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Extended Temporal Logic on Finite Words and

Wreath Product of Monoids with Distinguished
Generators

Z. Ésik?

Dept. of Computer Science, University of Szeged, P.O.B. 652, 6701 Szeged, Hungary

Abstract. We associate a modal operator with each language belonging to a given

class of regular languages and use the (reverse) wreath product of monoids with dis-

tinguished generators to characterize the expressive power of the resulting logic.

1 Introduction

The wreath product and its variants have been very useful and powerful tools in
the characterization of the expressive power of several logical systems over finite
and infinite words, including first-order logic and its extension with modular
counting, cf. Straubing [11] and Straubing, Therien, Thomas [12], temporal logic
and the until hierarchy, Cohen, Pin, Perrin [3] and Therien, Thomas [13], and
modular temporal logic, Bazirambawo, McKenzie, Therien [2]. In this paper, we
associate a modal operator with each language in a given subclass of regular
languages, and use the reverse wreath product (of monoids with distinguished
generators) to provide an algebraic characterization of the expressive power of
(future) temporal logic on finite words endowed with these modal operators.
Our logic is closely related to that proposed in Wolper [14], and our methods
are related to those of Cohen, Pin, Perrin [3] and Bazirambawo, McKenzie,
Therien [2] and Ésik, Larsen [7]. Moreover, our methods and results extend to
ω-words, (countable) ordinal words and, more generally, to all discrete words.
These extensions will be treated in subsequent papers.

Some notation An alphabet is a finite nonempty set. We assume that each
alphabet is equipped with a fixed linear order <. For an alphabet Σ, we denote
by Σ∗ the free monoid of all finite words over Σ including the empty word ε. The
length of a word u is denoted |u|. The notation u = u1 · · ·un for a word u ∈ Σ∗

means that u is a word of length n whose letters are u1, . . . , un. A subset of Σ∗

is called a language over Σ. The boolean and regular operations on languages,
and regular languages are defined as usual. When L ⊆ Σ∗ and u ∈ Σ∗, the left
quotient u−1L and right quotient Σu−1 of L with respect to u are respectively
given by

u−1L = {v : uv ∈ L}
Lu−1 = {v : vu ∈ L}.

? Supported in part by BRICS, a grant from the National Foundation of Hungary for
Scientific Research, and by the Japan Society for the Promotion of Science.



A class of (regular) languages L consists of a set of (regular) languages for each
alphabet Σ. If n is a nonnegative integer, we let [n] denote the set {1, . . . , n}.
Thus, [0] is another name for the empty set.

2 Extended Temporal Logic

Syntax. For an alphabet Σ, the set of formulas over Σ is the least set containing
the letters pσ, for all σ ∈ Σ, closed with respect to the boolean connectives ∨
(disjunction) and ¬ (negation), as well as the following construct. Suppose that
L ⊆ ∆∗ and that for each δ ∈ ∆, ϕδ is a formula over Σ. Then

L(δ 7→ ϕδ)δ∈∆ (1)

is a formula over Σ. The notion of subformula of a formula is defined as usual.
Semantics. Suppose that ϕ is a formula over Σ and u ∈ Σ∗. We say that u

satisfies ϕ, in notation u |= ϕ, if
– ϕ = pσ, for some σ ∈ Σ, and u is a nonempty word whose first letter is σ,

i.e., u = σu′ for some u′ ∈ Σ∗, or
– ϕ = ϕ′ ∨ ϕ′′ and u |= ϕ′ or u |= ϕ′′, or
– ϕ = ¬ϕ′ and it is not the case that u |= ϕ′, or
– ϕ = L(δ 7→ ϕδ)δ∈∆, u = u1 · · ·un, where each ui is a letter, and the char-

acteristic word δ1 · · · δn belongs to L, where for each i ∈ [n], δi is the first
letter of ∆ with respect to the linear order on ∆ with ui · · ·un |= ϕδi , if such
a letter exists, and δi is the last letter of ∆, otherwise.

