suonoNpPay aAEASIUILPY ;|| Med ‘uoiiewlojul] MojH JO uonewlojsuel] Sd) :Aaueq uelweq 0v-T0-SY SOIYg

BRICS

Basic Research in Computer Science

CPS Transformation of Flow Information
Part Il: Administrative Reductions

Daniel Damian

Olivier Danvy
BRICS Report Series RS-01-40
ISSN 0909-0878 October 2001

Copyright (© 2001, Daniel Damian & Olivier Danvy.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS

Department of Computer Science
University of Aarhus

Ny Munkegade, building 540
DK-8000 Aarhus C

Denmark

Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLSs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/01/40/

CPS Transformation of Flow Information, Part II:
Administrative Reductions

Daniel Damian and Olivier Danvy

BRICS*
Department of Computer Science
University of Aarhus’

August 13, 2000 (updated: August 9, 2001)

Abstract

We characterize the impact of a linear S-reduction on the result of a
control-flow analysis. (By “a linear 3-reduction” we mean the 3-reduction
of a linear \-abstraction, i.e., of a A-abstraction whose parameter occurs
exactly once in its body.)

As a corollary, we consider the administrative reductions of a Plotkin-
style transformation into continuation-passing style (CPS), and how they
affect the result of a constraint-based control-flow analysis and in partic-
ular the least element in the space of solutions. We show that admin-
istrative reductions preserve the least solution. Since we know how to
construct least solutions, preservation of least solutions solves a problem
that was left open in Palsberg and Wand’s paper “CPS Transformation
of Flow Information.”

Therefore, together, Palsberg and Wand’s article “CPS Transforma-
tion of Flow Information” and the present article show how to map, in
linear time, the least solution of the flow constraints of a program into
the least solution of the flow constraints of the CPS counterpart of this
program, after administrative reductions. Furthermore, we show how to
CPS transform control-flow information in one pass.

*Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

TNy Munkegade, Building 540, DK-8000 Aarhus C, Denmark
Email:{damian,danvy}@brics.dk

1 Background and introduction

Since their inception, over thirty years ago [10], continuations and the trans-
formation into continuation-passing style (CPS) have been the topic of much
study, ranging from semantics and logic to implementations of sequential, con-
current, and distributed programming languages and systems. Fifteen years
ago [6, 13], Meyer and Wand noticed that the CPS transformation preserves
types and constructed a CPS transformation of types.

type type
inference inference

CPS transformation
of terms

direct-style program CPS program

Over the last couple of years, Palsberg and Wand have extended this observation
to flow types and the flow information gathered by a control-flow analysis [8],
designing a CPS transformation of flow information.

flow _ _CPS transformation _ flow
information of flow information
flow flow
analysis analysis

CPS transformation

CPS program
of terms

direct-style program

Independently, and with a different motivation, we have also designed a CPS
transformation of flow information for control flow and binding times [1, 2, 3].
The two CPS transformations of flow information correspond to two different
takes on the CPS transformation of A-terms:

CPS with
CPS administrative redexes administrative

transformaV \re;iuctlons

CPS without
administrative redexes

transformatlom m:duction of

monadic style monadic continuations
normal form

direct style

The CPS transformation is Plotkin’s [9]. It is a first-order, compositional
rewriting system generating numerous administrative redexes that need to be

post-reduced in practice [12]. Alternatively [5, 11], the CPS transformation
can be staged into a transformation into monadic normal form followed by an
introduction of continuations.

The two CPS transformations of flow information can be depicted as follows.

CPS with
Palsberg & Wand, administrative redexes

unpublished/ \thij work

direct style CPS without
administrative redexes

Damian & Dm Damian & Danvy,

JFP’01 monadic ICFP’00

normal form

Palsberg and Wand show how to construct, in linear time, the flow infor-
mation corresponding to a CPS program obtained through a Plotkin-style CPS
transformation [8, 9]. The resulting programs contain all administrative re-
dexes induced by Plotkin’s transformation. Therefore, the corresponding CPS
information of flow also contains spurious information which accounts for the
extraneous A-abstractions and their flow. The problem of eliminating this spu-
rious information is open.

