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Abstract

We build on Danvy and Nielsen’s first-order program transforma-
tion into continuation-passing style (CPS) to present a new correct-
ness proof of the converse transformation, i.e., a one-pass transfor-
mation from CPS back to direct style. Previously published proofs
were based on CPS transformations that were either higher-order, non-
compositional, or operating in two passes, and were correspondingly
complicated to reason about. In contrast, this work is based on a CPS
transformation that is first-order, compositional, and that operates in
one pass. Therefore the proof simply proceeds by structural induction
on syntax.

Keywords: compositionality, CPS-transformation, direct-style transformation, cor-
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1 Introduction

1.1 The continuation-passing-style transformation

The CPS transformation on the A-calculus maps direct-style expressions
into semantically equivalent CPS expressions. Reynolds used it to map
a functional program into an evaluation-order-independent form [9], and
Plotkin later formalized it and proven it to be semantics preserving [8].

The CPS programs generated by Plotkin’s CPS transformation contains
so-called administrative redexes. Steele added a second pass to the trans-
formation to reduce these redexes, generating equivalent but more compact
CPS expressions [11]. This two-pass CPS transformation inspired several re-
searchers to write one-pass CPS transformations that directly generate ad-
ministratively reduced CPS expressions, making CPS transformation more
practically useful. Appel, Danvy and Filinski, and Wand independently dis-
covered a higher-order one-pass CPS transformation [1, 4, 12] while Sabry
and Felleisen constructed a non-compositional one-pass CPS transforma-
tion based on syntactic theory [10]. Recently, however, Danvy and Nielsen
presented a one-pass CPS transformation that is both first-order and com-
positional [6].

1.2 The direct-style transformation

The direct-style transformation is the inverse of the CPS transformation,
and it maps CPS expressions back into direct-style expressions.

Danvy introduced the direct style transformation [2], and it was proven
to preserve semantics by Lawall [7] and by Danvy, Dzafic, and Pfenning [3].
These proofs are based on the higher-order CPS transformation, and as
such they require reasoning about higher-order functions, e.g., using logical
relations.

This paper gives a simpler proof using only structural induction.

1.3 Overview

The rest of this paper is structured as follows: Section 2 presents the no-
tation and definitions, Section 3 proves that the direct-style transformation
preserves meaning by showing that it is a left inverse to the CPS transfor-
mation, and Section 4 concludes.



2 Definitions

A syntax for the A-calculus is shown in Figure 1.

p = e p € DPRrROG

e == tls e € DEXPR

t == z|Az.e te& DTRIv, trivial terms, i.e., values

s = ee s € DCowmpP, serious terms, i.e., computations

z € IDE, a set of identifiers

Figure 1: Syntax of the A-calculus in direct style

A grammar of A-expressions in continuation-passing style is shown in
Figure 2.

a= ke p € CPRrOG
relcet e € CEXPR
v|xz|Az.r te CTRIV

Ak.e|tt  re CROOT
n= k| Av.e c € CCoNT

Q3N 0
Il

where x € IDE, k € CIDE, and v € VIDE, disjoint sets of identifiers.

Figure 2: Syntax of the A-calculus in continuation-passing style

The call-by-value (CBV) CPS transformation is shown in Figure 3.

Being “fresh wrt. ¢’ and “fresh wrt. ¢” means that we pick, determinis-
tically, an element of CIDE, or two different elements of VIDE, that do not
occur freely in e, respectively in c.

A typing argument shows that the CPS transformation actually gener-
ates only programs in continuation-passing style.

The direct-style transformation corresponding to the CPS transforma-
tion uses a stack of expressions to keep track of the intermediate results.
This stack, represented by o, is either the empty stack (o) or a stack with
something on top (z::¢’), and the set of stacks of direct-style expressions is
represented by [DEXPR].

