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Abstract

In this paper we improve an algorithm by Eppstein (2001) for

�nding the chromatic number of a graph. We modify the algo-

rithm slightly, and by using a bound on the number of maximal

independent sets of size k from our recent paper (2003), we prove

that the running time is O(2.4023n). Eppstein's algorithm runs in

time O(2.4150n). The space usage for both algorithms is O(2n).

1 Introduction

1.1 Lawler's algorithm

Lawler [Law76] was the �rst to give a non-trivial algorithm for �nding

the chromatic number of a graph. He notes that in a colouring of a graph

one of the colour classes can be assumed to be a maximal independent

set (a MIS). So we can �nd the chromatic number χ(G) of a graph G by

the following recursion:

χ(G[S]) =

{
1 + min{χ(G[S \ I]) | I ∈ I(G[S])} if S 6= ∅,
0 if S = ∅,
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Algorithm 1 Finding the chromatic number (Lawler)

let X be an array indexed from 0 to 2n − 1
for S = 0 to 2n − 1 do

for all MISs I of G[S] do
X[S] = min(X[S], X[S \ I] + 1)

return X[V]

where G[S] denotes the vertex-induced subgraph of S ⊆ V and I(G)
denotes the set of all maximal independent sets of G. Lawler does not

explicitly give an algorithm. He merely notes that one has to process

all subsets of S before S is processed. If we index all subsets from 0

to 2n − 1 such that the bit-representation of each index is a bit vector

denoting for each vertex whether it is in the set or not, Algorithm 1 will

�nd the chromatic number of G. Using the bound 3n/3 on the number of

maximal independent sets of a graph ([MM65]) and the fact that they can

be found within a polynomial factor of this bound (see e.g. [TIAS77]),

this has running time

O

(∑
S⊆V

|I(G[S])|
)

= O

(
n∑

i=0

(
n

i

)
3i/3

)
= O

(
(1 + 31/3)n

)
,

which is O(2.4423n). The algorithm uses space O(2n) to store X.

1.2 Eppstein's algorithm

Eppstein [Epp01b] improves Lawler's algorithm. Lawler's algorithm com-

putes χ(G[S]) by looking at the values for subsets of S. Eppstein's al-

gorithm also computes a table X[S] for all S ⊆ V (indexed as above),

but every time it reaches a set S, it updates X for all supersets of S
for which the value X[S] could potentially give better values. More pre-

cisely, if G[S] is a maximal k-colourable subgraph of G, it has a maximal

(k − 1)-colourable subgraph G[S ′] of size at least |S ′| ≥ (k − 1)/k · |S|,
and S \ S ′ is a maximal independent set of G[V \ S ′]. Thus, when the

chromatic number of G[S ′] is computed, only the values of G[S ′ ∪ I] for
all maximal independent sets I of size at most |S ′|/χ(G[S ′]) in G[V \S ′]
are updated. The algorithm is shown as Algorithm 2.

The �rst part of the algorithm checks 1- and 2-colourability in polyno-

mial time and 3-colourability using the 3-colouring algorithm of [Epp01a],

with running time O(1.3289n), of all subgraphs of G. The second part
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Algorithm 2 Finding the chromatic number (Eppstein)

let X be an array indexed from 0 to 2n − 1
for S = 0 to 2n − 1 do

if χ(S) ≤ 3 then

X[S] = χ(S)
else

X[S] = ∞
for S = 0 to 2n − 1 do

if 3 ≤ X[S] < ∞ then

for all MISs I of G[V \ S] of size at most |S|/X[S] do
X[S ∪ I] = min(X[S ∪ I], X[S] + 1)

return X[V]

runs through X and for each subgraph G[S] it �nds all maximal inde-

pendent sets I of G[V \S] of size at most |S|/X[S] and updates the value

of X[S ∪ I].
It is clear that for any set S ⊆ V , χ(G[S]) ≤ X[S] during the exe-

cution of the algorithm, since X[S] is only updated when the algorithm

actually �nds a colouring with X[S] colours. For every k, all maximal

k-colourable subgraphs G[M ] have X[M ] = k, since they have so for

k ≤ 3 after the �rst half of the algorithm has run, and thus by induc-

tion also for larger k, by the argument above. Since G is a maximal

χ(G)-colourable subgraph of itself, the algorithm correctly computes the

chromatic number of G.