Damian and Danvy show how to construct, in linear time, the flow informa-
tion corresponding to the introduction of continuations, starting from monadic
normal forms [2, 5]. They also show how to construct, in linear time, the flow in-
formation corresponding to the transformation into monadic normal forms [1, 3].

In this work, we complete the picture above by showing how to perform,
in linear time, administrative reductions on CPS transformed programs (Sec-
tion 4). Our result hinges on linear reductions (Section 3). But first, we present
the source language and a constraint-based control-flow analysis (Section 2).

2 Preliminaries

2.1 The source language

We consider that input terms are given by the grammar in Figure 1. Terms
are annotated with distinct labels taken from a countable set Lab. Each M-
abstraction is annotated with a distinct label 7 from a set Lam, and we consider
that there exists a bijection between A-abstractions and their labels.

We consider that the language has a standard call-by-value semantics, which
is left unspecified. A program p is a closed labeled expression e’.
Definition 2.1. A properly labeled expression is a labeled expression in which
all labels are distinct and all variables are distinct.

Erp == x|n|et el |ifoel el et | Ax.el
Lam (A-abstraction labels)

Lab (term labels)

Lit (integer literals)

S ~3A o
M MMM

Figure 1: The language of labeled A-terms

Lam? The set of A-abstraction labels in p
Var? The set of identifiers in p
Lab? The set of term labels in p

Val? = P(Lam?) Abstract values

C € Cache, = Lab? — Val? Abstract cache
pe€ Env, = Var? — Val’ Abstract environment

Fp C (Cachep x Envy) x Lab?

Figure 2: Control-flow analysis relation for a program p: functionality

2.2 Control-flow analysis

We consider a constraint-based control-flow analysis. We use the same notations
and definitions as in Nielson, Nielson and Hankin’s recent textbook on program
analysis [7].

Given a program p, the control-flow analysis is defined as a relation =, whose
functionality is displayed in Figure 2. R N

A solution of the analysis of p’ is a pair (C,p) such that (C,p) E p. The
set of solutions of the analysis is ordered by the natural pointwise ordering of
functions, and has a least element. This property ensures the existence of a
least solution of the analysis of p. The analysis relation is defined inductively
on the syntax as defined in Figure 3.

3 Linear reductions

We observed that linear reductions preserve flow information. A linear reduction
is a B-reduction in which the A-abstraction in the function position is linear, i.e.,
such that it uses its argument once and only once. Let us formalize the notion
of linear reduction using linear contexts.

Definition 3.1. A linear context is a labeled expression with a unique hole [-].

6, D) E, nf <~ true
(C,p) Fp
(C.)y 2t — AWl
(C,p) Ep (\"z.e4)"1 = 1€ C)A(C,p)Fy e
(C.p) Fp (et e57) = (C.p)Fyp e’ A(C,p) Fp e’
YATz.ef € C(41).C(4a) C plx) A
C(by) € C(0)
(C.7) Fp (0 € cff)iz = (C,7) Fp et A (G,) Fp ey A (CL7) Fp et A
Figure 3: Control-flow analysis relation for a program p: definition

Linear contexts are defined by the grammar:

E == []]a' [n'] (Eey) | (ef B) |
(if0 E el ef)t | (if0 ef E i)l | (if0 e e E)O |
(A" x.E)*
Given a linear context F and a labeled expression ef, we use E[ef] to denote
the context E with the hole [] replaced with e’. It is trivial to see that E[e] is
a well-formed expression.

We also use F'V(e) to denote the set of free variables of the expression e.
This notation naturally extends to contexts: given the context E, by definition
FV(E) = FV(E[n]), where n is an arbitrary literal. We use L as the function
extracting the label of an expression. By definition, for any labeled expression
e, L(ef) = ¢.