The definition of the Direct-Style transformation is shown in Figure 4.
The direct-style transformation is not total on the set of CPS programs. In



C DProc — CPRroOG
Cle] = Mk.CPEXPR[e]
CDEXPR DExpPR x CIDE — CEXPR
CDEXPR[[t]] L = k CDTRIV[[t]]
CDEXPRHS]] o CDCOMP[[S]] k
CDTrIv DTR1v — CTRIV
CDTRIV[[I]] = r
CPT™V[Az.e] = Az Ak.CPEXPR[e] k  where k fresh wrt. e
cbComr DComp x CCoNT — CEXPR
CDCOMP[[tl tg]] c CDTRIV[[tl]] CDTRIV[[t2]] ¢
CDCOMP[[Sl t2]] c = CDCOMP[[Sl]] ()\Ul-vl CDTRIV[[tz]] C)
CDCOMP[[tl 82]] c = CDCOI\{P[[S2]] ()\WCDTRIV[[tl]] vy C)
CDCOMP[[Sl 82]] c = CDCOMP[[Sl]] ()\,Ul.CDCOMP[[Sz]] ()\U2~Ul vy C))
where v; and v, are distinct and fresh wrt. ¢
Figure 3: Call-by-value CPS transformation
D CPRrOG — DPRroOG
D[ k.e] = DCEXPRﬂe]] °
DOEXPR CExPR x [DEXPR] — DEXPR

DCEXPRﬂr c] o
DCEXPRﬂc t] o
DCTRIV
DCTRIV[[U]] (e::0)
DCTRIV[[x]] o

DCTRW[[)\x. r] o

'DCROOT

DCROOT N L ¢] o
DCROOT[[tl tg]] o

DCCONT

DCCONT[[k.]] (e, U)
DCCONT Ny €] (€, o)

Figure 4:

DCCONT[[C]] (DCROOT[[T,]] U)
DCCONT[[C]] (DCTRIV[[t]] U)

CTr1v x [DEXPR] — DEXPR x [DEXPR]
(e,0)

(z,0)

()\x.e,a) where (e, .) — DCROOT[[T,]] o

CrooOT x [DEXPR| — DEXPR x [DEXPR]
(DCEXPR{[E]] 0,0‘)
(e1 e2,0") where (eg,07) DETRV[1y] o
(61,0”) 'DCCONT[[tl]] o’
CConT x (DEXPR x [DEXPR]) — DEXPR

e

DCEXPRIC] (¢! 1 o)

The direct-style transformation




the next section we show that it is total on the image of the CPS transfor-
mation, and we only consider the transformation on this set.

3 Correctness

We prove that the direct-style transformation is correct and non-trivial. By
correct we mean that it preserves meaning. By non-trivial we mean that
the direct-style expressions generated by the transformation are not only
a limited subset of A-expressions. Since CPS expressions are a subset of
direct-style expressions, the identity function could be considered a trivial
direct-style transformation.

The proof shows that the direct-style transformation is a left-inverse to
the CPS transformation. Since the CPS transformation preserves meaning
and is defined on all terms, the direct-style transformation must also preserve
meaning and be non-trivial. The CPS transformation is injective but not
surjective, so when restricted to its image, it is a bijection, and the left
inverse also becomes a right inverse.

Lemma 1 (Left Inverse) The D function is a left inverse to the C func-
tion.
Vp € DProG.D[C[p]] = p

Proof:
The proof is by structural induction on the program. We show the
following three properties by mutual structural induction.

1. If e : DEXPR is an expression and k : CIDE a continuation identifier
then for any o

DCEXPR[[cDEXPRﬂe]] k:]] oc—e
2. If t: DTRIV is a value then for any o

DCTRIV[[CDTRIV[[tM o= (t,O’)

3. If s : DCoMmP is a computation and ¢ : CCONT a continuation then
for any o

DCEXPRﬂcDCONIP[[S]] C]] o= DCCONT[[C]] (5, O_)

Property 1: There are two cases, one for each production in the grammar.



