
B
R

IC
S

R
S

-01-49
D

anvy
&

N
ielsen:

A
F

irst-O
rder

O
ne-P

ass
C

P
S

Transform
ation

BRICS
Basic Research in Computer Science

A First-Order One-Pass
CPS Transformation

Olivier Danvy
Lasse R. Nielsen

BRICS Report Series RS-01-49

ISSN 0909-0878 December 2001

Copyright c© 2001, Olivier Danvy & Lasse R. Nielsen.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/01/49/

A First-Order One-Pass CPS Transformation ∗

Olivier Danvy and Lasse R. Nielsen

BRICS †

Department of Computer Science
University of Aarhus ‡

December 2001

Abstract

We present a new transformation of call-by-value lambda-terms into
continuation-passing style (CPS). This transformation operates in one
pass and is both compositional and first-order. Because it operates in
one pass, it directly yields compact CPS programs that are comparable
to what one would write by hand. Because it is compositional, it allows
proofs by structural induction. Because it is first-order, reasoning about
it does not require the use of a logical relation.

This new CPS transformation connects two separate lines of research.
It has already been used to state a new and simpler correctness proof
of a direct-style transformation, and to develop a new and simpler CPS
transformation of control-flow information.

∗Extended version of an article to appear in the proceedings of FOSSACS’02, Grenoble,
France, April 2002.

†Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

‡Ny Munkegade, Building 540, DK-8000 Aarhus C, Denmark.
E-mail: {danvy,lrn}@brics.dk

1

Contents

1 Introduction 3

2 From higher-order to first-order 4
2.1 A higher-order specification . 4
2.2 Circumventing the higher-order functions 5

3 From non-compositional to compositional 7
3.1 A non-compositional specification 7
3.2 Eliminating the non-compositionality 8

4 From two passes to one pass 8
4.1 A two-pass specification . 8
4.2 A colon translation for proving simulation 8
4.3 Merging CPS transformation and colon translation 9

5 Correctness of the first-order one-pass CPS transformation 10
5.1 Reduction rules . 10
5.2 Simulation . 11

6 Reasoning about CPS-transformed programs 13
6.1 A higher-order one-pass CPS transformation 13
6.2 A first-order two-pass CPS transformation 13
6.3 A first-order one-pass CPS transformation 14
6.4 Non-compositional CPS transformations 14

7 Conclusion and issues 14
7.1 The big picture . 14
7.2 Scaling up . 15
7.3 A shortcoming . 16
7.4 Summary and conclusion . 17

A An example of continuation-passing program 17

List of Figures

1 Higher-order one-pass CPS transformation 4
2 First-order one-pass CPS transformation 6

2

1 Introduction

The transformation into continuation-passing style (CPS) is an encoding of arbi-
trary λ-terms into an evaluation-order-independent subset of the λ-calculus [30,
36]. As already reviewed by Reynolds [35], continuations and the CPS trans-
formation share a long history. The CPS transformation was first formalized
by Plotkin [30], and first used in practice by Steele, in the first compiler for
the Scheme programming language [39]. Unfortunately, its direct implementa-
tion as a rewriting system yields extraneous redexes known as administrative
redexes. These redexes interfere both with proving the correctness of a CPS
transformation [30] and with using it in a compiler [22, 39]. At the turn of the
1990’s, two flavors of “one-pass” CPS transformations that contract administra-
tive redexes at transformation time were developed. One flavor is compositional
and higher-order, using a functional accumulator [1, 10, 41]. The other is non-
compositional and first-order, using evaluation contexts [37]. They have both
been proven correct and are used in compilers as well as to reason about CPS
programs.

Because the existing one-pass CPS transformations are either higher-order or
non-compositional, their correctness proofs are complicated, and so is reasoning
about CPS-transformed programs. In this article, we present a one-pass CPS
transformation that is both compositional and first-order and thus is simple to
prove correct and to reason about. It is also more efficient in practice.

Overview: The rest of this article is structured as follows. We present three
derivations of our first-order, one-pass, and compositional CPS transformation.
We derive it from the higher-order one-pass CPS transformation (Section 2),
from Sabry and Wadler’s non-compositional CPS transformation (Section 3),
and from Steele’s two-pass CPS transformation (Section 4). We also prove its
correctness with a simulation theorem à la Plotkin (Section 5).

higher-order
one-pass

compositional
CPS transformation

Section 2
$$JJJJJJJJJJJJJJ

first-order
one-pass

non-compositional
CPS transformation

Section 3

��

first-order
two-pass

compositional
CPS transformation

Section 4
zztttttttttttttt

first-order
one-pass

compositional
CPS transformation

Section 5

��
correctness

3

We then compare the process of reasoning about CPS-transformed programs,
depending on which kind of CPS transformation is used (Section 6). Finally,
we conclude (Section 7).

Prerequisites: The syntax of the λ-calculus is as follows. We follow the
tradition of distinguishing between trivial and serious terms. (This distinction
originates in Reynolds’s work [36] and has been used by Moggi to distinguish
between values and computations [25].)

e ::= t | s e ∈ Expr (terms)
t ::= x | λx.e t, K ∈ Val (trivial terms, i.e., values)
s ::= e0 e1 s ∈ Comp (serious terms, i.e., computations)

x, k ∈ Ide (identifiers)

We distinguish terms up to α-equivalence, i.e., renaming of bound variables.

2 From higher-order to first-order

2.1 A higher-order specification

Figure 1 displays a higher-order, one-pass, compositional CPS transformation.