For any formula ϕ of over Σ, we let Lϕ denote the language defined by ϕ:

Lϕ = {u ∈ Σ∗ : u |= ϕ}.
We say that formulas ϕ and ψ over Σ are equivalent if Lϕ = Lψ. Throughout
the paper we will use the boolean connective ∧ (conjunction) as an abbreviation.
Moreover, for any alphabet Σ, we define tt = pσ ∨ ¬pσ and ff = ¬tt, where σ is
a letter in Σ.

We will consider subsets of formulas associated with a class L of (regular)
languages. We let FTL(L) denote the collection of formulas all of whose sub-
formulas of the form (1) above satisfy that L belongs to L. We define FTL(L)
to be the class of all languages definable by formulas in FTL(L). It is clear
that for each formula L(δ 7→ ϕδ)δ∈∆ in FTL(L) over an alphabet Σ there is an
equivalent formula L(δ 7→ ϕ′

δ)δ∈∆ in FTL(L) such that the subformulas ϕ′
δ are

pairwise inconsistent: There exists no u ∈ Σ∗ and distinct letters δ, δ′ ∈ ∆ such
that u |= ϕ′

δ ∧ ϕ′
δ′ . Indeed, when the given linear order on ∆ is δ1 < · · · < δk,

then we define

ϕ′
δi

= ϕδi ∧
∧
j<i

¬ϕδj ,

for all i ∈ [k]. Alternatively, we may define ϕ′
δi

for all i < k as above, and

ϕ′
δk

=
∧
j<k

¬ϕδj .
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Thus, the modal formulas in FTL(L) over Σ associated with a language L ⊆ ∆∗

in L may equivalently be written as L(δ 7→ ϕδ)δ∈∆, where the ϕδ are pairwise
inconsistent and

∨
δ∈∆ ϕδ is equivalent to tt, so that each word in Σ∗ satisfies

exactly one ϕδ. Below we will call such families ϕδ, δ ∈ ∆ deterministic. More-
over, we will sometimes write modal formulas over Σ as L(δ 7→ ϕδ)δ∈∆, where
ϕδ, δ ∈ ∆ is a deterministic family of formulas over Σ. When ϕδ, δ ∈ ∆ is a
deterministic family, we have

u |= L(δ 7→ ϕδ)δ∈∆ ⇔ ∃δ1 · · · δn ∈ L ∀i ∈ [n] ui · · ·un |= ϕδi ,

for all u = u1 · · ·un ∈ Σ∗. We call a formula ϕ deterministic if for every subfor-
mula of ϕ of the form L(δ 7→ ϕδ)δ∈∆, the family ϕδ, δ ∈ ∆ is deterministic. As
shown above, for each ϕ ∈ FTL(L) there is a deterministic formula in FTL(L)
which is equivalent to ϕ.

We end this section with the definition of formula substitution. Suppose that
ϕ is a formula over an alphabet Σ, and suppose that for each σ ∈ Σ we are
given a formula ψσ over Σ′. Then the formula over Σ′,

τ = ϕ[pσ 7→ ψσ],

is obtained from ϕ by replacing, for each letter σ ∈ Σ, each occurrence of the
symbol pσ by the formula ψσ. Formally, we define
– τ = ψσ if ϕ = pσ,
– τ = ϕ1[pσ 7→ ψσ] ∨ ϕ2[pσ 7→ ψσ] if ϕ = ϕ1 ∨ ϕ2,
– τ = ¬(ϕ1[pσ 7→ ψσ]) if ϕ = ¬ϕ1,
– τ = L(δ 7→ ϕδ[pσ 7→ ψσ])δ∈∆ if ϕ = L(δ 7→ ϕδ)δ∈∆.

Note that when ϕ and ψσ are in FTL(L), for all σ ∈ Σ, then ϕ[pσ 7→ ψσ] belongs
to FTL(L).

3 Some Elementary Properties

In this section, we establish some elementary properties of the classes FTL(L),
where L denotes a class of languages. We also study conditions on L and L′

under which FTL(L) = FTL(L′).
Suppose that∆ and∆′ are alphabets. A literal homomorphism ∆∗ → ∆′∗ is a

homomorphism h : ∆∗ → ∆′∗ such that h(∆) ⊆ ∆′. Note that a homomorphism
h : ∆∗ → ∆′∗ is a literal homomorphism iff it is length preserving, i.e., when
|h(u)| = |u|, for all u ∈ Σ∗.

