weight of a nonempty set U ⊆ Nn is the minimum of the
weights of the vectors in U .

Lemma 3.26 Let U be a nonempty subset of Nn. If the weight of U is k, then
so is the weight of [[U)]. Moreover, a weight k vector belongs to [[U)] iff it is a
convex linear combination of some vectors of weight k in U .

We introduce the following notations for some vectors in Nn related to the
equation e∧n :

δ = (1, . . . , 1)
γ1 = (2, 0, 1, 1, . . . , 1, 1)
γ2 = (1, 2, 0, 1, . . . , 1, 1)

...
γn−1 = (1, 1, 1, 1, . . . , 2, 0)

γn = (0, 1, 1, 1, . . . , 1, 2) ,

so that in γi (i ∈ [n]), the 2 is on the ith position and is followed by a 0. (Of
course, we assume that the first position follows the nth.) All other components
are 1’s. Note that

δ =
1
n

γ1 + · · · + 1
n

γn . (8)

Thus, δ belongs to the convex filter generated by the vectors γi (i ∈ [n]).
Moreover, the system consisting of any n of the vectors δ, γ1, . . . , γn is linearly
independent (cf. [1, Lemma 5.2]).

We define:

Γ = [[{γ1, . . . , γn})]
∆ = Γ − {δ} ,

so that Γ is the convex filter generated by the γi (i ∈ [n]). Note that the only
vectors of weight n in Γ are δ and the γi (i ∈ [n]). By (8), the set ∆ is not a
convex filter.

Lemma 3.27 Suppose that a nonempty subset U of Nn satisfies:

1. The weight of U is greater than or equal to n.

2. Any vector of weight n in U belongs to the set {δ, γ1, . . . , γn}.
Then every vector of weight n in [[U)] lies in the set {δ, γ1, . . . , γn}. Moreover,
γi ∈ [[U)] iff γi ∈ U , and δ ∈ [[U)] iff δ ∈ U or {γ1, . . . , γn} ⊆ U .
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Proof: Suppose that u ∈ [[U)] has weight n. Then, by Lemma 3.26, u is a
convex linear combination of weight n vectors in U , and hence a convex linear
combination of the vectors δ, γ1, . . . , γn. It follows that no component of u is
greater than 2 and at most one component is 0. Moreover, if the ith component
of u is 2, for some i, then necessarily u = γi. Suppose that u = δ. Then, since
any n of the vectors δ, γ1, . . . , γn form a linearly independent system, and since
δ is a convex linear combination of the γi (i ∈ [n]), it follows that either δ ∈ U
or {γ1, . . . , γn} ⊆ U . �

Corollary 3.28 The unique minimal generating set of Γ is {γ1, . . . , γn}.

Lemma 3.29 Suppose that F is a convex filter in Nn properly included in Γ.
Then F − {δ} is also a convex filter.

Proof: This is clear if δ 6∈ F , so assume δ ∈ F . Clearly, F − {δ} is a convex
filter unless δ ∈ [[F −{δ})]. But since each vector of weight n in F −{δ} is one
of the γi, and since at least one γi is not in F − {δ}, by Lemma 3.27 we have
that δ 6∈ [[F − {δ})]. �

We now proceed to define the algebras Bn = (Bn,∧, +, 0), for every n > 0.
Let Bn consist of the nonempty convex filters in Nn and the set ∆ = Γ−{δ}.

The following results will allow us to endow Bn with the structure of a ciw-
semiring.

Corollary 3.30 If F is a convex filter, then F ∩ ∆ ∈ Bn.

Proof: Clearly, it holds that F ∩∆ = (F ∩ Γ)∩∆. Thus we may assume that
F is included in Γ. If F = Γ, the intersection is ∆. Otherwise F is properly
included in Γ and F ∩ ∆ = F − {δ} ∈ Bn, by the previous lemma. �

Proposition 3.31 If the intersection of a family of sets in Bn is not empty,
then the intersection is in Bn.

Proof: Let Ui, i ∈ I, be a family of sets in Bn such that U =
⋂

i∈I Ui is
nonempty. If each Ui is different from ∆, then U is a nonempty convex filter
and is thus in Bn. Otherwise, we have that

U = ∆ ∩
⋂

{Ui : i ∈ I, Ui 6= ∆} ,

and the result follows by the previous corollary. �
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For each nonempty set U ⊆ Nn, let cl(U) denote the least set in Bn containing
U . (This set exists in light of the proposition above.) For each U, V ∈ Bn, we
define

U + V = cl(U ⊕ V )
U ∧ V = cl(U ∪ V ) .

Moreover, we define the constant 0 to be the set [[0)] = [0) = Nn. This completes
the definition of the algebra Bn = (Bn,∧, +, 0).

Recall that CF (Nn) is freely generated by the sets [ui), i ∈ [n], in the
variety generated by N∧. The following result, whose easy proof is omitted,
will be useful in the proof of Propn. 3.37 to follow.

Lemma 3.32 The function given by ∆ 7→ Γ and U 7→ U , if U 6= ∆, defines a
homomorphism Bn → CF (Nn).

To show that Bn is a ciw-semiring, we need:

Lemma 3.33 When n ≥ 3, the filter Γ has no decomposition in CF (Nn) into
the sum of two nonzero convex filters. Similarly, when n ≥ 3, neither Γ nor ∆
has a nontrivial decomposition in Bn into the sum of two nonzero sets.

Proof: First we work in CF (Nn).
Assume, towards a contradiction, that n ≥ 3, F and G are nonempty convex

filters with F + G = Γ in CF (Nn), but F, G 6= Nn. Let k denote the weight
of F and ` the weight of G. Then k, ` > 0 and k + ` = n. Let F ′ denote the
set of all vectors of weight k in F , and define G′ ⊆ G in similar fashion. By
Corollary 3.28, we have that

{γ1, . . . , γn} ⊆ F ′ ⊕ G′ ⊆ {γ1, . . . , γn, δ} .

Suppose that F ′, say, contains a vector u which has a component equal to 2.
Then there exists an i ∈ [n] such that u + v = γi for all v ∈ G′. Hence G′

contains a unique vector and γi is the only element of {γ1, . . . , γn} contained
in F ′ ⊕ G′, contradicting Corollary 3.28. Thus, F ′ contains no vector having a
component equal to 2, and similarly for G′.

Since the complex sum of F ′ and G′ contains the vectors γ1 and γ2, there
are vectors w1, w2 ∈ F ′ and v1, v2 ∈ G′ such that

w1 + v1 = γ1 and w2 + v2 = γ2 .

This means that, for some b3, . . . , bn ∈ {0, 1},

w1 = (1, 0, b3, . . . , bn) and
v1 = (1, 0, b̃3, . . . , b̃n) ,
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where b̃ denotes the complement of b, for every b ∈ {0, 1}. Similarly, since n ≥ 3,
there are c1, c4, . . . , cn ∈ {0, 1} such that

w2 = (c1, 1, 0, c4, . . . , cn) and
v2 = (c̃1, 1, 0, c̃4, . . . , c̃n) .

It is now easy to see that if w1 + v2 is in {γ1, . . . , γn, δ}, then w2 + v1 is not.
Indeed, if w1 + v2 is in {γ1, . . . , γn, δ}, then c̃1 = 0, so that c1 = 1. Thus the
first two components of w2 + v1 are 2 and 1, respectively. This contradicts our
assumption that F ′ ⊕ G′ is included in {γ1, . . . , γn, δ}.

Assume now that F +G ∈ {Γ, ∆} in Bn. If F, G ∈ CF (Nn), then F +G = Γ
in CF (Nn). By the first claim, this is possible only if F or G is 0. If F = ∆,
say, then G must be 0, or else F ⊕ G would only contain vectors whose weight
is greater than n. This completes the proof. �

Remark 3.34 When n = 2, the set ∆ does not have a non-trivial representation
as the sum of two non-zero elements of Bn, but we have

[[{(1, 0), (0, 1)})] + [[{(1, 0), (0, 1)})] = Γ

both in Bn and in CF (Nn).

Proposition 3.35 If n ≥ 3, then Bn is a ciw-semiring satisfying x ∧ 0 = 0.

Proof: It is obvious that both binary operations are commutative and that ∧
is idempotent. Also, the equation x∧0 = 0 holds. The fact that ∧ is associative
follows from general properties of closure operators. In fact,

(A ∧ B) ∧ C = cl(A ∪ B ∪ C) = A ∧ (B ∧ C) ,

for all A, B, C ∈ Bn. The facts that also

(A + B) + C = A + (B + C)
(A ∧ B) + C = (A + C) ∧ (B + C)

hold follow by Lemma 3.33. The only way that these equations can fail is that
one side is ∆ and the other is Γ. But in that case one of A, B, C is 0, by
Lemma 3.33, and then both equations hold obviously. �

Remark 3.36 For all A, B, C ∈ Bn, we have that

A + B + C = cl(A ⊕ B ⊕ C) .