E : Expr → Ide → Comp
E [[t]] = λk.k @ T [[t]]
E [[s]] = λk.S[[s]] @ k

S : Comp → Ide → Comp
S[[e0 e1]] = λk.E ′[[e0]] @ (λx0.E ′[[e1]] @ (λx1.x0 @ x1 @ k))

T : Val → Val
T [[x]] = x

T [[λx.e]] = λx.λk.E [[e]] @ k

E ′ : Expr → (Val → Comp) → Comp
E ′[[t]] = λκ.κ @T [[t]]
E ′[[s]] = λκ.S′[[s]] @κ

S′ : Comp → (Val → Comp) → Comp
S′[[e0 e1]] = λκ.E ′[[e0]] @ (λx0.E ′[[e1]] @ (λx1.x0 @ x1 @ (λx2.κ @x2)))

Figure 1: Higher-order one-pass CPS transformation

4

E is applied to terms in tail position [3] and E ′ to terms appearing in non-tail
position; they are otherwise similar. S is applied to serious terms in tail position
and S ′ to terms appearing in non-tail position; they are otherwise similar. T is
applied to trivial terms.

In Figure 1, transformation-time abstractions (λ) and applications (infix
@) are overlined. Underlined abstractions (λ) and applications (infix @) are
hygienic syntax constructors, i.e., they generate fresh variables.

An expression e is CPS-transformed into the result of λk.E [[e]] @ k.

2.2 Circumventing the higher-order functions

Let us analyze the function spaces in Figure 1. All the calls to E , S, E ′, and
S ′ are fully applied and thus these functions could as well be uncurried. The
resulting CPS transformation is only higher order because of the function space
Val → Comp used in E ′ and S′. Let us try to circumvent this function space.

A simple control-flow analysis of the uncurried CPS transformation tells us
that while both E and E ′ invoke T , T only invokes E , E only invokes S, and
S only invokes E ′ while E ′ and S′ invoke each other. The following diagram
illustrates these relationships.

E //

��

S // E ′

��~~
~~

~~
~~

~~
~~

~

)) S′ii

T

VV

Therefore, if we could prevent S from calling E ′, both E ′ and S′ would become
dead code, and only E , S, and T would remain. We would then obtain a first-
order one-pass CPS transformation.

Let us unfold the definition of S and reason by inversion. The four following
cases occur. (We only detail the β-reductions in the first case.)

S[[t0 t1]] @ k =def E ′[[t0]] @ (λx0.E ′[[t1]] @ (λx1.x0 @x1 @ k))
=def (λx0.E ′[[t1]] @ (λx1.x0 @ x1 @ k))@T [[t0]]
→β E ′[[t1]] @ (λx1.T [[t0]] @x1 @ k)
=def (λx1.T [[t0]] @ x1 @ k)@T [[t1]]
→β T [[t0]] @T [[t1]] @ k

S[[t0 s1]] @ k =β S′[[s1]] @ (λx1.T [[t0]] @ x1 @ k)

S[[s0 t1]] @ k =β S′[[s0]] @ (λx0.x0 @T [[t1]] @ k)

S[[s0 s1]] @ k =β S′[[s0]] @ (λx0.S′[[s1]] @ (λx1.x0 @x1 @ k))

This analysis makes explicit all of the functions κ that S passes to S′. By
definition of S′, we also know where these functions are applied: in the two-
level eta-redex λx2.κ @x2. We can take advantage of this knowledge by invoking

5

S rather than S′, extend its domain to Comp → Expr → Comp, and pass it the
result of eta-expanding κ. The result reads as follows.

S[[t0 t1]] @ k ≡ T [[t0]] @ T [[t1]] @ k

S[[t0 s1]] @ k ≡ S[[s1]] @ (λx1.T [[t0]] @ x1 @ k)
S[[s0 t1]] @ k ≡ S[[s0]] @ (λx0.x0 @T [[t1]] @ k)
S[[s0 s1]] @ k ≡ S[[s0]] @ (λx0.S[[s1]] @ (λx1.x0 @x1 @ k))

In this derived transformation, E ′ and S′ are no longer used. Since they are
the only higher-order components of the uncurried CPS transformation, the
derived transformation, while still one-pass and compositional, is first-order.
Its control-flow graph can be depicted as follows.

E //

��

S

��

yy

T

VV

The resulting CPS transformation is displayed in Figure 2. Since it is first-order,
there are no overlined abstractions and applications, and therefore we omit all
underlines as well as the infix @. An expression e is CPS-transformed into the
result of λk.E [[e]] k.

E : Expr × Ide → Comp
E [[t]] k = k T [[t]]
E [[s]] k = S[[s]] k

S : Comp × Expr → Comp
S[[t0 t1]] K = T [[t0]] T [[t1]] K

S[[t0 s1]] K = S[[s1]] (λx1.T [[t0]] x1 K)
S[[s0 t1]] K = S[[s0]] (λx0.x0 T [[t1]] K)
S[[s0 s1]] K = S[[s0]] (λx0.S[[s1]] (λx1.x0 x1 K))

T : Val → Val
T [[x]] = x

T [[λx.e]] = λx.λk.E [[e]] k

Figure 2: First-order one-pass CPS transformation

6

This first-order CPS transformation is compositional (in the sense of deno-
tational semantics) because on the right-hand side, all recursive calls are on
proper sub-parts of the left-hand-side term [42, page 60]. One could say, how-
ever, that it is not purely defined by recursive descent, since S is defined by
cases on immediate sub-expressions, using a sort of structural look-ahead. (A
change of grammar would solve that problem, though.) The main cost incurred
by the inversion step above is that it requires 2n clauses for a source term with
n sub-terms that need to be considered (e.g., a tuple).

3 From non-compositional to compositional

3.1 A non-compositional specification

The first edition of Essentials of Programming Languages [18] dedicated a chap-
ter to the CPS transformation, with the goal to be as intuitive and pedagogical
as possible and to produce CPS terms similar to what one would write by hand.
This CPS transformation inspired Sabry and Felleisen to design a radically
different CPS transformation based on evaluation contexts that produces a re-
markably compact output due to an extra reduction rule, βlift [11, 37]. Sabry
and Wadler then simplified this CPS transformation [38, Figure 18], e.g., omit-
ting βlift . This simplified CPS transformation now forms the basis of the chapter
on the CPS transformation in the second edition of Essentials of Programming
Languages [19].