Definition 3.2. A \-abstraction A" x.€’ is linear if and only if is properly labeled
and €' and contains a unique free occurrence of x, i.e., if there exists a linear
context E such that x ¢ FV(E) and e = E[z"] for some label (1.

Definition 3.3. A linear redex is a (-redex (Ax.e1) ex such that Ax.eq is a
linear \-abstraction.

Definition 3.4. A linear reduction is the G-reduction of a linear redez.

Example:
(\"z.E[z) ef2)" — Ble™]

where F is a linear context where x does not occur free. Note that such a reduc-
tion might not necessarily be sound wrt. call-by-value semantics. Nevertheless,
we show that it does not affect the result of control-flow analysis. In any case,
we treat linear reductions in CPS, which is evaluation-order independent [9].

4 Control-flow analysis and linear reduction

We show that performing a linear reduction does not alter the results of the
analysis of a properly labeled program. More precisely, we show that, given a
properly labeled program which contains a linear (-redex, control-flow analysis
yields strictly equivalent results before and after performing a linear G-reduction.

We are given a program that contains a linear redex and the least solution
of its analysis. The goal of this section is to construct the least solution of the
analysis of this program after a linear -reduction.

Let p be a properly labeled program containing a linear S-redex. Therefore
there exists two linear contexts E¥ and E7, an expression e, a fresh variable x,
and labels 7, £y, ¢1, {5 and 3 such that

p= E[(\"a.Eafa™]) ef)"]

and x € FV(E). Let then
v = BlE[e”]]

be the program p with the linear redex above reduced. It is immediate to see
that p’ is also a properly labeled program.

In the rest of this section, we define a monotone function F, which, given a
solution of the analysis of p, constructs a solution of the analysis of p’. We then
define a reverse function G,, monotone as well, which, given a solution of the
analysis of p, constructs a solution of the analysis of p. Using the two functions
and their monotonicity, we show that the best solution for p is transformed into
the best solution for p’. We then show how to construct, in linear time, the
least solution of the analysis of p’ from the least solution of the analysis of p.

4.1 Flow constructions

For the programs p and p’ defined as above, by construction,
o Lab” = Lab” U {ly, (1,05},
o Lam®? = Lam® U {r}, and
o Var? = Var” U {x}.

We define a function F,, : (Cache,x Env,) — (Cache, x Envy) as Fy(C, p) =
(6 | Lam#’ s Pl Lame’). Obviously, F,, is a projection function and it is monotone
with respect to the ordering of solutions.

We define a reverse function G, : (Cache, x Env,) — (Cache, X Env,) as

follows. If G,(C", ') = (C, p) then:

o for all £ € Lab”, C(£) = C'(£); C(ts) = C"(L(Er[e2])); C(by) = filx) =
C"(L2); C(fy) = {r}; and

e forally € Var? ply) =7 (y).

Obviously, G, is an embedding function and it is monotone as well.

Lemma 4.1. Let (C,p) € (Cache, x Envyp) such that (C,7) E, p. Then
fp(C,ﬁ) ':p/ p/.

Proof. Let (C",7) = fp(a,ﬁ). We show that (C",7) Ep p'. The proof has two
steps:

i) A proof of the fact that (C’, %) F, E1[e’?]. The proof is by structural in-
duction on the context E1, using the assumption that (C”, p') F, Ey[z’0].

ii) A proof of the fact that (C’,) Fp E[E1[e®]]. The proof is by structural
induction on the context E.

O

Lemma 4.2. Let (C',7) € (Cachey x Envy) such that (", 7) Ep p'. Then
gp(clvﬁ) ':P p-

Proof. Let (6,ﬁ) = g,,(@’,ﬁ’). We show that (6,@ Ep, p. The proof has two
steps:

i) A proof of the fact that (C,p) Fp Eilz]. The proof is by structural
induction on the context F, using the assumption that (C”, p') F, E1[e2].

ii) A proof of the fact that (C,7) Fp (A\"2.Bp[z%])% ef2)f. Using i), the
proof amounts to showing that a small set of constraints are satisfied.

iii) A proof of the fact that (C,7) Fp E[(\"x.Ey[z%0])% ef2)%]. The proof is
by structural induction on the context F.