The following result is the crux of the proof of Theorem 3.24.
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Proposition 3.37 For each n ≥ 3, the algebra Bn satisfies any equation in at
most n − 1 variables which holds in N∧.

Proof: It suffices to show that Bn |= t ≥ t′ for any simple ∧-inequation
t ≥ t′ such that N∧ |= t ≥ t′ and both t and t′ contain the same at most m < n
variables, so that t = t(x1, . . . , xm) and t′ = t′(x1, . . . , xm), say. By Lemma 3.32,
we only need to show that for all U1, . . . , Um in Bn, it is not possible that δ ∈ V
and ∆ = V ′, where V = t(U1, . . . , Um) and V ′ = t′(U1, . . . , Um).

Assume, towards a contradiction, that for some Ui ∈ Bn, i ∈ [m], we have
δ ∈ V and ∆ = V ′, and that t ≥ t′ is a simple inequation in fewest variables
for which this holds. Note that this implies that Ui 6= 0 for every i ∈ [m].
Clearly, the weight of each Ui is at most n. Also, if the weight of some Ui is
n, then m = 1 and t = x1. Since t ≥ t′ holds in N∧ and t′ also contains x1,
it follows that t′ = x1 modulo the equations of ciw-semirings. But then t = t′

holds in Bn, contrary to our assumption. Thus, each Ui is different from ∆ and
is thus a nonempty convex filter. Since V 6= ∆, it holds that V = t(U1, . . . , Um)
also in CF (Nn). Moreover, we have that t′(U1, . . . , Um) = Γ in CF (Nn). By
Lemma 3.33, it holds that V 6= Γ. Since t ≥ t′ holds in CF (Nn), we have that
V ⊆ Γ.

Now write t′ = t′1 ∧ · · · ∧ t′k, where the t′i are linear combinations of the
variables x1, . . . , xm. For each i ∈ [k], let V ′

i = t′i(U1, . . . , Um) in Bn. Each V ′
i

is included in ∆, and is in fact a proper subset of ∆, since ∆ has no nontrivial
decomposition in Bn into the sum of two sets (Lemma 3.33). Thus, each V ′

i

is a nonempty convex filter, and V ′
i = t′i(U1, . . . , Um) also in CF (Nn). Call a

t′i, and the corresponding V ′
i , relevant if the weight of V ′

i is n. In that case
V ′

i contains some, but not all of the γ1, . . . , γn, and no other vector of weight
less than or equal to n. (Each relevant V ′

i cannot contain all of the vectors
γ1, . . . , γn, or else, being a convex filter, it would also contain the vector δ. This
would contradict our assumption that δ 6∈ V ′.)

Suppose that wj ∈ Uj , j ∈ [m], have minimal weight. Then for every relevant
t′i =

∑
j∈[m] cijxj , it holds that

∑
j∈[m] cijwj has weight n and thus must be

in {γ1, . . . , γn} (Lemma 3.27). Hence, no cij can be greater than 2, and there
cannot be two coefficients equal to 2. The same fact holds for the coefficients
in the linear term t. Thus, two cases arise.

Case 1: t = x1 + · · · + xm. Since δ ∈ V and V is a proper subset of Γ,
by Lemma 3.27 there exist vectors wj ∈ Uj , j ∈ [m], with δ = w1 + · · · + wm.
Since the operations are monotonic, we may also assume that Uj = [[wj)], for
all j ∈ [m]. Indeed, we have, in Bn,

δ ∈ t([[w1)], . . . , [[wm)])

and

δ 6∈ t′([[w1)], . . . , [[wm)]) ,
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since t′([[w1)], . . . , [[wm)]) ⊆ t′(U1, . . . , Um) = ∆. But if t′([[w1)], . . . , [[wm)]) is
not ∆, then it is in CF (Nn), and we may infer that

t([[w1)], . . . , [[wm)]) ⊆ t′([[w1)], . . . , [[wm)]) ,

contradicting the fact that δ ∈ t([[w1)], . . . , [[wm)]) and δ 6∈ t′([[w1)], . . . , [[wm)]).
Thus, t′([[w1)], . . . , [[wm)]) = ∆. Actually, we may assume that Uj = [[wj)], for
all j ∈ [m].

Assume that w1 has two or more components equal to 1, say the first and
the second components are 1. Since γ1 ∈ Γ = t′(U1, . . . , Um) in CF (Nn), there
is a relevant t′i with γ1 ∈ V ′

i . This is possible only if γ1 =
∑

j∈[m] cijwj . But in
that case the coefficient ci1 is 2. Thus, the first two components of γ1 would be
2, which is contradiction. Hence w1 has a single component equal to 1. In the
same way, each of the vectors wj is a unit vector, and m = n follows, contrary
to our assumption that m < n.

Case 2: t = 2x1 + x2 + · · · + xm. In this case, we may assume that there
exist w1, . . . , wm and v1 with v1 + w1 + · · · + wm = δ, U1 = [[w1, v1)] and
Uj = [[wj)], for j ≥ 2. Clearly, w1 and v1 have equal weight, for otherwise V
would contain a vector of weight strictly smaller than n. Again, we can conclude
that v1 and each wj have exactly one nonzero component, which is a 1. Using
this, a contradiction is easily reached. Suppose that the first component of w1

is 1, say. Then there must be some i such that t′i = 2x1 + x2 + · · · + xm. But
then t ≥ t′ clearly holds in Bn. �

We are now ready to prove Theorem 3.24.

Proof of Theorem 3.24: Given an integer n ≥ 3, consider the algebra Bn

and the simple inequation rn ≥ sn, where the terms rn and sn were defined
below equation (7). For each i ∈ [n], let ui denote the ith n-dimensional unit
vector whose components are all 0 except for a 1 in the ith position. We have

rn([[u1)], . . . , [[un)]) = [[δ)] and
sn([[u1)], . . . , [[un)]) = ∆

in Bn. Thus Bn 6|= rn ≥ sn, i.e., Bn 6|= e∧n . On the other hand e∧n holds in
V(N∧), and moreover, by Proposition 3.37, Bn satisfies all identities in at most
n−1 variables that hold in V(N∧). Hence, the collection of identities in at most
n − 1 variables that hold in V(N∧) does not prove e∧n , and thus is not a basis
for V(N∧). �

Remark 3.38 The model construction upon which the proof of Theorem 3.24 is
based is similar in spirit to the one we used in [1] to show that the variety V(N∨)
is not finitely based. The proof of that result was based upon the realization
that the family of equations en below hold in N∨, and in fact in Z∨, for each
n ≥ 2:

en : rn ∨ qn = qn , (9)
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where rn was defined below (7) and

qn = (2x1 + x3 + x4 + · · · + xn−1 + xn)
∨ (x1 + 2x2 + x4 + · · · + xn−1 + xn)
...
∨ (x1 + x2 + x3 + · · · + xn−2 + 2xn−1)
∨ (x2 + x3 + x4 + · · · + xn−1 + 2xn) .

In op. cit. we constructed a sequence of ciw-semirings An (n ≥ 2) which satisfy
all the equations in at most n − 1 variables that hold in V(N∨), but in which
the equation en fails. This shows that the collection of equations in at most
n− 1 variables that hold in V(N∨) does not prove en, and thus is not a basis of
identities for V(N∨). Unlike the algebras Bn, the ciw-semirings An are finite,
and consist of nonempty convex ideals contained [({γ1, . . . , γn}]], together with
[({γ1, . . . , γn}]] − {δ}.

The aforementioned results from [1] lead to an alternative proof of Theo-
rem 3.22. Indeed, assume that there is a natural number n ≥ 2 such that the
collection En of equations in at most n variables that hold in V(Z∨) is a basis
for it. Since the equation en+1 holds in V(Z∨), it follows that En proves en+1.
However, this contradicts the aforementioned results from [1]. In fact, since N∨
is a subalgebra of Z∨, the equations in En also hold in N∨, and, thus, cannot
prove en+1.