Using the same notation as in Figure 2, Sabry and Wadler’s CPS trans-
formation reads as follows. An expression e is CPS-transformed into λk.E [[e]],
where:

E [[e]] = S[[e]] k

S[[t]] K = K T [[t]]
S[[t0 t1]] K = T [[t0]] T [[t1]] K

S[[t0 s1]] K = S[[s1]] (λx1.S[[t0 x1]] K)
S[[s0 e1]] K = S[[s0]] (λx0.S[[x0 e1]] K)

T [[x]] = x

T [[λx.e]] = λx.λk.E [[e]]

For each serious expression s with a serious immediate sub-expression s′, S
recursively traverses s′ with a new continuation. In this new continuation, s′

is replaced by a fresh variable (i.e., a trivial immediate sub-expression) in s.
The result, now with one less serious immediate sub-expression, is transformed
recursively. The idea was the same in Sabry and Felleisen’s context-based CPS
transformation [37, Definition 5], which we study elsewhere [12, 14, 27].

These CPS transformations hinge on a unique free variable k and also they
are not compositional. For example, on the right-hand side of the definition of

7

S just above, some recursive calls are on terms that are not proper sub-parts
of the left-hand-side term. The input program changes dynamically during the
transformation, and proving termination therefore requires a size argument. In
contrast, a compositional transformation entails a simpler termination proof by
structural induction.

3.2 Eliminating the non-compositionality

Sabry and Wadler’s CPS transformation can be made compositional through
the following unfolding steps.

Unfolding S in S[[t0 x1]] K: The result is T [[t0]] T [[x1]] K, which is equivalent
to T [[t0]] x1 K.

Unfolding S in S[[x0 e1]] K: Two cases occur (thus splitting this clause for S
into two).

• If e1 is a value (call it t1), the result is T [[x0]] T [[t1]] K, which is
equivalent to x0 T [[t1]] K.

• If e1 is a computation (call it s1), the result is S[[s1]] (λx1.S[[x0 x1]] K).
Unfolding the inner occurrence of S yields S[[s1]] (λx1.T [[x0]] T [[x1]] K),
which is equivalent to S[[s1]] (λx1.x0 x1 K).

The resulting unfolded transformation is compositional. It also coincides with
the definition of S in Figure 2 and thus connects the two separate lines of
research.

4 From two passes to one pass

4.1 A two-pass specification

Plotkin’s CPS transformation [30] can be phrased as follows.

C[[t]] = λk.k Φ(t)
C[[e0 e1]] = λk.C[[e0]] (λx0.C[[e1]] (λx1.x0 x1 k))

Φ(x) = x
Φ(λx.e) = λx.C[[e]]

Directly implementing it yields CPS terms containing a mass of administrative
redexes that need to be contracted in a second pass [39].

4.2 A colon translation for proving simulation

Plotkin’s simulation theorem shows a correspondence between reductions in the
source program and in the transformed program. To this end, he introduced
the so-called “colon translation” to bypass the initial administrative reductions
of a CPS-transformed term.

8

The colon translation makes it possible to focus on the reduction of the
abstractions inherited from the source program. The simulation theorem is
shown by relating each reduction step, as depicted by the following diagram.

e
reduction //

CPS transformation

��

e′

CPS transformation

��
C[[e]]K

administrative
reductions

��

C[[e′]]K

administrative
reductions

��
e :K

reduction
22eeeeeeeeeeeeeeeeeee

e′ : K

The colon translation is itself a CPS transformation. It transforms a source
expression and a continuation into a CPS term; this CPS term is the one that ap-
pears after contracting the initial administrative redexes of the CPS-transformed
expression applied to the continuation. In other words, if we write the colon
translation of the expression e and the continuation K as e : K, then the fol-
lowing holds: C[[e]] K

∗→ e : K.
The colon translation can be derived from the CPS transformation by pre-

dicting the result of the initial administrative reductions from the structure
of the source term. For example, a serious term of the form t0 e1 is CPS-
transformed into λk.(λk.k Φ(v)) (λx0.C[[e1]] (λx1.x0 x1 k)). Applying this CPS
term to a continuation enables the following administrative reductions.

(λk.(λk.k Φ(t0)) (λx0.C[[e1]] (λx1.x0 x1 k))) K
→β (λk.k Φ(t0)) (λx0.C[[e1]] (λx1.x0 x1 K))
→β (λx0.C[[e1]] (λx1.x0 x1 K)) Φ(t0)
→β C[[e1]] λx1.Φ(t0) x1 K

The result is a smaller term that can be CPS-transformed recursively. This
insight leads one to Plotkin’s colon translation, as defined below.

t : K = K Φ(t)
t0 t1 : K = Φ(t0) Φ(t1) K
t0 s1 : K = s1 : (λx1.Φ(t0) x1 K)
s0 e1 : K = s0 : (λx0.C[[e1]] (λx1.x0 x1 K))

4.3 Merging CPS transformation and colon translation

For Plotkin’s purpose—reasoning about the output of the CPS transformation—
contracting the initial administrative reductions in each step is sufficient. Our
goal, however, is to remove all administrative redexes in one pass. Since the
colon translation contracts some administrative redexes, and thus more than
the CPS transformation, further administrative redexes can be contracted by
using the colon translation in place of all occurrences of C.