Case e = t:

DCEXPR[[cDEXPR[[t]] k]] o
— 'DCEXPRﬂk CDTRIV[[t]H] o
— DCCONT[[k]] (DCTRIV[[CDTRIV[[t]H] 0‘)
= DCCNTL] (¢,0) (by LH.)
=t

Case ¢ = s:

DCEXPR{[CDEXPR{[S]] k:]] o = DCEXPRHCDCOMP[[S]] k]] o
— DCCONT[[k]] (S, J)

= s
Property 2: There are two cases, one for each production in the grammar.

Case t =
DCTRIV[[cDTRIV[[x]H] o= DCTRIV[[x]] o= (x7 J)

Case t = \z.e:

DCTRIV[[cDTRIV[[)\x.e]H] o

= DCTRV[Az k. CPEXPR¢] k] o
= (Az.€e/,0')

where (e/,0") = DEROOTAE. CPEXP¢] k] o
= (Az.€e',0")

where (¢/,0") = (DCEXPRCPEXPR¢] k] o ,0)
= (Az.e/,0')

where (e/,0') = (e,0) (by L.H.)
= (Az.e,0)

Property 3: There are four cases, one for each case of the CPC°M” function.
Case s = t1 ty:

DCEXPRﬂcDCOMP[[tl tg]] C]] o
_ DCEXPR[[CDTRIV[[tl]] CDTRIV[[tQ]] C]] o
— DCCONT[[C]] (DCROOT[[CDTRIV[[tl]] CDTRIV[[tQM U)
_ 'DCCONT[[C]] (el 62,0”)
where (62’ U/) — DCTRIV[[CDTRIV[[tQ]”] o
(617 J//) — 'DCTRIV[[CDTRIV[[tl]]]] o
= DCCONT[[C]] (tl t270)



Case s = 51 to:

DCEXPR[[cDCOMP[[Sl t2]] C]] o

Case s = t so:

'DCEXPR[[CDCOMP[[SI]] ()\Ul-Ul CDTRIV[[t2]] C)]] o
DECONT Ny CPTRV[ 8] ] (51, 0) (by I.H.)
DCEXPR[[Ul CDTRIV[[tQ]] C]] §1::0
DCCONT[[C]] (31 62,0'”)
where (ez,0") = DETRV[CPTEV[f,]] 5110
(617 U”) — 'DCTRIV[[,Ul]] o'
DCCONT[[C]] (31 62,0'”)
where (eg,0") = (t2, 81 ::0)
(61, O‘”) — DCTRIV[[,Ul]] o'
'DCCONT[[C]] (61 62,0")
where (ez,0") = (t, 81 ::0)
(e1,0") = (s1,0)
DCCONT ] (81 by, 0)

DCEXPR[[cDCOMP[[tl 82]] C]] o

'DCEXPR[[CDCOMP[[(S?]] ()\WCDTRIV[[tl]] vy C)]] o
DECONT A4y CPTRV[ 1] w2 €] (52, 0) (by LH.)
DCEXPR[[CDTRIV[[tl]] (%) C]] (82 o J)
DCCONT[[C]] (61 e, U”)
where (ez,0") = DETRV[wy] (52:: 0)

(61, U”) — DCTRIV[[CDTRIV[[tl]H] o'
'DCCONT[[C]] (61 e, a”)
where (ez,0") = (s2,0)

(617 J”) = (tlv J/)
DCCONT[[C]] (tl 82’0)



Case s = 51 $9:

DCEXPRﬂcDCOMP[[Sl 82]] C]] o
— 'DCEXPRHCDCOMP[[Sl]] ()\UI.CDCOMP[[SQ]] ()\UQ-Ul vy C))]] o
= DCCONT Ny, .CPCM 5] (Avg.vy v ¢)] (s1,0) (by L.H.)
DCEXPRICDCOMPL 5. T (Aug. vy w2 €)] (81 ::0)
DCCONT[[)\'UQ.’Ul vy €] (s2,81::0) (by I.H.)
DEEXPRIyy v ] (59811 0)
DCCONT ] DEROOT gy 9] (g :: 81 22 07)
— DCCONT[[C]] (61 62’01/)
where (ez,0") = DETRV[wy] (52:: 81 ::0)
(61, U”) — DCTRIV[[,Ul]] o
— DCCONT[[C]] (61 62,0”)
where (ez,0") = (82,81 ::0)
(e1,0") = (s1,0)
— DCCONT[[C]] (81 82’0)

These cases shows that the properties hold for all direct-style expressions,
so in particular if e : DPROG

D[C[e]] = D[\k. CPEXPYe] k] = DCEXPRICPEXPR[c] k] @ = ¢

QED

When restricting the CPS transformation to its image, i.e., forcing it to
be surjective, a left inverse is also a right inverse.

Lemma 2 (Right Inverse) The function D is the right inverse of C on
C[DProcG], the image of DPROG under C.

Vp € C[DPRroG].C[D[p]] = p

Proof: Let p € C[DPROG], i.e., there exists a p’ € DPROG such that
p = C[p']. Then (CoD)(p) = (CoD)(C[p']) = C[(Do C)(p')]. From Theorem 1
we know that Do Cis the identity on DPROG, so C[(Do C)(p')] = C[p'] = p-

QED

With these lemmas showing the following connection

C

DPRroOG C[DPRrOG]

D

we can directly show correctness and non-triviality



Theorem 1 The direct-style transformation is correct and non-trivial.

Proof: Follows from the correctness of the CPS transformation and the
previous lemmas. QED

4 Conclusion

We have presented a simpler proof of the correctness of the direct-style trans-
formation than what has previously been published. The proof, like the pre-
vious ones, is based on a CPS transformation, since the choice of CPS trans-
formation dictates the type of proof. Earlier proofs of the higher-order CPS
transformation used logical relations [5], proofs of the non-compositional
CPS-transformation used well-founded induction [10], and proofs of two-
pass CPS transformations need to address both passes [10]. In contrast, a
first-order, compositional, and one-pass CPS transformation allows a proof
using only a single structural induction [6].

One can also show correctness of the direct-style transformation on larger
sets than just the image of the CPS transformation. Proofs of such prop-
erties can also be derived from correctness of a CPS transformation, and
using the first-order compositional CPS transformation also gives proofs us-
ing only structural induction.

References

[1] Andrew W. Appel. Compiling with Continuations. Cambridge Univer-
sity Press, New York, 1992.

[2] Olivier Danvy. Back to direct style. Science of Computer Programming,
22(3):183-195, 1994.

[3] Olivier Danvy, Belmina Dzafic, and Frank Pfenning. On proving syn-
tactic properties of CPS programs. In Third International Workshop
on Higher-Order Operational Techniques in Semantics, volume 26 of
Electronic Notes in Theoretical Computer Science, pages 19-31, Paris,
France, September 1999. Also available as the technical report BRICS
RS-99-23.

[4] Olivier Danvy and Andrzej Filinski. Representing control, a study of
the CPS transformation. Mathematical Structures in Computer Science,
2(4):361-391, 1992.

10



[5]

Olivier Danvy and Lasse R. Nielsen. A higher-order colon translation.
In Herbert Kuchen and Kazunori Ueda, editors, Fifth International
Symposium on Functional and Logic Programming, number 2024 in
Lecture Notes in Computer Science, pages 78-91, Tokyo, Japan, March
2001. Springer-Verlag. Extended version available as the technical re-
port BRICS RS-00-33.

Olivier Danvy and Lasse R. Nielsen. A first-order one-pass CPS trans-
formation. In Mogens Nielsen and Uffe Engberg, editors, Foundations of
Software Science and Computation Structures, 5th International Con-
ference, FOSSACS 2002, number 2303 in Lecture Notes in Computer
Science, pages 98113, Grenoble, France, April 2002. Springer-Verlag.
Extended version available as the technical report BRICS RS-01-49.