Remark 3.39 The alternative proof of Theorem 3.22 mentioned in the above
remark is, in fact, applicable in a rather general setting. For the sake of this
generalization, which is meant to apply to algebras whose addition operation
need be neither commutative nor associative, we rephrase the family of equations
in (9) as follows:

e′n : r′n ∨ q′n = q′n (n ≥ 2) , (10)

where

r′n = x1 + (x2 + (· · · + xn) · · ·) and
q′n = (x1 + (x1 + (x3 + (x4 + (· · · + (xn−1 + xn) · · ·)))))

∨ (x1 + (x2 + (x2 + (x4 + (· · · + (xn−1 + xn) · · ·)))))
...
∨ (x1 + (x2 + (x3 + (· · · + (xn−2 + (xn−1 + xn−1)) · · ·))))
∨ (x2 + (x3 + (x4 + (· · · + (xn−1 + (xn + xn)) · · ·)))) .

(The join subterms in q′n can be arbitrarily parenthesized.) The reader will find
it easy to rephrase the family of equations e∧n given in (7) in similar fashion.

The argument used in the previous remark can be used to show, mutatis
mutandis, that:

29



Theorem 3.40 Let V be any variety that contains N∨ (respectively, N∧), and
in which e′n (resp., the rephrasing of e∧n) holds for every n ≥ 2. Then V has no
axiomatization in a bounded number of variables.

Suppose that V is generated by the algebra A. Then, the proviso of the above
statement is met if the following conditions hold:

1. N∨ (respectively, N∧) embeds in A,

2. the ∨ (respectively, ∧) operation on A is a semilattice operation,

3. A is linearly ordered by the semilattice order, and the + operation is
monotonic.

An application of Thm. 3.40 will be presented in Sect. 6.4.

Remark 3.41 Since N−
∨ is isomorphic to N∧, Theorems 3.23 and 3.24 apply

equally well to it.

We have presented several examples of nonfinitely based ciw-semirings. How-
ever, all of the ciw-semirings that we have studied so far are infinite. This
prompts us to formulate the following:

Problem 3.1 Let A be a finite ciw-semiring. Is the variety V(A) finitely
based?

4 Tropical Semirings

Our aim in this section will be to investigate the equational theory of the tropical
semirings studied in the literature that are obtained by adding bottom elements
to the ciw-semirings presented in the previous section. More specifically, we
shall study the following semirings:

Z∨,−∞ = (Z ∪ {−∞},∨, +,−∞, 0) ,

N∨,−∞ = (N ∪ {−∞},∨, +,−∞, 0) and
N−

∨,−∞ = (N− ∪ {−∞},∨, +,−∞, 0) .

Since Z∨,−∞, N∨,−∞ and N−
∨,−∞ are isomorphic to the semirings

Z∧,∞ = (Z ∪ {∞},∧, +,∞, 0)
N−

∧,∞ = (N− ∪ {∞},∧, +,∞, 0) and
N∧,∞ = (N ∪ {∞},∧, +,∞, 0) ,

respectively, the results that we shall obtain apply equally well to these algebras.
The semirings Z∧,∞ and N∧,∞ are usually referred to as the equatorial

semiring [22] and the tropical semiring [34], respectively. The semiring N∨,−∞
is called the polar semiring in [24].
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Our study of the equational theory of these algebras will proceed as follows.
First, we shall offer some general facts relating the equational theory of a ciw-
semiring A to the theory of the ci-semiring A⊥ defined in Sect. 2. In particular,
in Sect. 4.1 we shall provide a necessary and sufficient condition that ensures that
A and A⊥ satisfy the same equations in the language of ciw-semirings, and a
necessary and sufficient condition ensuring the validity of a simple inequation in
A⊥ for positive ciw-semirings A. We use these conditions to relate the non-finite
axiomatizability of V(A⊥) to the non-finite axiomatizability of V(A). Then, in
Sect. 4.2, we shall apply our general study to derive the facts that all tropical
semirings have exponential time decidable, but non-finitely based equational
theory. Our general results, together with those proven in Sect. 3, will also
give geometric characterizations of the valid equations in the tropical semirings
Z∨,−∞ and N−

∨,−∞, and thus in Z∧,∞ and N−
∧,∞, but not in N∨,−∞, or in the

isomorphic semiring N−
∧,∞. The task of providing a geometric description of the

valid equations for these semirings will be accomplished in Sect. 4.3, where we
shall also show that V(N∨,−∞) can be axiomatized over V(Z∨,−∞) by a single
equation.

4.1 Adding ⊥
In Sect. 2, we saw how to generate a ci-semiring A⊥ = (A⊥,∨, +,⊥, 0) from
any ciw-semiring A = (A,∨, +, 0) by freely adding a bottom element ⊥ to it.
We now proceed to study some general relationships between the equational
theories of these two structures. The results that we shall obtain will be applied
in Sect. 4.2 to obtain decidability and non-finite axiomatizability results for the
tropical semirings associated with the ciw-semirings we studied in Sect. 3.

Recall that a simple inequation in the variables x1, . . . , xn is of the form

t ≤
∨

i∈[k]

ti ,

where k > 0, and t and the ti (i ∈ [k]) are linear combinations of the variables
x1, . . . , xn.

Definition 4.1 A simple inequation t ≤ t′ is called nonexpansive if every vari-
able that occurs in t′ also occurs in t.

Suppose that t ≤ t′ is a simple inequation. We say that t ≤ t′ has a kernel,
or that the kernel of t ≤ t′ exists, if t′ contains at least one linear subterm all
of whose variables appear in t. Moreover, in this case we say that the kernel of
t ≤ t′ is the simple inequation t ≤ t′′, where the linear terms of t′′ are those
linear terms of t′ whose variables all appear in t.

Thus, if t ≤ t′ is nonexpansive, then its kernel is the inequation t ≤ t′. Note that
the kernel of a simple inequation that holds in a ciw-semiring A need not hold
in A. For example, the simple inequation x ≤ (x+ y)∨0 holds in every positive
ciw-semiring, but its kernel x ≤ 0 only holds in trivial positive semirings.
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Example 4.2 The kernel of x ≤ x ∨ y is x ≤ x. The inequations 0 ≤ x and
x ≤ x + y ∨ x + z have no kernel.

Lemma 4.3 Suppose that A is a ciw-semiring. Then a simple inequation holds
in A⊥ iff it has a kernel that holds in A. Thus, if an inequation is nonexpansive,
then it holds in A iff it holds in A⊥.

Proof: Suppose that t ≤ t′ is a simple inequation. If it has no kernel, then
each linear subterm of t′ contains a variable not occurring in t. Assign 0 to the
variables that occur in t, and ⊥ to any other variable. It follows that t evaluates
to 0 while t′ evaluates to ⊥, proving that t ≤ t′ does not hold in A⊥. Assume
now that t ≤ t′ has kernel t ≤ t′′. If A 6|= t ≤ t′′ then for some evaluation in
A of the variables appearing in t we have that the value of t in the algebra A,
denoted a, is not less than, or equal to, the value b of t′′. Assign ⊥ to all other
variables appearing in t′. Since in A⊥ term t evaluates to a and t′ evaluates to
b, it follows that t ≤ t′ does not hold in A⊥. On the other hand, if A |= t ≤ t′′,
then A⊥ |= t ≤ t′. Indeed, this is clear when t evaluates to ⊥. Assume that
t evaluates to an element of A, the carrier set of A. Then the value of each
variable occurring in t belongs to the set A. Thus, since each variable of t′′

appears in t and since t ≤ t′′ holds in A, we have that the value of t is less than,
or equal to, the value of t′′, which in turn is less than, or equal to, the value of
t′. �

The above lemma has a number of useful corollaries relating the equational
theory of a ciw-semiring with that of the free ci-semiring it generates.

Corollary 4.4 The following conditions are equivalent for a ciw-semiring A:

1. Every simple inequation that holds in A also holds in A⊥.

2. Every equation in the language of ciw-semirings that holds in A also holds
in A⊥.

3. A and A⊥ satisfy the same equations in the language of ciw-semirings.

4. For each simple inequation that holds in A, the kernel of the inequation
exists and holds in A.

5. There exists a set E of nonexpansive simple inequations such that Eciw∪E
is an axiomatization of V(A).

When these conditions hold, V(A⊥) is axiomatized by Eci ∪E, where E is given
as above.

Corollary 4.5 Suppose that each simple inequation that holds in A has a
kernel that holds in A. Then an equation in the language of ciw-semirings
holds in A iff it holds in A⊥.
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Corollary 4.6 Suppose that each inequation that holds in A has a kernel that
holds in A. Then V(A⊥) is axiomatized over V(A) by the equations

x ∨ ⊥ = x (11)
x + ⊥ = ⊥ . (12)

The following result will allow us to lift (non)finite axiomatizability results from
ciw-semirings to the free ci-semirings they generate.