9

The CPS transformation is used once in the colon translation and once
in the definition of Φ. For consistency, we distinguish two cases in the colon
translation, depending on whether the expression is a value or not, and we use
the colon translation if it is not a value. In the definition of Φ, we introduce
the continuation identifier and then we use the colon translation. The resulting
extended colon translation reads as follows.

t :K = K Φ(t)
t0 t1 :K = Φ(t0) Φ(t1) K
t0 s1 :K = s1 : (λx1.Φ(t0) x1 K)
s0 t1 :K = s0 : (λx0.x0 Φ(t1) K)
s0 s1 :K = s0 : (λx0.(s1 : (λx1.x0 x1 K)))

Φ(x) = x
Φ(λx.e) = λx.λk.(e : k)

With a change of notation, this extended colon translation coincides with the
first-order one-pass CPS transformation from Figure 2. In other words, not only
does the extended colon translation remove more administrative redexes than
the original one, but it actually removes as many as the two-pass transformation.

5 Correctness of the first-order one-pass CPS

transformation

We prove the correctness of the transformation of Figure 2 in the traditional
way established by Plotkin [30]. To this end, we first define a reduction relation
on programs and then we prove a simulation theorem.

5.1 Reduction rules

We give the reduction relation using evaluation contexts in the style of Felleisen
[17]. The evaluation contexts are given by the following grammar.

E ::= [] | E e | t E

A context is an expression with a hole. We plug the hole of a context E with
an expression e (noted E[e]) as follows.

[][e] = e
(E e′)[e] = (E[e]) e′

(t E)[e] = t (E[e])

This definition of evaluation contexts satisfies a unique decomposition property,
namely that any expression that is not a value can be decomposed into a context
and an application of values, i.e.,

∀s.∃E, t0, t1.s = E[t0 t1]

and this decomposition is unique.

10

We then define a reduction relation on expressions with the following rule:

E[(λx.e) t] → E[e[t/x]]

where e[t/x] is the usual capture-avoiding substitution of t for free occurrences
of x in e. We call an expression on the form (λx.e) t a redex.

We say that e is reducible if there exists an e′ such that e → e′. So, for
example, values are not reducible. We write +→, ∗→, and n→ for the transitive
closure, the reflexive and transitive closure, and the n-times composition of the
relation →.

Some computations are not reducible. They are said to “stick”. The set of
stuck terms is exactly those on the form E[x t], i.e., the application of a variable
to a value in an evaluation context. Since the decomposition is unique, such an
expression cannot be reducible.

5.2 Simulation

Plotkin used four lemmas and a colon translation to prove the correctness of
his CPS transformation. Since our CPS transformation already performs the
administrative reductions at transformation time, we do not need to introduce
any colon translation and thus Plotkin’s initial-reduction lemma holds trivially.
Therefore, we work directly with the CPS transformation in the following three
lemmas.

Lemma 1 (Substitution) If e is an expression, t a value, x a variable, and
K another value then

(E [[e]] K)[T [[t]]/x] = E [[e[t/x]]] (K[T [[t]]/x])

If e is an expression, k is a variable, and K an expression then

(E [[e]] k)[K/k] = E [[e]] K

Proof: The first equation is proven by induction on the structure of e, following
the definition of substitution.

The second equation follows directly from the definition of E [[e]] K. qed

Lemma 2 (Single-step simulation) The reductions of the transformed pro-
gram match the reductions of the source program in the sense that

e → e′ =⇒ E [[e]] K +→ E [[e′]] K

Proof: If e → e′ then there exists a context E, a redex t0 t1, and an expression
e′′ such that e = E[t0 t1] and e′ = E[e′′]. The proof, which we omit, is by
induction on the context E. qed

11

Lemma 2 accounts for all reducible expressions. The following lemma han-
dles the expressions that stick.

Lemma 3 (Preservation of stuck terms) If e sticks (i.e., if it is a compu-
tation that is not reducible) and K is a value, then S[[e]] K sticks.

Proof: Since all stuck expressions are of the form E[x t], the proof is by induc-
tion on E. qed

Theorem 1 (Simulation) If e is an expression and v is a CPS value then

(∃t.e
∗→ t ∧ T [[t]] = v) ⇐⇒ E [[e]] λx.x

∗→ v

Proof:

1. (∃t.e
∗→ t ∧ T [[t]] = v) =⇒ E [[e]] λx.x

∗→ v

Let e, v, and t be given with v = T [[t]]. From repeated use of Lemma 2,
it follows that E [[e]] λx.x

∗→ E [[t]] λx.x, and E [[t]] λx.x = (λx.x) T [[t]] →
T [[t]] = v.

2. E [[e]] λx.x
∗→ v =⇒ (∃t.e

∗→ t ∧ T [[t]] = v)

Let e and v be given. Then this implication is proved by contraposition,
i.e., assume that ∃t.e

∗→ t ∧ T [[t]] = v fails to hold. Either there is no t

such that e
∗→ t, or there is one, but T [[t]] 6= v.

The expression e does not reduce to a value t in two cases: when e diverges,
i.e., has an infinite derivation, and when it reduces to a stuck term. In
either case E [[e]] λx.x has the same behavior.

• e diverges =⇒ E [[e]] λx.x diverges
If an expression e diverges, there exists no finite number n such that
e

n→ e′ and e′ is not reducible (i.e., either a value or a stuck expres-
sion). That is, for all numbers n there exists an expression en such
that e

n→ en.
Now, let n be a natural number. We consider the sequence e → e1 →
· · · → en, which exists since e diverges. Then, from Lemma 2 we know
that there is another reduction sequence E [[e]] λx.x

+→ E [[e1]] λx.x
+→

· · · +→ E [[en]] λx.x of length at least n. Therefore E [[e]] λx.x has reduc-
tion sequences of arbitrary length and thus it diverges as well.