Proposition 1. For each L, the class of languages FTL(L) contains L and is
closed with respect to the boolean operations and inverse literal homomorphisms.

Proof. It is obvious that FTL(L) is closed under the boolean operations. More-
over, each language L ⊆ Σ∗ in L is definable by the formula L(σ 7→ pσ)σ∈Σ in
FTL(L). Assume now that h : Σ′∗ → Σ∗ is a literal homomorphism. We argue
by induction on the structure of the formula ϕ over Σ in FTL(L) to show that
h−1(Lϕ) is definable by some formula ψ in FTL(L). When ϕ = pσ, for some
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letter σ, then we define ψ =
∨
h(σ′)=σ pσ′ . It is clear that Lψ = h−1(Lϕ). Sup-

pose now that ϕ = ϕ1 ∨ ϕ2 and that Lψi = h−1(Lϕi), i = 1, 2. Then we define
ψ = ψ1 ∨ ψ2. When ϕ = ¬ϕ1 and Lψ1 = h−1(Lϕ1), then let ψ = ¬ψ1. In either
case, we have Lψ = h−1(Lϕ). Finally, assume that ψ = L(δ 7→ ϕδ)δ∈∆, and that
for each δ there is a formula ψδ in FTL(L) with Lψδ

= h−1(Lϕδ
). Then define

ψ = L(δ 7→ ψδ)δ∈∆. Let u = u1 · · ·un ∈ Σ′∗. Since for all δ ∈ ∆ and i ∈ [n],

ui · · ·un |= ψδ ⇔ h(ui · · ·un) |= ϕδ,

the characteristic word determined by u and the formulas ψδ is the same as that
determined by h(u) and the formulas ϕδ. It follows that u |= ψ iff h(u) |= ϕ.

2

Next we show that FTL is a closure operator.

Proposition 2. For any class L of languages, FTL(FTL(L)) = FTL(L).

Proof. The inclusion from right to left follows from Proposition 1. To prove
that FTL(FTL(L)) ⊆ FTL(L), we argue by induction on the structure of a
formula ϕ over ∆ in FTL(L) to show that for every deterministic family ϕδ,
δ ∈ ∆ of formulas in FTL(L) over an alphabet A, the formula Lϕ(δ 7→ ϕδ)δ∈∆ is
expressible in FTL(L), i.e., there exists a formula in FTL(L) which is equivalent
to it. Assume first that ϕ = pδ0 , for some δ0 ∈ ∆. Then Lϕ = δ0∆

∗. It is clear
that a word u ∈ A∗ satisfies Lϕ(δ 7→ ϕδ)δ∈∆ iff |u| > 0 and u satisfies ϕδ0 ,
so that Lϕ(δ 7→ ϕδ)δ∈∆ is equivalent to ϕδ0 ∧ ∨

a∈A pa. In the induction step,
assume first that ϕ = ϕ1 ∨ ϕ2. Then Lϕ = Lϕ1 ∪ Lϕ2 and thus Lϕ(δ 7→ ϕδ)δ∈∆
is equivalent to Lϕ1(δ 7→ ϕδ)δ∈∆ ∨ Lϕ2(δ 7→ ϕδ)δ∈∆. By induction, there exist
ψ1 and ψ2 in FTL(L) such that Lϕi(δ 7→ ϕδ)δ∈∆ is equivalent to ψi, i = 1, 2.
It follows that Lϕ(δ 7→ ϕδ)δ∈∆ is equivalent to ψ1 ∨ ψ2 which is in FTL(L).
Suppose next that ϕ = ¬ϕ1, so that Lϕ = Lϕ1 . Then we have Lϕ(δ 7→ ϕδ)δ∈∆
is equivalent to ¬(Lϕ1(δ 7→ ϕδ)δ∈∆). It follows from the induction hypothesis
that Lϕ(δ 7→ ϕδ)δ∈∆ is equivalent to a formula in FTL(L). Assume finally that
ϕ = K(σ 7→ τσ)σ∈Σ , where the family τσ, σ ∈ Σ is deterministic. Then for any
word u1 · · ·un ∈ A∗ and for any i ∈ [n], let ϕδi denote the unique formula ϕδ
with ui · · ·un |= ϕδ. Moreover, for each i ∈ [n], let τσi denote the unique formula
τσ with δi · · · δn |= τσ. Then we have:

u1 · · ·un |= Lϕ(δ 7→ ϕδ)δ∈∆ ⇔ δ1 · · · δn ∈ Lϕ

⇔ δ1 · · · δn |= ϕ

⇔ σ1 · · ·σn ∈ K.