Corollary 4.7 Suppose that each inequation that holds in A has a kernel that
holds in A. Then V(A) has a finite axiomatization iff V(A⊥) has. Moreover,
V(A) has an axiomatization by equations in a bounded number of variables iff
V(A⊥) has.

Proof: We first prove that V(A) has a finite axiomatization iff so does V(A⊥).
One direction is obvious from Cor. 4.6. Suppose now that V(A⊥) has a finite
axiomatization. Then, by Cor. 4.6 and the compactness theorem, there is a
finite set E of simple equations that hold in A such that Eci ∪E together with
(11) and (12) is an axiomatization of V(A⊥). Since simple inequations that
hold in A have kernels that hold in A, we may assume that each inequation
in E is nonexpansive. We claim that Eciw ∪ E is an axiomatization of V(A).
Indeed, all of the equations in Eciw ∪ E hold in A. Assume that there is an
equation t = t′ that holds in A but fails in a model B of the set of equations
Eciw ∪ E. Then consider the ci-semiring B⊥. By Lemma 4.3, it satisfies each
simple inequation in E, so that B⊥ is a model of Eci ∪E. But since t = t′ fails
in B, it also fails in B⊥, contradicting the fact that Eci∪E is an axiomatization
of V(A). Thus, Eciw ∪ E proves each equation that holds in A, so that V(A)
has a finite axiomatization. The same reasoning proves that if V(A⊥) has an
equational axiomatization in a bounded number of variables, then V(A) also
has such an axiomatization. �

We now turn to positive ciw-semirings.

Definition 4.8 An equation is regular if its two sides contain the same vari-
ables (cf., e.g., [37]). An inequation is regular if every variable contained in
the left-hand side of the inequation also appears on the right-hand side. An
inequation is strictly regular if its two sides contain the same variables.

Thus, a simple inequation is strictly regular iff it is regular and nonexpansive.

Lemma 4.9 Suppose that A is a nontrivial positive ciw-semiring and t ≤ t′ is
a simple inequation that holds in A. Then t ≤ t′ is regular, i.e., every variable
that appears in t also appears in t′.

Proof: Assume to the contrary that t contains a variable x which does not
appear in t′. Then, substituting 0 for all other variables occurring in t or t′,
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we obtain that A satisfies the inequation nx ≤ 0, where n denotes the nonzero
coefficient of x in t. Since A is positive it satisfies 0 ≤ x and hence x ≤ nx. It
follows that x = 0 holds in A, contradicting the assumption that A is nontrivial.
�

Lemma 4.10 Suppose that A is a nontrivial positive ciw-semiring. Then for
each simple inequation t ≤ t′ that holds in A there is a strictly regular inequation
t ≤ t′′ that also holds in A such that E+

ciw ∪ {t ≤ t′′} proves t ≤ t′.

Proof: Let t′′ be the simple term that results from t′ by substituting 0 for
each variable that does not occur in t. �

We call the nonexpansive, in fact strictly regular, inequation t ≤ t′′ constructed
above the projection of t ≤ t′.

Lemma 4.11 Suppose that A is a nontrivial positive ciw-semiring. Then a
simple inequation holds in A⊥ iff it has a strictly regular kernel that holds in
A.

Proof: This follows from Lemmas 4.3 and 4.9. �

Corollary 4.12 Suppose that A is a nontrivial positive ciw-semiring. Then
V(A) is axiomatized by the set of equations E+

ciw ∪ E, where E denotes the set
of all strictly regular equations that hold in A. Moreover, V(A⊥) is axiomatized
by Eci ∪ E.

Proof: For the first part, we need to show that whenever an algebra B satisfies
all the equations in E+

ciw ∪ E, then B satisfies any equation that holds in A.
But, with respect to Eciw , any equation is equivalent to a finite set of simple
inequations (see Corollary 2.8). Moreover, by Lemma 4.10, for every simple
inequation t ≤ t′ that holds in A there is a strictly regular inequation t ≤ t′′

that also holds in A such that E+
ciw ∪ {t ≤ t′′} proves t ≤ t′. Thus, since all

such inequations hold in B, it follows that B satisfies any equation that holds
in A.

For the second claim, observe that, by Lemma 4.11, any equation in E holds
in A⊥, as does any equation in Eci. Suppose now that an algebra B satisfies
all the equations in Eci ∪ E. By Corollary 2.8, we only need to show that B
satisfies any simple inequation that holds in A⊥. Lemma 4.11 tells us that these
are the simple inequations that have a strictly regular kernel that holds in A.
But these inequations can be proven from those in E, and thus hold in B. �
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Remark 4.13 If A is a trivial ciw-semiring, then V(A) is axiomatized by the
single equation x = y. However, this equation is not provable from E+

ciw ∪ E,
where E denotes the set of all strictly regular equations that hold in A. Thus
the assumption of nontriviality in the statement of the above result is necessary.

Corollary 4.14 Suppose that A is a nontrivial positive ciw-semiring. If the
variety V(A⊥) has a finite axiomatization then so does V(A).

Proof: Let E denote the set of strictly regular, simple inequations that hold
in A. By Cor. 4.12, Eci ∪ E proves all the equations satisfied by A⊥. Suppose
that V(A⊥) is finitely axiomatizable. Then, by the compactness theorem, there
is a finite set F ⊆ E such that the set of equational axioms Eci ∪ F forms
a complete axiomatization of V(A⊥). We claim that E+

ciw ∪ F is a complete
axiomatization of the variety V(A). Indeed, all of the equations in this set hold
in A. Moreover, if E+

ciw ∪F does not form a complete set of equations for V(A),
then, by Cor. 4.12, there are some algebra B and a simple inequation t ≤ t′ in
E such that B satisfies all of the equations in E+

ciw ∪ F , but such that t ≤ t′

fails in B. Consider the algebra B⊥. By Lemma 2.1, B⊥ satisfies the equations
in Eci, and, by Lemma 4.11, B⊥ satisfies the equations in F . Since t ≤ t′ does
not hold in B, it follows that t ≤ t′ does not hold in B⊥. But t ≤ t′ is in E and
thus holds in A⊥, so that Eci ∪F is not a complete set of identities for V(A⊥).
�

Corollary 4.15 Suppose that A is a nontrivial positive ciw-semiring. If the
variety V(A⊥) has an equational axiomatization in a bounded number of vari-
ables, then so has V(A).

Proof: Assume that the set E of valid equations of A⊥ in at most n ≥ 3
variables forms an equational axiomatization of V(A⊥). With respect to the
axioms Eci, each equation in E may be transformed into a a finite set of simple
inequations in at most n variables. Any such inequation holds in A and is thus
regular by Lemma 4.9. Now, using the equations in E+

ciw , each inequation may
be replaced by its projection which also has at most n variables. Any such simple
inequation is strictly regular. Let E′ denote the resulting set of inequations. By
construction, we have that Eci ∪ E′ is an axiomatization of V(A⊥). Moreover,
since n ≥ 3, each equation in this set has at most n variables. As in the proof of
the preceding corollary, we can show that E+

ciw ∪E′ is a complete set of axioms
for V(A). �

4.2 Decidability and Non-Finite Axiomatizability

We now apply the results of the previous subsection to show that each of the
tropical semirings defined thus far has a decidable but non-finitely based equa-
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tional theory.

Proposition 4.16 Every simple inequation that holds in N−
∨ (respectively, in

Z∨) has a kernel that holds in N−
∨ (resp., in Z∨).

Proof: Assume to the contrary that the simple inequation t ≤ t′ holds in N−
∨

but does not have a kernel. Then each linear subterm of t′ contains a variable
that does not appear in t. If we assign −1 to all such variables and 0 to any
other variable then t evaluates to 0 while t′ evaluates to a negative number. Thus
t ≤ t′ fails in N−

∨ , contradicting our assumption. Since N−
∨ is a subalgebra of

Z∨, every simple inequation that holds in Z∨ also has a kernel.
We now show that the kernel t ≤ t′′ of a simple inequation t ≤ t′ that holds

in N−
∨ also holds in N−

∨ . To this end, assume that t ≤ t′′ fails in N−
∨ and that

t′ = t′′ ∨ u, with u such that each of its linear subterms contains a variable not
occurring in t. Let x be the vector of variables occurring in t, and y be the
vector of variables occurring in u but not in t. Since t ≤ t′′ fails in N−

∨ , there is
a vector a of nonpositive integers such that t(a), the result of evaluating t with
respect to a, is greater than t′′(a). Evaluate u with respect to the assignment
that extends a by mapping each variable in y to t′′(a). The resulting value of u
is no greater than t′′(a), showing that t ≤ t′ fails in N−

∨ .
A similar argument can be used to show that the kernels of simple inequa-

tions that hold in Z∨ also hold in Z∨. �

Remark 4.17 In fact, the kernel of any simple inequation that holds in Z∨ is
strictly regular.