O

Lemma 4.3. Let (6, p) be the least solution of the analysis of p. Let (6’, p') be
the least solution of the analysis of p’. Then F,(C,p) = (C',p") and G,(C",p') =
(©, 7).

Proof. We can immediately see that F,,(G,(C", 7)) = (C’, ') and that G,(F,(C, 5))
C (C,p). Therefore, G, and F, form an embedding/projection pair. Using

the monotonicity of the two functions, we obtain that fp(é .p) = (C",7) and
gp(claﬁ) = (Caﬁ) O

4.2 The CPS transformation of flow information and ad-
ministrative reductions

Lemma 4.3 says that the least analysis after a linear S-reduction is a restriction
of the least analysis of the initial term. From this, we can infer that any linear
[-reduction does not alter the results of the CFA. We use this result to show that
administrative reductions after Plotkin’s CPS transformation do not change the
result of the flow analysis.

Theorem 4.4. Let p be a program, p1 be its CPS counterpart without adminis-
trative reductions, and ps be its CPS counterpart after administrative reduction.
Let (61, p1) be the least solution of the analysis of p1. The least solution (62, P2)
of the analysis of pa can be obtained in linear time from (61, p1), by restricting
(61, p1) to the program points preserved by the administrative reductions.

Proof. All administrative reductions are linear, and furthermore, administrative
reduction is known to terminate [4]. We apply Lemma 4.3. O

Corollary 4.5. Let p be a program, p1 be its CPS counterpart without adminis-
trative reductions, and py be its CPS counterpart after administrative reduction.
Let (C,p) be the least solution of the analysis of p. The least solution (Ca, p2)
of the analysis of pa can be obtained in linear time from (6’, D).

Proof. We compose the construction given by Theorem 4.4 with Palsberg and
Wand’s CPS transformation of flow information [8], which also works in linear
time. O

5 Conclusion and issues

We have shown how to complement Palsberg and Wand’s CPS transformation of
flow information with administrative reductions, while preserving its linear-time
complexity. Our extension hinges on the linearity of administrative redexes.

Let us now show how to integrate administrative reductions in Palsberg and
Wand’s CPS transformation, therefore making it operate in one pass, still in
linear time. As shown in “Representing Control” [4], at CPS-transformation
time, one can segregate the administrative lambdas and applications and the
residual ones. (The residual lambdas and applications are the ones preserved by
the administrative reductions.) Therefore, in Palsberg and Wand’s CPS trans-
formation of flow information, we can segregate the labels of the administrative
lambdas and applications and the labels of the residual ones as well. In practice,
the solution after administrative reduction is thus obtained simply by restrict-
ing Palsberg and Wand’s solution to the residual labels. In the overall process
of (1) CPS transformation and (2) administrative reduction, the administrative
labels are used transitorily, just as in the one-pass CPS transformation, which
is conceptually fitting.

References

[1] Daniel Damian. On Static and Dynamic Control-Flow Information in Pro-
gram Analysis and Transformation. PhD thesis, BRICS PhD School, Uni-
versity of Aarhus, Aarhus, Denmark, July 2001.

[2] Daniel Damian and Olivier Danvy. Syntactic accidents in program analy-
sis: On the impact of the CPS transformation. In Philip Wadler, editor,

Proceedings of the 2000 ACM SIGPLAN International Conference on Func-
tional Programming, pages 209-220, Montréal, Canada, September 2000.
ACM Press.

Daniel Damian and Olivier Danvy. Syntactic accidents in program anal-
ysis: On the impact of the CPS transformation. Journal of Functional
Programming, 2001. To appear.

Olivier Danvy and Andrzej Filinski. Representing control, a study of
the CPS transformation. Mathematical Structures in Computer Science,
2(4):361-391, 1992.