• e
∗→ e′ and e′ sticks =⇒ E [[e]] λx.x

∗→ e′′ and e′′ sticks

From repeated use of Lemma 2 we know that E [[e]] λx.x
∗→ E [[e′]] λx.x,

and from Lemma 3 we know that E [[e′]] λx.x sticks.

12

• Let t be given such that e
∗→ t∧T [[t]] 6= v. Then it cannot be the case

that E [[e]] λx.x
∗→ v. This follows from the implication in the other

direction, since then E [[e]] λx.x
∗→ T [[t]] 6= v.

Together these cases account for all possible reductions of an expression, which
suffices to prove the simulation theorem. qed

6 Reasoning about CPS-transformed programs

How to go about proving properties of CPS-transformed programs depends on
which kind of CPS transformation was used. In this section, we review each of
them in turn. As our running example, we prove that the CPS transformation
preserves types. (The CPS transformation of types exists [24, 40] and has a
logical content [20, 26].) We consider the simply typed λ-calculus, with a typing
judgment of the form Γ` e : τ .

6.1 A higher-order one-pass CPS transformation

Danvy and Filinski used a typing argument to prove that their one-pass CPS
transformation is well-defined [10, Theorem 1]. To prove the corresponding
simulation theorem, they used a notion of schematic continuations. Since then,
for the same purpose, we have developed a higher-order analogue of Plotkin’s
colon translation [13, 27].

Proving structural properties of CPS programs is not completely trivial.
Matching the higher-order nature of the one-pass CPS transformation, a logical
relation is needed, e.g., to prove ordering properties of CPS terms [9, 15, 16].
(The analogy between these ordering properties and substitution properties of
linear λ-calculi has prompted Polakow and Pfenning to develop an ordered log-
ical framework [31, 32, 33].) A logical relation amounts to structural induction
at higher types. Therefore, it is crucial that the higher-order one-pass CPS
transformation be compositional.

The CPS transformation preserves types: To prove the well-typedness
of a CPS-transformed term, we proceed by structural induction on the typing
derivation of the source term (or by structural induction on the source expres-
sion), together with a logical relation on the functional accumulator.

6.2 A first-order two-pass CPS transformation

Sabry and Felleisen also considered a two-pass CPS transformation. They used
developments [2, Section 11.2] to prove that it is total [37, Proposition 2].

To prove structural properties of simplified CPS programs, one can (1) char-
acterize the property prior to simplification, and (2) prove that simplifications
preserve the property. Danvy took these steps to prove occurrence conditions of

13

continuation identifiers [8], and so did Damian and Danvy to characterize the
effect of the CPS transformation on control flow and binding times [4, 6]. It is
Polakow’s thesis that an ordered logical framework provides a good support for
stating and proving such properties [31, 34].

The CPS transformation preserves types: To prove the well-typedness of
a CPS-transformed term, we first proceed by structural induction on the typing
derivation of the source term. (It is thus crucial that the CPS transformation be
compositional.) For the second pass, we need to show that the administrative
contractions preserve the typeability and the type of the result. But this follows
from the subject reduction property of the simply typed λ-calculus.

6.3 A first-order one-pass CPS transformation

The proof in Section 5 follows the spirit of Plotkin’s original proof [30] but is
more direct since it does not require a colon translation.

A first-order CPS transformation makes it possible to prove structural prop-
erties of a CPS-transformed program by structural induction on the source
program. We find these proofs noticeably simpler than the ones mentioned in
Section 6.1. For two other examples, Damian and Danvy have used the present
first-order CPS transformation to develop a CPS transformation of control-flow
information [5] that is simpler than existing ones [4, 6, 29], and Nielsen has used
it to present a new and simpler correctness proof of a direct-style transforma-
tion [27, 28].

Again, for structural induction to go through, it is crucial that the CPS
transformation be compositional.

The CPS transformation preserves types: To prove the well-typedness
of a CPS-transformed term, we proceed by structural induction on the typing
derivation of the source term.

6.4 Non-compositional CPS transformations

Sabry and Felleisen’s proofs are by induction on the size of the source pro-
gram [37, Appendix A, page 337]. Proving type preservation would require a
substitution lemma.

7 Conclusion and issues

7.1 The big picture

Elsewhere [11, 12, 14], we have developed further connections between higher-
order and context-based one-pass CPS transformations. The overall situation
is summarized in the following diagram.

14

Plotkin, 1975

Danvy &
Filinski,

1992

��

Plotkin,
1975

����
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
EoPL1, 1991

Sabry &
Felleisen,

1993��
context-based

CPS
transformation

Sabry &
Wadler,

1997
��

Danvy &
Nielsen,

2001

yyssssssssssssssssss

colon
translation

Danvy &
Nielsen,

2001
//

Section 4
##GGGGGGGGGGGGG

GGGGGGG

compositional
higher-order

one-pass
CPS

transformation

99ssssssssssssssssss Danvy &
Nielsen,

2001
//

Section 2

��

simplified
context-based

CPS
transformation

oo

Section 3
zzuuuuuuuuuuuuuuuuu

Friedman,
Wand, &
Haynes,

2001
��

compositional
first-order
one-pass

CPS
transformation

EoPL2, 2001

This diagram is clearly in two parts: the left part stems from Plotkin’s work
and the right part from the first edition of Essentials of Programming Lan-
guages. The left-most part represents the CPS transformation with the colon
translation. The vertical line in the middle represents the path of compositional
CPS transformations. The vertical line on the right represents the path of non-
compositional CPS transformations. The right arrow from the colon translation
is our higher-order colon translation [13]. The upper arrows between the left
part and the right part of the diagram correspond to our work on β-redexes [11],
defunctionalization [12], and refocusing in syntactic theories [14].

The present work links the left part and the right part of the diagram further.