Remark 4.18 The above proposition does not hold for positive ciw-semirings.
In fact, the simple inequation 0 ≤ x has no kernel.

Theorem 4.19 For each of the tropical semirings A = Z∨,−∞,N∨,−∞,N−
∨,−∞,

the equational theory of V(A) is decidable in exponential time. Suppose that
d ≤ U is a simple inequation. Then d ≤ U holds in V(Z∨,−∞) if and only if
d ∈ [U ] and it holds in V(N−

∨,−∞) if and only if d ∈ [[U)].

Proof: This follows from Prop. 4.16, the corresponding facts for the ciw-
semirings Z∨,N∨ N−

∨ and from Lem. 4.3 and Lem. 4.11. �

Remark 4.20 Clearly, a simple inequation d ≤ U holds in V(Z∨(−∞)) if and
only if d ∈ [U ]. Therefore the structures Z∨, Z∨(−∞) and Z∨,−∞ satisfy the
same equations in the language of ciw-semirings.

A geometric description of the equations that hold in V(N∨,−∞) will be given
in Sec. 4.3.
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Theorem 4.21 For each of the tropical semirings A = Z∨,−∞,N∨,−∞,N−
∨,−∞,

the variety V(A) has no axiomatization in a bounded number of variables.

Proof: Immediate from the corresponding facts for the ciw-semirings Z∨,N∨
N−

∨ and Corollaries 4.7 and 4.15. �

Since Z∧,∞ and N∧,∞ are isomorphic to Z∨,−∞ and N−
∨,−∞, respectively, The-

orems 4.19 and 4.21 also apply to these semirings.

4.3 The Algebra N∨(−∞)

We now study in some more detail the structure N∨,−∞, and in particular its
ciw-semiring reduct N∨(−∞) obtained by forgetting about the constant ⊥. For
this algebra, we shall offer concrete descriptions of the free algebras in the variety
it generates, characterize the simple inequations that hold in it, and obtain an
axiomatization for it relative to Z∨.

Given a vector c = (c1, . . . , cn) ∈ Nn, let nz(c) denote the set of all integers
i ∈ [n] with ci 6= 0. (That is, nz(c) is the set of the nonzero positions in the
vector c.) When U ⊆ Nn we define:

nz(U) =
⋃

{nz(c) : c ∈ U} .

The following proposition is a reformulation of Lem. 4.3 that will be useful in
the technical developments to follow.

Proposition 4.22 Let d be a vector in Nn and U ⊆ Nn be nonempty and finite.
The following are equivalent for a simple inequation d ≤ U and a ciw-semiring
A = (A,∨, +, 0).

1. A⊥ |= d ≤ U .

2. There exists a nonempty U ′ ⊆ U such that nz(U ′) ⊆ nz(d) and A |= d ≤
U ′.

3. Ud = {c : c ∈ U and nz(c) ⊆ nz(d)} is nonempty and A |= d ≤ Ud.

The characterization of the simple inequations that hold in V(N∨(−∞)), the va-
riety generated by N∨(−∞), will be based on a variation on the notion of convex
ideal introduced in Defn. 3.1. Note that, unlike Z∨ and Z∨(−∞) (cf. Rem. 4.20),
the ciw-semirings N∨ and N∨(−∞) do not have the same equational theory.
For instance, the inequation

0 ≤ x (13)

holds in N∨, but fails in N∨(−∞). This observation, together with our char-
acterization of the simple inequations that hold in N∨, motivates the following
definition.
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Definition 4.23 Call a set U ⊆ Nn a positive convex ideal if for all nonempty
{c1, . . . , ck} = U ′ included in U and d ∈ Nn, if nz(d) ⊇ nz(U ′) and there exist
λ1, . . . , λk ≥ 0,

∑
i∈[k] λi = 1 with d ≤ ∑

i∈[k] λici, then d ∈ U .

Remark 4.24 In the above definition, we may clearly replace the condition
nz(d) ⊇ nz(U ′) by nz(d) = nz(U ′).

Proposition 4.25 The intersection of any family of positive convex ideals is a
positive convex ideal.

Thus, each U ⊆ Nn is included in a least positive convex ideal [(U ]]+. For
example, the positive convex ideal [(ui]]+ (i ∈ [n]) generated by the ith unit
vector only contains ui.

Lemma 4.26 Let U ⊆ Nn and d ∈ Nn. Then d ∈ [(U ]]+ if and only if there
exists a nonempty U ′ = {c1, . . . , ck} ⊆ U such that nz(U ′) ⊆ nz(d), and d ∈
[(U ′]].

As an immediate corollary of the above lemma, we obtain a characterization of
the simple inequations that hold in the algebra N∨(−∞). Using this charac-
terization and the general strategy employed in the proof of Cor. 3.12, we also
immediately have that the equational theory of this algebra is decidable.

Corollary 4.27 Suppose that U is a nonempty finite set in Nn and d ∈ Nn.
Then:

1. d ≤ U holds in N∨(−∞) iff d ∈ [(U ]]+.

2. There exists an algorithm to decide whether an equation holds in the struc-
ture N∨(−∞).

Proof: We only prove the first claim. Assume that d ≤ U holds in N∨(−∞).
Clearly this means that d ≤ U also holds in N∨,−∞. By Propn. 4.22, there
exists a nonempty U ′ ⊆ U such that nz(U ′) ⊆ nz(d) and N∨ |= d ≤ U ′. By
the first claim in Propn. 3.11, we have that d ∈ [(U ′]]. Since nz(U ′) ⊆ nz(d),
Lemma 4.26 yields that d ∈ [(U ]]+, which was to be shown. The proof of the
converse implication is similar, and is therefore omitted. �

We now offer concrete descriptions of the free algebras in the variety generated
by N∨(−∞).

Let CI+(Nn) denote the set of all finite nonempty positive convex ideals in
Nn. We turn this set into a ciw-semiring. Suppose that U, V ∈ CI+(Nn). We
define

U ∨ V = [(U ∪ V ]]+

U + V = [(U ⊕ V ]]+

0 = [(0]]+ = {0} .
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Following the structure of the proof of similar statements in Sect. 3.3, it is not
too hard to show that:

Theorem 4.28 For each n ≥ 0, the algebra CI+(Nn) is a ciw-semiring, and is
freely generated in V(N∨(−∞)) by the sets [(ui]]+, i ∈ [n].

Our next aim will be to offer finite axiomatizations of the variety generated by
N∨(−∞) relative to those for V(Z∨). This result will also yield finite axiomati-
zations of V(N∨) relative to V(N∨(−∞)). As a corollary, we shall obtain that
V(N∨(−∞)) is not finitely based.

Lemma 4.29 The convex hull of any nonempty set U is included in [(U ]]+.

Let U ⊆ Nn. Define the positive ideal generated by U thus:

(U ]+ = {d : ∃c ∈ U such that nz(c) = nz(d) and d ≤ c} .

The following technical result is the crux of the relative axiomatization results
to follow.

Proposition 4.30 Suppose that U is a nonempty subset of Nn. Then [(U ]]+

is the convex hull of (U ]+.

Proof: The proof is similar to that of the first statement in Propn. 3.4, but
we present it in full as an aid to the reader.

Since (U ]+ ⊆ [(U ]]+, it follows by Lemma 4.29 that the convex hull of (U ]+

is included in [(U ]]+. In order to prove the other direction, suppose that

d ≤ λ1c1 + · · · + λkck

for some k > 0, c1, . . . , ck ∈ U and λ1, . . . , λk ≥ 0 with
∑

i∈[k] λi = 1. Moreover,
assume that nz(d) = nz({c1, . . . , ck}). By Lemma 4.26, it suffices to show that
d is in the convex hull of the set (V ]+, where V = {c1, . . . , ck}. We shall prove
this by induction on

r = k + n +
∑

i∈[k]

|ci| ,

where we use |ci| to denote the weight of the vector ci (i ∈ [k]), i.e., the sum of
its entries.

The base case is when r = 2. Then n = k = 1 and d = c = 0, so that our
claim holds.

For the inductive step, suppose that r > 2. We proceed with the proof by
distinguishing three cases.