The running time of the the �rst part of the algorithm is:

∑
S⊆V

O(1.3289|S|) = O

(
n∑

i=0

(
n

i

)
1.3289i

)
,

which is O(2.3289n). The second part might be executed for almost all S,
but since X[S] ≥ 3, only maximal independent sets of size at most |S|/3
in G[V \ S] are considered. Using a lemma, that states that a graph

can have at most 34k−n4n−3k maximal independent sets of size at most k
and that they can be found within a polynomial factor of this bound,
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Eppstein gets that the running time of the second part is at most

∑
S⊆V

O(34(|S|/3)−(n−|S|)4(n−|S|)−3(|S|/3)) = O

((
4

3

)n n∑
i=0

(
n

i

)(
37/3

42

)i
)

= O

((
4

3
+

34/3

4

)n
)

,

which equals O(2.4151n), so this is the running time of the algorithm.

The space usage is O(2n).

2 Results

We show how to improve the algorithm of Eppstein to run in time

O(2.4023n). The �rst part of the algorithms are the same, namely mark-

ing all 3-colourable subgraphs of the graph in a bit vector. Then our

algorithm �nds all maximal independent sets I of the graph and for each

checks 3-colourability of all subgraphs S of G[V \I], by looking in the bit

vector. If they are 3-colourable, G[S ∪ I] is 4-colourable. This will �nd
all maximal 4-colourable subgraphs (and maybe some that are not maxi-

mal). Using the bound bn
k
c(bn/kc+1)k−n(bn

k
c+1)n−bn/kck on the number of

maximal independent sets of size k from our paper [Bys03], and the fact

that they can be found within a polynomial factor of this bound, we get

that the running time for �nding all maximal 4-colourable subgraphs is:

n∑
k=1

O(|Ik(G)| · 2n−k) = O

( bn
5
c∑

k=1

56k−n6n−5k2n−k +
n∑

k=bn
5
c+1

45k−n5n−4k2n−k

)

= O(80n/5),

which is O(2.4023n), and where Ik(G) denotes the set of all maximal in-

dependent sets of G of size k. Then our algorithm performs the second

step of Eppstein's algorithm, but it only needs to consider maximal in-

dependent sets of size at most |S|/4 and using our improved bound on

the number of these, we get that the running time is:

∑
S⊆V

O(45(|S|/4)−(n−|S|)5(n−|S|)−4(|S|/4)) = O

((
5

4

)n n∑
i=0

(
n

i

)(
49/4

52

)i
)

= O

((
5

4
+

45/4

5

)n
)

,
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Algorithm 3 Finding the chromatic number (new algorithm)

let X be an array indexed from 0 to 2n − 1
for S = 0 to 2n − 1 do

if χ(S) ≤ 3 then

X[S] = χ(S)
else

X[S] = ∞
for all MISs I in G do

for all subsets S of V \ I do

if X[S] = 3 then

X[S ∪ I] = min(X[S ∪ I], 4)
for S = 0 to 2n − 1 do

if 4 ≤ X[S] < ∞ then

for all MISs of G[V \ S] of size at most |S|/X[S] do
X[S ∪ I] = min(X[S ∪ I], X[S] + 1)

return X[V]

which is O(2.3814n). The algorithm is shown as Algorithm 3. It still uses

space O(2n).

Remark. In [Bys03] we also show how to mark all 3-colourable subgraphs

of a graph in a bit vector in time O(2.2680n), by �nding all maximal

independent sets and for each �nd all maximal bipartite subgraphs of the

remaining graph (which can be done by �nding maximal independent sets

twice). This improves the running time of the �rst step and also simpli�es

the algorithm as it does not use the 3-colouring algorithm of Eppstein,

but instead uses maximal independent sets.
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Words. September 2002. 27 pp.

RS-02-38 Daniele Varacca. The Powerdomain of Indexed Valuations.
September 2002. 54 pp. Short version appears in Plotkin, ed-
itor, Seventeenth Annual IEEE Symposium on Logic in Com-
puter Science, LICS ’02 Proceedings, 2002, pages 299–308.

RS-02-37 Mads Sig Ager, Olivier Danvy, and Mayer Goldberg.A Sym-
metric Approach to Compilation and Decompilation. August
2002. To appear in Neil Jones’s Festschrift.

RS-02-36 Daniel Damian and Olivier Danvy. CPS Transformation of
Flow Information, Part II: Administrative Reductions. August
2002. 9 pp. To appear in theJournal of Functional Program-
ming. This report supersedes the earlier BRICS report RS-01-
40.