7.2 Scaling up

Our derivation of a first-order, one-pass CPS transformation generalizes to other
evaluation orders, e.g., call-by-name. (Indeed each evaluation order gives rise
to a different CPS transformation [21].) The CPS transformation also scales up
to the usual syntactic constructs of a programming language such as primitive
operations, tuples, conditional expressions, and sequencing.

A practical problem, however, arises for block structure, i.e., let- and letrec-
expressions. For example, a let-expression is CPS-transformed as follows (ex-

15

tending Figure 1).

S[[let x = e1 in e2]] = λk.E [[e1]] @ (λx.E [[e2]] @ k)
S′[[let x = e1 in e2]] = λκ.E ′[[e1]] @ (λx.E ′[[e2]] @κ)

In contrast to Section 2.2, the call site of the functional accumulator (i.e., where
it is applied) cannot be determined in one pass with finite look-ahead. This
information is context sensitive because κ can be applied in arbitrarily deeply
nested blocks. Therefore no first-order one-pass CPS transformation can flatten
nested blocks in general if it is also to be compositional.

To flatten nested blocks, one can revert to a non-compositional CPS trans-
formation, to a two-pass CPS transformation, or to a higher-order CPS transfor-
mation. (Elsewhere [11], we have shown that such a higher-order, compositional,
and one-pass CPS transformation is dependently typed. Its type depends on
the nesting depth.)

In the course of this work, and in the light of Section 3.2, we have conjectured
that the problem of block structure should also apply to a first-order one-pass
CPS transformation such as Sabry and Wadler’s. This is the topic of the next
section.

7.3 A shortcoming

Sabry and Wadler’s transformation [38] also handles let expressions (extending
the CPS transformation of Section 3.1):

S[[let x = e1 in e2]] K = S[[e1]] (λx.S[[e2]] K)

If we view this equation as the result of circumventing a functional accumulator,
we can see that it assumes this accumulator never to be applied. But it is easy to
construct a source term where the accumulator would need to be applied—e.g.,
the following one.

S[[t0 (let x = t1 in t2)]] K = S[[let x = t1 in t2]] (λx1.T [[t0]] x1 K)
= S[[t1]] (λx.S[[t2]] (λx1.T [[t0]] x1 K))
= S[[t1]] (λx.(λx1 .T [[t0]] x1 K) T [[t2]])
= (λx.(λx1.T [[t0]] x1 K) T [[t2]]) T [[t1]]

The resulting term is semantically correct, but syntactically it contains an ex-
traneous administrative redex.

In contrast, a higher-order one-pass CPS transformation yields the following
more compact term, corresponding to what one might write by hand (with the
provision that one usually writes a let expression rather than a β-redex).

S[[t0 (let x = t1 in t2)]] k ≡ (λx.T [[t0]] T [[t2]] k) T [[t1]]

The CPS transformation of the second edition of Essentials of Programming
Languages inherits this shortcoming for non-tail let expressions containing com-
putations in their header (i.e., for non-simple let expressions that are not in tail
position, to use the terminology of the book).

16

7.4 Summary and conclusion

We have presented a one-pass CPS transformation that is both first-order and
compositional. This CPS transformation makes it possible to reason about
CPS-transformed programs by structural induction over source programs. Its
correctness proof (i.e., the proof of its simulation theorem) is correspondingly
very simple. The second author’s PhD thesis [27, 28] also contains a new and
simpler correctness proof of the converse transformation, i.e., the direct-style
transformation [7]. Finally, this new CPS transformation has enabled Damian
and Danvy to define a one-pass CPS transformation of control-flow informa-
tion [4, 5].

Acknowledgments: Thanks are due to Dan Friedman for a substantial e-
mail discussion with the first author about compositionality in the summer of
2000, and to Amr Sabry for a similar discussion at the Third ACM SIGPLAN
Workshop on Continuations, in January 2001. This article results from an
attempt at unifying our points of view, and has benefited from comments by
Daniel Damian, Andrzej Filinski, Mayer Goldberg, Julia Lawall, David Toman,
and the anonymous referees. Special thanks to Julia Lawall for a substantial
round of proof-reading.

A An example of continuation-passing program

The following ML functions compute the map functional. One is in direct style,
and the other one in CPS.

(* map : (’a -> ’b) * ’a list -> ’b list *)

fun map (f, nil)

= nil

| map (f, x :: xs)

= (f x) :: (map (f, xs))

(* map_c : (’a * (’b -> ’c) -> ’c) * ’a list * (’b list -> ’c) -> ’c *)

fun map_c (f_c, nil, k)

= k nil

| map_c (f_c, x :: xs, k)

= f_c (x, fn v => map_c (f_c, xs, fn vs => k (v :: vs)))

The direct-style function map takes a direct-style function and a list as argu-
ments, and yields another list as result.

The continuation-passing function map c takes a continuation-passing func-
tion, a list, and a continuation as arguments. It yields a result of type ’c, which
is also the type of the final result of any CPS program that uses map c. Matching
the result type ’b list of map, the continuation of map c has type ’b list ->

’c. Matching the argument type ’a -> ’b of map, the first argument of map c is
a continuation-passing function of type ’a * (’b -> ’c) -> ’c.

17

In the base case, map returns nil whereas map c sends nil to the continuation.
For a non-empty list, map constructs a list with the result of its first argument
on the head of the list and with the result of a recursive call on the rest of the
list. In contrast, map c calls its first argument on the head of the list with a new
continuation that, when sent a result, recursively calls map c on the rest of the
list with a new continuation that, when sent a list of results, constructs a list
and sends it to the continuation. In map c, all calls are tail calls.

References

[1] Andrew W. Appel. Compiling with Continuations. Cambridge University
Press, New York, 1992.

[2] Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume
103 of Studies in Logic and the Foundation of Mathematics. North-Holland,
1984. Revised edition.