Case 1. If there exists some j ∈ [n] with dj = 0, then for this j, we have
cij = 0 for all i ∈ [k]. We can then remove the jth components of all the vectors
to obtain d

′
and c′1, . . . , c

′
k of dimension n − 1 with d

′ ≤ λ1c
′
1 + · · · + λkc′k and
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nz(d
′
) = nz({c′1, . . . , c′k}). Let W = {c′1, . . . , c′k}. Thus, by induction, d

′
is in

the convex hull of (W ]+, so that c is in the convex hull of (V ]+. The case that
n = 1 is handled separately: we have d = c1 = · · · = ck = 0, and our claim is
trivial.

Case 2. If there exists an i ∈ [k] with λi = 0, then it follows from the
inductive hypothesis that d is already in the convex hull of the set (W ]+, where
W = V − {ci}.

Case 3. If none of the previous two cases applies, then dj > 0 for all j ∈ [n]
and λi > 0 for all i ∈ [k]. Suppose that there exists some j such that cij = 1
for all i ∈ [k]. Then also dj = 1 and we may remove the jth components of the
vectors to obtain d

′
and c′i, i ∈ [k], as before. Using the inductive hypothesis,

it follows as in case 1 above that d in the convex hull of (V ]+. The case that
n = 1 is again handled separately.

Suppose now that for each j there is some ij with cijj > 1. Let e = λ1c1 +
· · · + λkck. If for some j

d ≤ λ1c1 + · · · + λij−1cij−1 + λij (cij − uj) + λij+1cij+1 + · · · + λkck

= e − λij uj ,

then, by induction, d is contained in the convex hull of (W ]+, where W is the
set {c1, . . . , cij−1, cij −uj , cij+1, . . . ck} ⊆ (V ]+. It follows that d is in the convex
hull of (V ]+. Otherwise, we have that

ej − λij ≤ dj ≤ ej ,

for all j. But this means that d is inside the n-dimensional rectangle determined
by the vectors

vK = e −
∑

j∈K

λij uj ,

where K ranges over all subsets of [k]. Since these vectors vK are all in the
convex hull of (V ]+, it follows that d belongs to the convex hull of (V ]+, which
was to be shown. �

Corollary 4.31 A simple inequation d ≤ U holds in N∨(−∞) iff d is in the
convex hull of (U ]+ iff the simple inequation d ≤ (U ]+ holds in Z∨.

Using the above results, and following the lines of the proof of Thm. 3.20, we can
now show the promised results on the relative axiomatization of the varieties
V(N∨(−∞)) and V(N∨).

Corollary 4.32 V(N∨(−∞)) can be axiomatized over V(Z∨) by the inequa-
tion

x ≤ x + x . (14)

Furthermore V(N∨,−∞) can be axiomatized over V(Z∨,−∞) by the above inequa-
tion.
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Corollary 4.33 V(N∨) can be axiomatized over V(N∨(−∞)), or over V(Z∨),
by the inequation (13).

Using the aforementioned relative axiomatization results, and following the lines
of the proof of Theorem 3.22, we have that:

Corollary 4.34 The variety V(N∨(−∞)) is not finitely based. Moreover,
there exists no n such that the set of all equations En in at most n variables
that hold in N∨(−∞) is a complete axiomatization of V(N∨(−∞)).

5 Adding More Constants

We now proceed our investigations of the equational theory of structures based
upon ciw-semirings by investigating the effect of adding a top element > to
them.

5.1 Adding >
Suppose that A = (A,∨, +, 0) is any algebra and > 6∈ A. We define

a + > = > + a = >
a ∨ > = > ∨ a = >

for all a ∈ A> = A∪{>}. Below we shall consider A> equipped with the ∨ and
+ operations, extended as above, and the constant 0. We write A> if > is added
to the signature of the resulting algebra, and A(>) for the structure resulting by
adding > only to the carrier set. When A is one of the ci(w)-semirings Z∨,N∨,
etc., then we also write A∞ and A(∞) for A> and A(>), respectively.

Proposition 5.1 Any equation that holds in A(>) also holds in A. Moreover,
A(>) satisfies an equation iff the equation is regular and holds in A.

Proof: Since A is a subalgebra of A(>), the first claim is obvious. As for
the second claim, assume that t = t′ holds in A and t and t′ contain the same
variables, say x1, . . . , xn. Since t = t′ holds in A, the only way that t = t′ may
fail in A(>) is that there exist some a1, . . . , an such that at least one of the ai

is > and t(a1, . . . , an) 6= t′(a1, . . . , an). But in that case both sides are >.
On the other hand, if t′ contains a variable that does not appear in t, say,

and if the variables of t and t′ are x1, . . . , xn, then let ai ∈ A whenever xi

appears in t, and let ai = > otherwise. We have that t(a1, . . . , an) ∈ A but
t′(a1, . . . , an) = >. Hence the equation t = t′ fails in A(>). �

Corollary 5.2 The algebras A and A(>) satisfy the same regular equations.
Moreover, A and A(>) satisfy the same equations iff every equation that holds
in A is regular.
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Corollary 5.3 A is a ciw-semiring iff so is A(>). Suppose that A is a ciw-
semiring and that every simple inequation that holds in A is regular. Then A
and A(>) satisfy the same equations.

Proof: The first fact follows by Proposition 5.1, noting that every defining
equation of ciw-semirings is regular. The second fact follows by noting that the
following two conditions are equivalent for a ciw-semiring A:

1. Every equation that holds in A is regular.

2. Every simple inequation that holds in A is regular. �

Remark 5.4 The same facts hold if we consider algebras containing more con-
stants such as algebras (A,∨, +,⊥, 0) equipped with a constant ⊥.

We might wish to add the symbol > also to the signature and consider equations
involving > that hold in A>. The following proposition gives a characterization
of the equations of this kind that hold in A> relative to those that hold in A.

Proposition 5.5 For any algebra A = (A,∨, +, 0) or A = (A,∨, +,⊥, 0), an
equation between terms possibly involving > holds in A> iff

• either both sides contain an occurrence of >;

• or neither of them does, the equation holds in A and is regular.

The simple proof is omitted. The above result has a number of useful corollaries
relating the equational theories of A> and A.

Corollary 5.6 If the equational theory of A is decidable in time O(t(n)), with
t(n) ≥ n2, then so is the equational theory of A>.

Corollary 5.7 Suppose that A = (A,∨, +, 0) or A = (A,∨, +,⊥, 0) is a given
algebra and E is a set of equations possibly involving >. Let E0 denote the set
of equations in E not containing >. Then E, together with the equations

x + > = > (15)
x ∨ > = > , (16)

is an equational basis for A> iff E0 is a basis for the regular equations1 that hold
in A. In particular, if all equations satisfied by A are regular, then E together
with (15) and (16) is an equational basis for A> iff E0 is an equational basis
for A.

1This means that E0 consists of regular equations that hold in A. Moreover, E0 proves all
regular equations that hold in A.
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Corollary 5.8 Suppose that A is a ci(w)-semiring such that every simple
inequation that holds in A is regular. Let E denote a set of equations and
define E0 as in the statement of Cor. 5.7. Then E, together with (15) and (16),
is an equational basis for A> iff E0 is an equational basis for A.

Corollary 5.9 Suppose that A is a ci(w)-semiring such that such that every
simple inequation that holds in A is regular. Then A has a finite basis for its
identities iff so does A>. Moreover, A has an axiomatization in a bounded
number of variables iff so does A>.

5.2 Applications

We now proceed to apply the general results developed in Sect. 5.1 to the alge-
bras obtained by adding top elements to some of the ciw-semirings we study in
this paper.

Proposition 5.10 Let A be any of the commutative idempotent (weak) semi-
rings Z∨, N∨, Z∨,−∞, N∨,−∞, Z∨(−∞) and N∨(−∞). Then A(∞) and A∞
are not finitely based, and have no axiomatization in a bounded number of vari-
ables. Moreover, the equational theory of A∞ is decidable in exponential time.

Proof: Immediate from the preceding results, the fact that each of Z∨, N∨,
Z∨(−∞), N∨(−∞), Z∨,−∞ and N∨,−∞ is a ci(w)-semiring satisfying only reg-
ular simple inequations, and from the results established in Sections 3 and 4. �

6 Variations on Tropical Semirings

We now examine some variations on the tropical semirings studied so far in this
paper. These include structures whose carrier sets are the (nonnegative) ratio-
nal or real numbers (Sect. 6.1), semirings whose product operation is standard
multiplication (Sect. 6.2), and the semirings studied by Mascle and Leung in
[30] and [26, 27], respectively, (Sect. 6.3). We also offer results on the equa-
tional theory of some algebras based on the ordinals proposed by Mascle in [29]
(Sect. 6.4).