But for every i ∈ [n],

ui · · ·un |= Lτσi
(δ 7→ ϕδ)δ∈∆,

since for every j ≥ i, uj · · ·un |= ϕδj and since δi · · · δn ∈ Lτσi
. Moreover, the

formulas Lτσ(δ 7→ ϕδ)δ∈∆, σ ∈ Σ form a deterministic family. Thus,

u1 · · ·un |= K(σ 7→ Lτσ(δ 7→ ϕδ)δ∈∆)σ∈Σ ⇔ σ1 · · ·σn ∈ K.
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We have thus shown that ϕ is equivalent to K(σ 7→ Lτσ(δ 7→ ϕδ)δ∈∆)σ∈Σ . By
the induction hypothesis, for each σ there is a formula ψσ in FTL(L) which is
equivalent to Lτσ(δ 7→ ϕδ)δ∈∆. Thus, ϕ is equivalent to K(σ 7→ ψσ)σ∈Σ . 2

Since FTL(L1) ⊆ FTL(L2) whenever L1 ⊆ L2 and since L ⊆ FTL(L), for
all L, we have:

Corollary 1. FTL is a closure operator.

Proposition 3. Suppose that for each formula L(δ 7→ ϕδ)δ∈∆ in FTL(L), over
any alphabet Σ, and for each w ∈ ∆∗ there is a formula in FTL(L) which is
equivalent to (w−1L)(δ 7→ ϕδ)δ∈∆. Then FTL(L) is closed with respect to left
quotients.

Proof. Suppose that ϕ is a formula over Σ in FTL(L) and σ is a letter in Σ. We
show that σ−1Lϕ belongs to FTL(L). The generalization to quotients w−1Lϕ,
where w is a word, is left to the reader. When ϕ is pσ, then σ−1Lϕ is Σ∗, which
is definable by the formula tt. When ϕ is pσ′ , where σ′ 6= σ, then σ−1Lϕ is ∅,
which is definable by the formula ff. We continue by induction on the structure of
ϕ. Suppose that ϕ = ϕ1 ∨ϕ2 or ϕ = ¬ϕ1, and assume that σ−1Lϕi is defined by
ϕ̃i in FTL(L), i = 1, 2. Then σ−1Lϕ is defined by ϕ̃1 ∨ ϕ̃2 or ¬ϕ̃1, respectively.
Assume finally that ϕ is L(δ 7→ ϕδ)δ∈∆, where ϕδ, δ ∈ ∆ is a deterministic
family, and that for each δ, σ−1Lϕδ

is defined by ϕ̃δ in FTL(L). Note that ϕ̃δ,
δ ∈ ∆ is also a deterministic family. By assumption, for each δ0 in ∆ there is a
formula τδ0 in FTL(L) such that for all words u ∈ Σ∗,

u |= τδ0 ⇔ u |= (δ−1
0 L)(δ 7→ ϕδ)δ∈∆.

Then let

ϕ̃ =
∨
δ0∈∆

(ϕ̃δ0 ∧ τδ0).

We have, for all u = u1 · · ·un ∈ Σ∗,

u |= ϕ̃⇔ ∃δ0 u |= ϕ̃δ0 ∧ u |= τδ0

⇔ ∃δ0 σu |= ϕδ0 ∧ u |= (δ−1
0 L)(δ 7→ ϕδ)δ∈∆

⇔ ∃δ0 σu |= ϕδ0 ∧ ∃δ1 · · · δn ∈ δ−1
0 L ∀i ∈ [n] ui · · ·un |= ϕδi

⇔ ∃δ0 · · · δn ∈ L σu |= ϕδ0 ∧ ∀i ∈ [n] ui · · ·un |= ϕδi

⇔ σu |= L(δ 7→ ϕδ)δ∈∆
⇔ σu |= ϕ.