Julia L. Lawall. Continuation Introduction and Elimination in Higher-
Order Programming Languages. PhD thesis, Computer Science Depart-
ment, Indiana University, Bloomington, Indiana, July 1994.

Gordon D. Plotkin. Call-by-name, call-by-value and the A-calculus.
Theoretical Computer Science, 1:125-159, 1975.

John C. Reynolds. Definitional interpreters for higher-order program-
ming languages. Higher-Order and Symbolic Computation, 11(4):363—
397, 1998. Reprinted from the proceedings of the 25th ACM National
Conference (1972).

Amr Sabry and Matthias Felleisen.  Reasoning about programs
in continuation-passing style. Lisp and Symbolic Computation,
6(3/4):289-360, 1993.

Guy L. Steele Jr. Rabbit: A compiler for Scheme. Technical Report
AI-TR-474, Artificial Intelligence Laboratory, Massachusetts Institute
of Technology, Cambridge, Massachusetts, May 1978.

Mitchell Wand. Correctness of procedure representations in higher-
order assembly language. In Stephen Brookes, Michael Main, Austin
Melton, Michael Mislove, and David Schmidt, editors, Mathematical
Foundations of Programming Semantics, number 598 in Lecture Notes
in Computer Science, pages 294-311, Pittsburgh, Pennsylvania, March
1991. Springer-Verlag. 7th International Conference.

11



Recent BRICS Report Series Publications

RS-02-2 Lasse R. NielserA Simple Correctness Proof of the Direct-Style
Transformation January 2002. 11 pp.

RS-02-1 Claus Brabrand, Anders Mgller, and Michael I. Schwartzbach.
The <bigwig> Project January 2002. 36 pp. This revised
report supersedes the earlier BRICS report RS-00-42.

RS-01-55 Daniel Damian and Olivier Danvy.A Simple CPS Transforma-
tion of Control-Flow Information. December 2001. 18 pp.

RS-01-54 Daniel Damian and Olivier Danvy.Syntactic Accidents in Pro-
gram Analysis: On the Impact of the CPS TransformatioriDe-
cember 2001. 41 pp. To appear in thelournal of Functional
Programming This report supersedes the earlier BRICS re-
port RS-00-15.

RS-01-53 Zolén Esik and Masami Ito. Temporal Logic with Cyclic
Counting and the Degree of Aperiodicity of Finite Automat®e-
cember 2001. 31 pp.

RS-01-52 Jens Groth.Extracting Witnesses from Proofs of Knowledge in
the Random Oracle ModelDecember 2001. 23 pp.

RS-01-51 Ulrich Kohlenbach. On Weak Markov’s Principle December
2001. 10 pp. Appears in Math. Logic Quaterly.

RS-01-50 Ji1 Srba. Note on the Tableau Technique for Commutative
Transition Systems December 2001. 19 pp. Appears in
Nielsen and Engberg, editors,Foundations of Software Sci-
ence and Computation Structure=0SSaCS '02 Proceedings,
LNCS 2303, 2002, pages 387-401.

RS-01-49 Olivier Danvy and Lasse R. NielsenA First-Order One-Pass
CPS Transformation December 2001. 21 pp. Extended version
of a paper appearing in Nielsen and Engberg, editorsFoun-
dations of Software Science and Computation Structuré®S-
SaCS '02 Proceedings, LNCS 2303, 2002, pages 98-113.

RS-01-48 Mogens Nielsen and Frank D. Valencialemporal Concurrent
Constraint Programming: Applications and BehaviorDecem-
ber 2001. 36 pp. Appears in Brauer, Ehrig, Karhumaki and
Salomaa, editorsFormal and Natural Computing LNCS 2300,
2001, pages 298-321.