6.1 Structures over the Rational and Real Numbers

We now proceed to study tropical semirings over the (nonnegative) rationals
and reals, and their underlying ciw-semirings. More precisely, we shall consider
the following ciw-semirings:

Q∨ = (Q,∨, +, 0) Q+
∨ = (Q+,∨, +, 0) Q+

∧ = (Q+,∧, +, 0)
R∨ = (R,∨, +, 0) R+

∨ = (R+,∨, +, 0) R+
∧ = (R+,∧, +, 0) ,
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where Q+ and R+ denote the sets of nonnegative rational and real numbers,
respectively. We shall also investigate the tropical semirings associated with the
aforementioned ciw-semirings, viz. the structures

Q∨,−∞ = (Q ∪ {−∞},∨, +,−∞, 0) Q+
∨,−∞ = (Q+ ∪ {−∞},∨, +,−∞, 0)

R∨,−∞ = (R ∪ {−∞},∨, +,−∞, 0) R+
∨,−∞ = (R+ ∪ {−∞},∨, +,−∞, 0)

Q+
∧,∞ = (Q+ ∪ {∞},∧, +,∞, 0) R+

∧,∞ = (R+ ∪ {∞},∧, +,∞, 0) .

We begin by noting the following result, to the effect that each of the algebras on
a dense carrier set has the same equational theory of its corresponding discrete
structure:

Lemma 6.1

1. The ciw-semirings Q∨, R∨ and Z∨ have the same equational theory.

2. The ciw-semirings Q+
∨ , R+

∨ and N∨ have the same equational theory.

3. The ciw-semirings Q+
∧ , R+

∧ and N∧ have the same equational theory.

4. The ci-semirings Q∨,−∞, R∨,−∞ and Z∨,−∞ have the same equational
theory.

5. The ci-semirings Q+
∨,−∞, R+

∨,−∞ and N∨,−∞ have the same equational
theory.

6. The ci-semirings Q+
∧,∞, R+

∧,∞ and N∧,∞ have the same equational theory.

Proof: We only outline the proof of the first statement of the lemma. It is
clear that the equational theory of R∨ is included in that of Q∨, which is in
turn included in that of Z∨. For the converse, assume that

t(x1, . . . , xn) = t′(x1, . . . , xn)

holds in Z∨. Let r1, . . . , rn be rationals, and write ri = pi/q, where the pi

(i ∈ [n]) and q are integers, with q positive. Now

t(r1, . . . , rn) =
t(p1, . . . , pn)

q

=
t′(p1, . . . , pn)

q

= t′(r1, . . . , rn) .

Thus, any valid equation of Z∨ holds in Q∨. The fact that any equation of Q∨
holds in R∨ follows from the continuity of the term functions. The proof of the
other statements is similar. �

As an immediate corollary of the above lemma, and of the non-finite axiomati-
zability results presented earlier in the paper, we have that:
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Theorem 6.2 Let A be any of the algebras Q∨, R∨, Q+
∨ , R+

∨ , Q+
∧ , R+

∧ ,
Q∨,−∞, R∨,−∞, Q+

∨,−∞, R+
∨,−∞, Q+

∧,∞ and R+
∧,∞. Then:

1. The variety V(A) is not finitely based.

2. For every natural number n, the collection of equations in at most n vari-
ables that hold in V(A) is not a basis for its identities.

3. The equational theory of V(A) is decidable in exponential time.

Remark 6.3 The structure R∨,−∞ = (R,∨, +,−∞, 0) is the well-known max-
plus algebra, whose plethora of applications are discussed in, e.g., [15].

All of the algebras, whose carrier sets are the set of rational or real numbers, that
we have discussed so far in this section sometimes appear in their isomorphic
form as min-plus algebras. As a further corollary of the above theorem, we
therefore have that:

Corollary 6.4 Let A be either Q or R. Then the algebras A∧ = (A,∧, +, 0)
and A∧,∞ = (A ∪ {∞},∧, +,∞, 0) are not finitely based. Moreover, for every
n ∈ N, the collection of equations in at most n variables that hold in A∧ (respec-
tively, A∧,∞) does not form an equational basis for A∧ (resp., A∧,∞). Finally,
the equational theories of A∧ and A∧,∞ are decidable in exponential time.

6.2 Min-Max-Times Algebras

We now apply the results we have previously obtained to the study of the
equational theories of the ci(w)-semirings

A∨,× = (A \ {0},∨,×, 1) ,

A∧,× = (A \ {0},∧,×, 1) ,

A∨,×,0 = (A,∨,×, 0, 1) and
A∧,×,0 = (A,∧,×, 0, 1) ,

where A is any of the sets N, Q+ or R+, and × is standard multiplication.

Proposition 6.5 Let A be any of the sets N, Q+ or R+. Then:

1. V(A∨,×) = V(A∨),

2. V(A∧,×) = V(A∧),

3. V(A∨,×,0) = V(A∨,−∞) and

4. V(A∧,×,0) = V(A∧,−∞).

Proof: We only show statement 1, when A is N. The proof of the remaining
claims is similar.
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First of all, note that N∨ is isomorphic to the subalgebra of N∨,× determined
by the natural numbers that are a power of 2. Conversely, observe that N∨,×
is isomorphic to the algebra

(log(N \ {0}),∨, +, 0) ,

where we write log(N \ {0}) for the collection of logarithms in base 2 of the
positive natural numbers, via the mapping

n 7→ log n .

The above mapping is injective, and the set log(N\{0}) is closed under addition,
in light of the well-known equation

log(x × y) = log x + log y .

Note, furthermore, that N∨ is a subalgebra of (log(N \ {0}),∨, +, 0), which is
itself a subalgebra of R+

∨ . By Lem. 6.1, these three algebras have the same
equational theory, and thus generate the same variety. �

As a corollary of the above proposition, and of the results that we have pre-
viously established for min-max-plus ci(w)-semirings, we obtain the following
result:

Corollary 6.6 Let A be any of the sets N, Q+ or R+. Then:

1. The varieties generated by the algebras A∨,×, A∧,×, A∨,×,0 and A∧,×,0

are not finitely based. Moreover none of these varieties has an axiomati-
zation in a bounded number of variables.

2. There exists an exponential time algorithm to decide whether an equation
holds in the structures A∨,×, A∧,×, A∨,×,0 and A∧,×,0.

6.3 Mascle’s and Leung’s Semirings

We now study the equational theory of some semirings originally proposed by
Mascle and Leung, and discussed in the survey paper [31].

6.3.1 Mascle’s Semiring

In [30], Mascle introduced the semiring

P−∞ = (N ∪ {−∞,∞},∨, +,−∞, 0)

where the addition operation satisfies the identities

−∞ + x = x + (−∞) = −∞ .
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(See also the survey paper [31] for information on this and other semirings
proposed by Mascle.) Note that the ci-semiring P−∞ is different from the
structure N∨,−∞(∞) we studied in Sect. 5.2. Indeed, in N∨,−∞(∞) it holds
that

−∞ + ∞ = ∞ + (−∞) = ∞ .

Instead, it is the case that P−∞ is obtained by freely adding −∞ to the ciw-
semiring N∨(∞).

Theorem 6.7 The variety V(P−∞) is not finitely based, and affords no axiom-
atization in a bounded number of variables.

Proof: The variety generated by the positive ciw-semiring N∨(∞) has no
axiomatization in a bounded number of variables (Propn. 5.10). By Cor. 4.15,
the same holds true of V(P−∞). �

6.3.2 Leung’s Semiring

Leung [26, 27] introduced and studied the semiring

M = (N ∪ {ω,∞},∧, +,∞, 0) ,

where the minimum operation is defined with respect to the order

0 < 1 < 2 < · · · < ω < ∞ ,

and addition in the tropical semiring N∧,∞ is completed by stipulating that

x + ω = ω + x = max{x, ω} .

Thus the carrier of M is just the ordinal ω + 2. It is easy to see that M is a
ci-semiring.

We shall now proceed to show that Leung’s semiring is also not finitely based.
To this end, we relate the equational theory of the tropical semiring N−

∨,−∞ to
that of

M− = (N− ∪ {−ω,−∞},∨, +,−∞, 0) ,

which is isomorphic to M.

Lemma 6.8 Let t ≤ t′ be a simple inequation. Then t ≤ t′ holds in N−
∨,−∞ iff

it holds in M−.

Proof: Clearly every simple inequation that holds in M− also holds in N−
∨,−∞.