This concludes the proof of Proposition 3. 2

Proposition 4. Suppose that for each formula L(δ 7→ ϕδ)δ∈∆ in FTL(L), over
any alphabet Σ, and for each w ∈ ∆∗ there is a formula in FTL(L) which is
equivalent to (Lw−1)(δ 7→ ϕδ)δ∈∆. Then FTL(L) is closed with respect to right
quotients.
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Proof. Suppose that ϕ is a formula over Σ in FTL(L), and let σ be a letter in
Σ. We only show that Lϕσ−1 belongs to FTL(L). When ϕ is pσ, then Lϕσ

−1

is σΣ∗ ∪ {ε}, which is defined by the formula pσ ∨ ∧
σ′∈Σ ¬pσ′ . When ϕ is pσ′ ,

where σ′ 6= σ, then σ−1Lϕ is σ′Σ∗, which is defined by the formula pσ′ . We
proceed by induction on the structure of ϕ. The cases when ϕ = ϕ1 ∨ ϕ2 or
ϕ = ¬ϕ1 can be handled as above. Assume finally that ϕ is L(δ 7→ ϕδ)δ∈∆, and
that for each δ, Lϕδ

σ−1 is defined by ϕ̃δ in FTL(L). By assumption, for each δ0
in ∆ there is a formula τδ0 such that for all words u ∈ Σ∗,

u |= τδ0 ⇔ u |= (Lδ−1
0 )(δ 7→ ϕ̃δ)δ∈∆.

We define

ϕ̃ =
∨

σ|=ϕδ0

τδ0 .

Then, u ∈ Lϕσ
−1 iff uσ ∈ Lϕ iff the characteristic word determined by uσ and

the formulas ϕδ belongs to L iff there exists some δ0 such that σ |= ϕδ0 and
the characteristic word determined by u and the formulas ϕ̃δ belongs to Lδ−1

0

iff u |= ϕ̃. 2

Corollary 2. 1. For any class L of languages, FTL(L) = FTL(L′), where L′

is the least class containing L closed with respect to the boolean operations
and inverse literal morphisms.

2. For any class L of languages closed with respect to quotients, or such that
the modal operators associated with the quotients of the languages in L are
expressible in FTL(L) as in Propositions 3 and 4, FTL(L) = FTL(L′),
where L′ is the least class containing L closed with respect to the boolean
operations, quotients, and inverse literal morphisms.

4 Monoids with Distinguished Generators

Suppose that M is a monoid and A is a nonempty set of distinguished generators
for M . Then we call the pair (M,A) a monoid with distinguished generators, or
mg-pair, for short. When M is finite, the mg-pair (M,A) is also called finite.

Suppose that (M,A) and (N,B) are mg-pairs. A homomorphism (M,A) →
(N,B) is a monoid homomorphism h : M → N such that h(A) ⊆ B. It is
clear that mg-pairs equipped with these homomorphisms form a category. We
call (M,A) a sub mg-pair of (N,B) if M is a submonoid of N and A is a
subset of B. Moreover, we call (M,A) a quotient of (N,B) if there is a surjective
homomorphism (N,B) → (M,A), i.e., a homomorphism of mg-pairs which maps
B onto A. We say that (M,A) divides, or is a divisor of (N,B), denoted (M,A) <
(N,B), if (M,A) is a quotient of a sub mg-pair of (N,B). We identify any monoid
M with the mg-pair (M,M).

Example 1. For every alphabet Σ, (Σ∗, Σ) is an mg-pair with the following
property: For every mg-pair (M,A) and function h : Σ → A there is a unique
homomorphism h] : (Σ∗, Σ) → (M,A) extending h. We call such mg-pairs free.
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Let L ⊆ Σ∗. Recall that the syntactic monoid of L is the quotient Σ∗/ ∼L
of Σ∗ with respect to the syntactic congruence ∼L defined on Σ∗ by

u ∼L v ⇔ ∀x, y ∈ Σ∗ xuy ∈ L⇔ xvy ∈ L.