[3] William D. Clinger. Proper tail recursion and space efficiency. In
Keith D. Cooper, editor, Proceedings of the ACM SIGPLAN’98 Confer-
ence on Programming Languages Design and Implementation, pages 174–
185, Montréal, Canada, June 1998. ACM Press.

[4] Daniel Damian. On Static and Dynamic Control-Flow Information in Pro-
gram Analysis and Transformation. PhD thesis, BRICS PhD School, Uni-
versity of Aarhus, Aarhus, Denmark, July 2001. BRICS DS-01-5.

[5] Daniel Damian and Olivier Danvy. A simple CPS transformation of control-
flow information. Technical Report BRICS RS-01-55, DAIMI, Department
of Computer Science, University of Aarhus, Aarhus, Denmark, December
2001.

[6] Daniel Damian and Olivier Danvy. Syntactic accidents in program analysis:
On the impact of the CPS transformation. Journal of Functional Program-
ming, 2002. To appear. Extended version available as the technical report
BRICS-RS-01-54.

[7] Olivier Danvy. Back to direct style. Science of Computer Programming,
22(3):183–195, 1994.

[8] Olivier Danvy. Formalizing implementation strategies for first-class con-
tinuations. In Gert Smolka, editor, Proceedings of the Ninth European
Symposium on Programming, number 1782 in Lecture Notes in Computer
Science, pages 88–103, Berlin, Germany, March 2000. Springer-Verlag.

[9] Olivier Danvy, Belmina Dzafic, and Frank Pfenning. On proving syntactic
properties of CPS programs. In Third International Workshop on Higher-
Order Operational Techniques in Semantics, volume 26 of Electronic Notes
in Theoretical Computer Science, pages 19–31, Paris, France, September
1999. Also available as the technical report BRICS RS-99-23.

18

[10] Olivier Danvy and Andrzej Filinski. Representing control, a study of
the CPS transformation. Mathematical Structures in Computer Science,
2(4):361–391, 1992.

[11] Olivier Danvy and Lasse R. Nielsen. CPS transformation of beta-redexes.
In Amr Sabry, editor, Proceedings of the Third ACM SIGPLAN Workshop
on Continuations, Technical report 545, Computer Science Department,
Indiana University, pages 35–39, London, England, January 2001. Also
available as the technical report BRICS RS-00-35.

[12] Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In Har-
ald Søndergaard, editor, Proceedings of the Third International Conference
on Principles and Practice of Declarative Programming, pages 162–174,
Firenze, Italy, September 2001. ACM Press. Extended version available as
the technical report BRICS RS-01-23.

[13] Olivier Danvy and Lasse R. Nielsen. A higher-order colon translation. In
Kuchen and Ueda [23], pages 78–91. Extended version available as the
technical report BRICS RS-00-33.

[14] Olivier Danvy and Lasse R. Nielsen. Syntactic theories in practice. In
Mark van den Brand and Rakesh M. Verma, editors, Informal proceedings
of the Second International Workshop on Rule-Based Programming (RULE
2001), volume 59.4 of Electronic Notes in Theoretical Computer Science,
Firenze, Italy, September 2001. Extended version available as the technical
report BRICS RS-01-31.

[15] Olivier Danvy and Frank Pfenning. The occurrence of continuation parame-
ters in CPS terms. Technical report CMU-CS-95-121, School of Computer
Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, February
1995.

[16] Belmina Dzafic. Formalizing program transformations. Master’s thesis,
DAIMI, Department of Computer Science, University of Aarhus, Aarhus,
Denmark, December 1998.

[17] Matthias Felleisen. The Calculi of λ-v-CS Conversion: A Syntactic Theory
of Control and State in Imperative Higher-Order Programming Languages.
PhD thesis, Department of Computer Science, Indiana University, Bloom-
ington, Indiana, August 1987.

[18] Daniel P. Friedman, Mitchell Wand, and Christopher T. Haynes. Essentials
of Programming Languages. The MIT Press and McGraw-Hill, 1991.

[19] Daniel P. Friedman, Mitchell Wand, and Christopher T. Haynes. Essentials
of Programming Languages, second edition. The MIT Press, 2001.

[20] Timothy G. Griffin. A formulae-as-types notion of control. In Paul Hudak,
editor, Proceedings of the Seventeenth Annual ACM Symposium on Prin-
ciples of Programming Languages, pages 47–58, San Francisco, California,
January 1990. ACM Press.

19

[21] John Hatcliff and Olivier Danvy. A generic account of continuation-passing
styles. In Hans-J. Boehm, editor, Proceedings of the Twenty-First Annual
ACM Symposium on Principles of Programming Languages, pages 458–471,
Portland, Oregon, January 1994. ACM Press.

[22] David Kranz, Richard Kesley, Jonathan Rees, Paul Hudak, Jonathan
Philbin, and Norman Adams. Orbit: An optimizing compiler for Scheme.
In Proceedings of the ACM SIGPLAN’86 Symposium on Compiler Con-
struction, pages 219–233, Palo Alto, California, June 1986. ACM Press.

[23] Herbert Kuchen and Kazunori Ueda, editors. Functional and Logic Pro-
gramming, 5th International Symposium, FLOPS 2001, number 2024 in
Lecture Notes in Computer Science, Tokyo, Japan, March 2001. Springer-
Verlag.

[24] Albert R. Meyer and Mitchell Wand. Continuation semantics in typed
lambda-calculi (summary). In Rohit Parikh, editor, Logics of Programs
– Proceedings, number 193 in Lecture Notes in Computer Science, pages
219–224, Brooklyn, June 1985. Springer-Verlag.

[25] Eugenio Moggi. Notions of computation and monads. Information and
Computation, 93:55–92, 1991.

[26] Chetan R. Murthy. Extracting Constructive Content from Classical Proofs.
PhD thesis, Department of Computer Science, Cornell University, Ithaca,
New York, 1990.