Conversely, let t ≤ t′ be a simple inequation that holds in N−
∨,−∞. By Lem. 4.3,

t ≤ t′ has a kernel that holds in N−
∨ . This kernel holds in M− (again by
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Lem. 4.3), and so does t ≤ t′. �

As immediate corollary of the above result, we have that N−
∨,−∞ and M− have

the same equational theory. Since Leung’s semiring M and M− are isomorphic,
using Thm. 4.21, we therefore have that:

Proposition 6.9 The variety V(M) generated by the semiring M has no finite
axiomatization, and no axiomatization in a bounded number of variables.

6.4 Ordinals

In [29] (see also the survey paper [31]), Mascle proposed to study min-plus
algebras whose carrier sets consist of the collection of ordinals strictly smaller
than a given ordinal α. Our aim in this section is to offer results to the effect
that these algebras do not afford any axiomatization in a bounded number of
variables. We begin by giving the precise definition of these structures.

Recall that each ordinal α can be represented as the well-ordered set of all
the ordinals strictly smaller than it. When α is a power of ω, the first infinite
ordinal, this set is closed under ordinal addition, giving rise to the structures

α∨ = (α,∨, +, 0) and
α∧ = (α,∧, +, 0) ,

where ∨ and ∧ denote the maximum and minimum operation over ordinals,
respectively. Since ordinal addition is not commutative, these structures are
not ciw-semirings unless α = 1 or α = ω. However, except for commutativity
of addition, they satisfy all the defining equations of ciw-semirings. Moreover,
when α 6= 1, the algebra α∨ contains N∨ as a subalgebra, and α∧ contains N∧.
In both α∨ and α∧, the carrier set α is linearly ordered by the semilattice order,
and the + operation is monotonic (see, e.g., [20]). Thus, by Thm. 3.40, we have
that:

Theorem 6.10 Suppose that α 6= 1 is a power of ω. Then V(α∨) cannot be
axiomatized by equations in a bounded number of variables. The same fact holds
for V(α∧).

When α is an ordinal of the form ωβ, where β is itself a power of ω, the set α
is closed under ordinal product, giving rise to the structures

α∨,× = (α \ {0},∨,×, 1) and
α∧,× = (α \ {0},∧,×, 1) .

Proposition 6.11 The structures α∨ and α∧ embed in ωα∨,× and ωα∧,×, respec-
tively.

Proof: The function mapping any ordinal β < α to ωβ is an embedding, in
light of the equality

ωβ × ωγ = ωβ+γ ,
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and we are done. �

¿From the above result, it follows that the algebra α∨,× contains N∨,× as a
subalgebra, and α∧,× contains N∧,×. In both α∨,× and α∧,×, the carrier set α
is linearly ordered by the semilattice order, and the × operation is monotonic
(see, e.g., [20]). Thus, by Thm. 3.40, we have that:

Theorem 6.12 Suppose that α is an ordinal of the form ωβ, where β is itself
a power of ω. Then V(α∨,×) cannot be axiomatized by equations in a bounded
number of variables. The same fact holds for V(α∧,×).

Acknowledgments: We thank the anonymous referees for the extended ab-
stract [3] whose suggestions helped us improve the paper.
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algebra of the natural numbers has no finite equational basis,
BRICS Report RS-99-33, October 1999. Available at the URL
http://www.brics.dk/RS/99/33/index.html. To appear in Theoretical
Computer Science.

[2] , On the two-variable fragment of the equational theory of the max-
sum algebra of the natural numbers, in Proceedings of the 17th Interna-
tional Symposium on Theoretical Aspects of Computer Science, H. Re-
ichel and S. Tison, eds., vol. 1770 of Lecture Notes in Computer Sci-
ence, Springer-Verlag, Feb. 2000, pp. 267–278. Available at the URL
http://www.brics.dk/RS/99/22/index.html.

[3] , Axiomatizing tropical semirings, in Proceedings of FoSSaCS 2001
(Foundations of Software Science and Computation Structures), F. Honsell
and M. Miculan, eds., vol. 2030 of Lecture Notes in Computer Science,
Springer-Verlag, Apr. 2001, pp. 42–56.

[4] , Nonfinitely based tropical semirings, in Proceedings of the Work-
shop on Max-plus Algebras and their Applications to Discrete-event Sys-
tems, Theoretical Computer Science, and Optimization, S. Gaubert and
J. J. Loiseau, eds., IFAC (International Federation of Automatic Control)
Publications, Elsevier Science, Aug. 2001, to appear.

[5] F. Baccelli, G. Cohen, G.-J. Olsder, and J.-P. Quadrat, Syn-
chronization and Linearity, Wiley Series in Probability and Mathematical
Statistics, John Wiley, 1992.

[6] A. Bonnier-Rigny and D. Krob, A complete system of identities for
one-letter rational expressions with multiplicities in the tropical semiring,
Theoretical Computer Science, 134 (1994), pp. 27–50.

49



[7] W. Burnside, On an unsettled question in the theory of discontinuous
groups, Q. J. Pure and Appl. Mathematics, 33 (1902), pp. 230–238.

[8] S. Burris and H. P. Sankappanavar, A Course in Universal Algebra,
Springer-Verlag, New York, 1981. The “Millennium Edition” is available
at the URL http://thoralf.uwaterloo.ca/htdocs/ualg.html.

[9] J. H. Conway, Regular Algebra and Finite Machines, Mathematics Se-
ries (R. Brown and J. De Wet eds.), Chapman and Hall, London, United
Kingdom, 1971.

[10] R. Cuninghame-Green, Minimax Algebra, vol. 166 of Lecture Notes in
Economics and Mathematical Systems, Springer-Verlag, 1979.

[11] M. J. Fischer and M. O. Rabin, Super-exponential complexity of Pres-
burger arithmetic, in Complexity of Computation (Proc. SIAM-AMS Sym-
posium, New York, 1973), vol. VII of SIAM-AMS Proceedings, Providence,
R.I., 1974, American Mathematical Society, pp. 27–41.

[12] S. Gaubert, and M. Plus, Methods and applications of (max,+) linear
algebra, in Proceedings of the 14th International Symposium on Theoretical
Aspects of Computer Science, vol. 1200 of Lecture Notes in Computer
Science, Springer-Verlag, Feb. 1997, pp. 261–282.

[13] G. Grätzer, Universal Algebra, Springer-Verlag, second ed., 1979.

[14] J. Gunawardena (ed.), Idempotency, Publications of the Newton Insti-
tute 11, Cambridge University Press, 1998.

[15] , An introduction to idempotency, in [14], pp. 1–49.

[16] K. Hashiguchi, Limitedness theorem on finite automata with distance
functions, J. Comput. System Sci., 24 (1982), no. 2, pp. 233–244.

[17] , Regular languages of star height one, Information and Control, 53
(1982), pp. 199–210.

[18] , Algorithms for determining relative star height and star height, In-
formation and Computation, 78 (1988), pp. 124–169.

[19] , Relative star-height, star-height and finite automata with distance
functions, in Formal Properties of Finite Automata and Applications
(J.E. Pin ed.), Lecture Notes in Computer Science 386, Springer-Verlag,
1989, pp. 74–88.

[20] P. T. Johnstone, Notes on Logic and Set Theory, Cambridge Mathemat-
ical Textbooks, Cambridge University Press, 1987.

[21] D. Krob, Complete systems of B-rational identities, Theoretical Comput.
Sci., 89 (1991), pp. 207–343.

50



[22] , The equality problem for rational series with multiplicities in the
tropical semiring is undecidable, International J. Algebra Computation, 4
(1994), pp. 405–425.

[23] , Some consequences of a Fatou property of the tropical semiring, Jour-
nal of Pure and Applied Algebra, 93 (1994), pp. 231–249.

[24] , Some automata-theoretic aspects of min-max-plus semirings, in [14],
pp. 70–79.

[25] W. Kuich and A. Salomaa, Semirings, Automata, Languages, EATCS
Monographs on Theoretical Computer Science 5, Springer-Verlag, 1986.

[26] H. Leung, An Algebraic Method for Solving Decision Problems in Finite
Automata Theory, Ph.D. Thesis, Department of Computer Science, The
Pennsylvania State University, 1987.

[27] , On the topological structure of a finitely generated semigroup of ma-
trices, Semigroup Forum, 37 (1988), pp. 273–287.

[28] , The topological approach to the limitedness problem on distance au-
tomata, in [14], pp. 88–111.

[29] J.-P. Mascle, Quelque résultats de décidabilité sur la finitude des semi-
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