John Hatcliff and Olivier Danvy. A generic account of continuation-passing
styles. In Hans-J. Boehm, editor, Proceedings of the Twenty-First Annual
ACM Symposium on Principles of Programming Languages, pages 458-471,
Portland, Oregon, January 1994. ACM Press.

Albert R. Meyer and Mitchell Wand. Continuation semantics in typed
lambda-calculi (summary). In Rohit Parikh, editor, Logics of Programs
— Proceedings, number 193 in Lecture Notes in Computer Science, pages
219-224, Brooklyn, June 1985. Springer-Verlag.

Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of
Program Analysis. Springer Verlag, 1999.

Jens Palsberg and Mitchell Wand. CPS transformation of flow informa-
tion. Unpublished manuscript, available at http://www.cs.purdue.edu/
“palsberg/publications.html, June 2001.

Gordon D. Plotkin. Call-by-name, call-by-value and the A-calculus. Theo-
retical Computer Science, 1:125-159, 1975.

John C. Reynolds. The discoveries of continuations. Lisp and Symbolic
Computation, 6(3/4):233-247, 1993.

Amr Sabry and Philip Wadler. A reflection on call-by-value. ACM Trans-
actions on Programming Languages and Systems, 19(6):916-941, 1997.

Guy L. Steele Jr. Rabbit: A compiler for Scheme. Technical Report AI-TR-
474, Artificial Intelligence Laboratory, Massachusetts Institute of Technol-
ogy, Cambridge, Massachusetts, May 1978.

Mitchell Wand. Embedding type structure in semantics. In Mary S. Van
Deusen and Zvi Galil, editors, Proceedings of the Twelfth Annual ACM
Symposium on Principles of Programming Languages, pages 1-6, New Or-
leans, Louisiana, January 1985. ACM Press.

Recent BRICS Report Series Publications

RS-01-40 Daniel Damian and Olivier Danvy. CPS Transformation of
Flow Information, Part 1l: Administrative Reductions October
2001. 9 pp. To appear in the Journal of Functional Program-
ming.

RS-01-39 Olivier Danvy and Mayer Goldberg. There and Back Again
October 2001. 14 pp. To appear in the proceedings of the 2002
ACM SIGPLAN International Conference on Functional Pro-
gramming.

RS-01-38 Zolén Esik. Free De Morgan Bisemigroups and Bisemilattices
October 2001. 13 pp. To appear in the journalAlgebra Collo-
quium.

RS-01-37 Ronald Cramer and Victor Shoup.Universal Hash Proofs and
a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key
Encryption. October 2001. 34 pp.

RS-01-36 Gerth Stglting Brodal, Rolf Fagerberg, and Riko JacobCache
Oblivious Search Trees via Binary Trees of Small Heigldcto-
ber 2001. 20 pp. Appears in Eppstein, editorThe Thirteens An-
nual ACM-SIAM Symposium on Discrete Algorithm$SODA '02
Proceedings, 2002, pages 39-48.

RS-01-35 Mayer Goldberg. A General Schema for Constructing One-
Point Bases in the Lambda CalculusSeptember 2001. 8 pp.

RS-01-34 Flemming Friche Rodler and Rasmus Paglfast Random Ac-
cess to Wavelet Compressed Volumetric Data Using Hashing
August 2001. 31 pp. To appear irACM Transactions on Graph-
ics.

RS-01-33 Rasmus Pagh and Flemming Friche Rodldrossy Dictionaries
August 2001. 14 pp. Short version appears in Meyer auf der
Heide, editor, 9th Annual European Symposium on Algorithms
ESA '01 Proceedings, LNCS 2161, 2001, pages 300-311.

RS-01-32 Rasmus Pagh and Flemming Friche RodleCuckoo Hashing
August 2001. 21 pp. Short version appears in Meyer auf der
Heide, editor, 9th Annual European Symposium on Algorithms
ESA '01 Proceedings, LNCS 2161, 2001, pages 121-133.