[27] Lasse R. Nielsen. A study of defunctionalization and continuation-passing
style. PhD thesis, BRICS PhD School, University of Aarhus, Aarhus, Den-
mark, July 2001. BRICS DS-01-7.

[28] Lasse R. Nielsen. A simple correctness proof of the direct-style transforma-
tion. Technical Report BRICS RS-02-02, DAIMI, Department of Computer
Science, University of Aarhus, Aarhus, Denmark, January 2002.

[29] Jens Palsberg and Mitchell Wand. CPS transformation of flow informa-
tion. Unpublished manuscript, available at http://www.cs.purdue.edu/
~palsberg/publications.html, June 2001.

[30] Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theo-
retical Computer Science, 1:125–159, 1975.

[31] Jeff Polakow. Ordered Linear Logic and Applications. PhD thesis, School of
Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania,
August 2001. Technical Report CMU-CS-01-152.

[32] Jeff Polakow and Frank Pfenning. Natural deduction for intuitionistic
non-commutative linear logic. In Jean-Yves Girard, editor, Proceedings
of the 4th International Conference on Typed Lambda Calculi and Applica-
tions, number 1581 in Lecture Notes in Computer Science, pages 295–309,
L’Aquila, Italy, April 1999. Springer-Verlag.

20

[33] Jeff Polakow and Frank Pfenning. Properties of terms in continuation
passing style in an ordered logical framework. In Joëlle Despeyroux, editor,
Workshop on Logical Frameworks and Meta-Languages (LFM 2000), Santa
Barbara, California, June 2000. http://www-sop.inria.fr/certilab/
LFM00/Proceedings/.

[34] Jeff Polakow and Kwangkeun Yi. Proving syntactic properties of exceptions
in an ordered logical framework. In Kuchen and Ueda [23], pages 61–77.

[35] John C. Reynolds. The discoveries of continuations. Lisp and Symbolic
Computation, 6(3/4):233–247, 1993.

[36] John C. Reynolds. Definitional interpreters for higher-order programming
languages. Higher-Order and Symbolic Computation, 11(4):363–397, 1998.
Reprinted from the proceedings of the 25th ACM National Conference
(1972).

[37] Amr Sabry and Matthias Felleisen. Reasoning about programs in continu-
ation-passing style. Lisp and Symbolic Computation, 6(3/4):289–360, 1993.

[38] Amr Sabry and Philip Wadler. A reflection on call-by-value. ACM Trans-
actions on Programming Languages and Systems, 19(6):916–941, 1997.

[39] Guy L. Steele Jr. Rabbit: A compiler for Scheme. Technical Report AI-TR-
474, Artificial Intelligence Laboratory, Massachusetts Institute of Technol-
ogy, Cambridge, Massachusetts, May 1978.

[40] Mitchell Wand. Embedding type structure in semantics. In Mary S. Van
Deusen and Zvi Galil, editors, Proceedings of the Twelfth Annual ACM
Symposium on Principles of Programming Languages, pages 1–6, New Or-
leans, Louisiana, January 1985. ACM Press.

[41] Mitchell Wand. Correctness of procedure representations in higher-order
assembly language. In Stephen Brookes, Michael Main, Austin Melton,
Michael Mislove, and David Schmidt, editors, Mathematical Foundations
of Programming Semantics, number 598 in Lecture Notes in Computer
Science, pages 294–311, Pittsburgh, Pennsylvania, March 1991. Springer-
Verlag. 7th International Conference.

[42] Glynn Winskel. The Formal Semantics of Programming Languages. Foun-
dation of Computing Series. The MIT Press, 1993.

21

Recent BRICS Report Series Publications

RS-01-49 Olivier Danvy and Lasse R. Nielsen.A First-Order One-Pass
CPS Transformation. December 2001. 21 pp. Extended version
of a paper to appear in the proceedings of FOSSACS ’02.

RS-01-48 Mogens Nielsen and Frank D. Valencia.Temporal Concurrent
Constraint Programming: Applications and Behavior. Decem-
ber 2001. 36 pp.

RS-01-47 Jesper Buus Nielsen.Non-Committing Encryption is Too Easy
in the Random Oracle Model. December 2001. 20 pp.

RS-01-46 Lars Kristiansen. The Implicit Computational Complexity of
Imperative Programming Languages. November 2001. 46 pp.

RS-01-45 Ivan B. Damg̊ard and Gudmund Skovbjerg Frandsen. An Ex-
tended Quadratic Frobenius Primality Test with Average Case
Error Estimates. November 2001. 43 pp.

RS-01-44 M. Oliver Möller, Harald Rueß, and Maria Sorea. Predi-
cate Abstraction for Dense Real-Time Systems. November 2001.
27 pp.

RS-01-43 Ivan B. Damg̊ard and Jesper Buus Nielsen. From Known-
Plaintext Security to Chosen-Plaintext Security. November
2001. 18 pp.

RS-01-42 Zolt́an Ésik and Werner Kuich. Rationally Additive Semirings.
November 2001. 11 pp.

RS-01-41 Ivan B. Damg̊ard and Jesper Buus Nielsen.Perfect Hiding and
Perfect Binding Universally Composable Commitment Schemes
with Constant Expansion Factor. October 2001. 43 pp.

RS-01-40 Daniel Damian and Olivier Danvy. CPS Transformation of
Flow Information, Part II: Administrative Reductions. October
2001. 9 pp.

RS-01-39 Olivier Danvy and Mayer Goldberg. There and Back Again.
October 2001. 14 pp.

RS-01-38 Zolt́an Ésik. Free De Morgan Bisemigroups and Bisemilattices.
October 2001. 13 pp.

RS-01-37 Ronald Cramer and Victor Shoup.Universal Hash Proofs and
a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key
Encryption. October 2001. 34 pp.