The syntactic mg-pair of L is Synt(L) = (Σ∗/ ∼L, Σ/ ∼L).

We call a language L ⊆ Σ∗ recognizable by an mg-pair (M,A) if there is a
homomorphism h : (Σ∗, Σ) → (M,A) with L = h−1(h(L)). It follows by stan-
dard arguments that a language L is recognizable by an mg-pair (M,A) iff
Synt(L) < (M,A). Moreover, a language is recognizable by a finite mg-pair iff
it is regular.

For the definition of the (reverse) semidirect product of monoids we refer to
Eilenberg [5], and for the extension of these notions to mg-pairs to Ésik and
Larsen [7]. When (S,A) and (T,B) are mg-pairs equipped with a (monoidal)
right action of T on S,

S × T → S

(s, t) 7→ st

such that st ∈ A whenever s ∈ A, we let (S,A) ?r (T,B) denote the reverse
semidirect product of (S,A) and (T,B) determined by the right action. This
is the mg-pair (R,A × B), where R is the submonoid of the ordinary reverse
semidirect product S ?r T of the monoids S and T determined by the action.
When the right action is trivial, i.e., st = s for all s ∈ S and t ∈ T , the reverse
semidirect product (S,A) ?r (T,B) becomes the direct product (S,A) × (T,B),
i.e., the mg-pair (R,A× B), where R is the submonoid generated by A × B in
the usual direct product S × T of the monoids S and T .

In addition to the reverse semidirect product, we will also make use of the
reverse wreath product. Suppose that (S,A) and (T,B) are mg-pairs. Then con-
sider the direct power (S,A)T of (S,A), i.e., the mg-pair (R,AT ), where R is
the submonoid of ST generated by AT . Define the right action of T on R by

(ft)(t′) = f(tt′),

for all f ∈ R and t, t′ ∈ T . Then the reverse wreath product (S,A) ◦r (T,B) is
the reverse semidirect product (R,AT )?r (T,B) determined by the above action.

In the sequel, except for free mg-pairs, we will only consider finite mg-pairs.
We call a nonempty class of finite mg-pairs a variety if it is closed with respect
to division and direct product. A closed variety is also closed with respect the
reverse semidirect product (or reverse wreath product). For any class K of finite
mg-pairs, we let K̂ denote the least closed variety containing K. An example
of a closed variety is the class Dr of all reverse definite mg-pairs. We call a
finite mg-pair (M,A) reverse definite if there exists an integer n ≥ 0 such that
a1 · · · an = a1 · · · an+1 for all a1, . . . , an+1 in A. For example, when Mn denotes
the monoid of all words over the two-letter alphabet {a, b} whose length is at
most n equipped with the product operation u ·v = w iff w is the maximal prefix

7



of uv of length ≤ n, then En = (Mn, {a, b}) is a reverse definite mg-pair. Below
we will write E for E2. Note that En is a quotient of En+1, for all n. Each En
generates Dr:

Proposition 5. For each n ≥ 1, Dr is the least closed variety containing En.

This follows by adapting the proof of a well-known fact for definite semi-
groups, proved in Eilenberg [5]. Further examples of closed varieties will be
introduced when needed. When V and W are closed varieties, we let V ∨ W
denote the least closed variety containing V ∪ W.

Suppose that K is a class of finite mg-pairs. We let LK denote the class of all
regular languages recognizable by the mg-pairs in K. By standard arguments,
it follows that a language is in LK iff its syntactic mg-pair is in the variety
generated by K. Conversely, when L is a class of regular languages, let KL
denote the class of all syntactic mg-pairs of the languages in L.

For each class K of finite mg-pairs, we define FTL(K) = FTL(LK) and
FTL(K) = FTL(LK).

Corollary 3. Let L denote a class of regular languages. We have FTL(L) =
FTL(KL) iff there exists some class K of finite mg-pairs with FTL(L) =
FTL(K) iff for each L ⊆ ∆∗ in L and for each w ∈ ∆∗, the modal operators
associated with w−1L and Lw−1 are expressible in FTL(L) as in Propositions 3
and 4.

Remark 1. Given a class K of finite mg-pairs, let L denote the class of all regular
languages L ⊆ A∗ such that there exists some mg-pair (S,A) ∈ K with L =
h−1(h(L)), where h denotes the homomorphism (A∗, A) → (S,A) which is the
identity function on A. Then it follows from Corollary 2 and Corollary 1 that
FTL(K) = FTL(L).

5 Main Results

We say that the next modality is expressible in FTL(L) if for each formula ϕ
in FTL(L) over any alphabet Σ there is a formula Xϕ over Σ such that for all
u ∈ Σ∗,

u |= Xϕ⇔ ∃σ ∈ Σ, v ∈ Σ∗ u = σv ∧ v |= ϕ.

Proposition 6. The next modality is expressible in FTL(L) iff the two-letter
regular language (a+b)b(a+b)∗ and the one-letter language a belong to FTL(L).

Proof. Suppose first that L1 = (a + b)b(a + b)∗ and L2 = a are in FTL(L).
Let ϕ be any formula in FTL(L) over the alphabet Σ. If ε 6|= ϕ, then Xϕ
is expressible as L1(a 7→ ¬ϕ, b 7→ ϕ). If ε |= ϕ, then Xϕ is expressible by
L1(a 7→ ¬ϕ, b 7→ ϕ) ∨ L2(a 7→ tt). It follows from Corollary 1 that the next
modality is expressible in FTL(L).

8



Suppose now that the next modality is expressible in FTL(L), so that Xϕ
exists for each formula ϕ in FTL. Then (a+ b)b(a+ b)∗ is definable by Xpb, and
a is definable by pa ∧ X¬pa. 2

Note that the mg-pair E defined above is isomorphic to the syntactic mg-pair
of the language (a+ b)b(a+ b)∗. Using this fact, we have:

Corollary 4. For any class K of finite mg-pairs, the next modality is expressible
in FTL(K) iff (a+b)b(a+b)∗ belongs to FTL(K) iff every language recognizable
by E belongs to FTL(K).

Proof. If L = (a+ b)b(a+ b)∗ belongs to FTL(K), then, by Corollary 2, so does
a, regarded as a one-letter language, since it can be constructed from L by the
boolean operations, left quotients, and inverse literal homomorphisms. The first
equivalence in Corollary 4 now follows from Proposition 6. As for the second, it
is clear that if every language recognizable by E belongs to FTL(K), then so
does the language (a + b)b(a + b)∗, since it is recognizable by E. On the other
hand, it can be shown by standard arguments that any language recognizable
by the syntactic mg-pair of a regular language L is the inverse image under a
literal homomorphism of a boolean combination of quotients of L. Thus, since
E is the syntactic monoid of (a+ b)b(a+ b)∗, if (a+ b)b(a+ b)∗ is in FTL(K),
then since FTL(K) is closed with respect to the above operations, it follows
that every language recognizable by E is in FTL(K). 2

Corollary 5. For any class K of finite mg-pairs, the next modality is expressible
in FTL(K) iff FTL(K) = FTL(K1), where K1 = K ∪ {E}.
Proof. By Corollary 4 and Corollary 1. 2

Proposition 7. Suppose that (S,A) and (T,B) are finite mg-pairs and (R,A×
B) is a reverse semidirect product of (S,A) and (T,B) determined by a right
action of T on S. If every language recognizable by (S,A) and (T,B) belongs to
FTL(L), and if the next modality is expressible in FTL(L), then every language
recognizable by (R,A×B) also belongs to FTL(L).

Proof. Let h denote a homomorphism

(Σ∗, Σ) → (R,A×B)
u 7→ h(u) = (h`(u), hr(u)).

It suffices to show that for each (s, t) ∈ R, the language h−1((s, t)) belongs to
FTL(L).

For each u ∈ A∗, let u denote the image of u under the homomorphism
(A∗, A) → (S,A) which is the identity map on A. Moreover, let ĥ denote the
function Σ∗ → A∗ defined by

ĥ(ε) = ε

ĥ(σu) = [h`(σ)hr(u)]ĥ(u),
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for all u ∈ Σ∗ and σ ∈ Σ. Here, h`(σ)hr(u) is the result of the right action of
hr(u) on h`(σ). Note that |ĥ(u)| = |u| and that ĥ(u) is a suffix of ĥ(v) whenever
u is a suffix of v. Also, ĥ(u) = h`(u), for all u ∈ Σ∗.

By assumption, for each s ∈ S and t ∈ T there exist a formula ϕs over A
and a formula ϕt over Σ in FTL(L) such that

Lϕs = {w ∈ A∗ : w = s}
Lϕt = {u ∈ Σ∗ : hr(u) = t}.

Given a formula ψ over A in FTL(L), let

ψ′ = ψ[pa 7→
∨

h`(σ)t=a

(pσ ∧ Xϕt)].

Claim For all u ∈ Σ∗,

u |= ψ′ ⇔ ĥ(u) |= ψ.

We prove this claim by induction on the structure of ψ. When ψ is pa, for
some a ∈ A, we have

u |= ψ′ ⇔ ∃σ, t[u |= pσ ∧ u |= Xϕt ∧ h`(σ)t = a]
⇔ ∃σ, t, v[u = σv ∧ v |= ϕt ∧ h`(σ)t = a]
⇔ ∃σ, t, v[u = σv ∧ hr(v) = t ∧ h`(σ)t = a]
⇔ ∃σ, v[u = σv ∧ h`(σ)hr(v) = a]

⇔ ĥ(u) |= pa

⇔ ĥ(u) |= ψ.

The induction step is obvious when ψ is the disjunction ψ1 ∨ ψ2 or a negation
¬ψ1. Suppose now that ψ is L(δ 7→ ψδ)δ∈∆, where L ⊆ ∆∗ is in L and each ϕδ is
a formula in FTL(L) over Σ satisfying the induction assumption. Suppose that
u = u1 · · ·un, say. By the induction hypothesis we have that for all i ∈ [n] and
δ ∈ ∆,

ui · · ·un |= ψ′
δ ⇔ ĥ(ui · · ·un) |= ψδ.

Thus, since ĥ preserves suffixes, the characteristic word determined by u and ψ′

is the same as that determined by ĥ(u) and ψ, proving that u |= ψ′ iff ĥ(u) |= ψ.
We now complete the proof of the proposition. For any (s, t) ∈ R and u ∈ Σ∗,

h(u) = (s, t) ⇔ h`(u) = s ∧ hr(u) = t

⇔ ĥ(u) = s ∧ hr(u) = t

⇔ ĥ(u) |= ϕs ∧ u |= ϕt

⇔ u |= ϕ′
s ∧ ϕt.

Thus, ϕ′
s ∧ ϕt defines h−1((s, t)). 2
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Proposition 8. Suppose that ϕ = K(δ 7→ ϕδ)δ∈∆ is a formula over Σ in
FTL(L), where ϕδ, δ ∈ ∆ is a deterministic family. Suppose that K is recog-
nized by hK : (∆∗, ∆) → (S,A) and that each Lϕδ

is recognized by the morphism
h : (Σ∗, Σ) → (T,B). Then Lϕ ⊆ Σ∗ is recognizable by the reverse wreath
product (S,A) ◦r (T,B).

Proof. Without loss of generality we may assume that h is surjective. For each
δ ∈ ∆, let Fδ denote the set h(Lϕδ

). Note that the sets Fδ are pairwise disjoint by
assumption, and that

⋃
δ∈∆ Fδ = T , since h is surjective. Define k : (Σ∗, Σ) →

(S,A) ◦r (T,B) by

k(σ) = (fσ, h(σ)),

for all σ ∈ Σ, where for each t ∈ T , fσ(t) = hK(δ) for the unique δ with
h(σ)t ∈ Fδ. Let u = u1 · · ·un in Σ∗. We have

k(u) = (f, h(u)),

where

f(t) = hK(δ1 · · · δn)

for the unique word δ1 · · · δn with h(ui · · ·un)t ∈ Fδi for each i ∈ [n]. In partic-
ular,

f(1) = hK(δ1 · · · δn)

for the unique word δ1 · · · δn with h(ui · · ·un) ∈ Fδi , i.e.,

ui · · ·un |= ϕδi

for each i ∈ [n]. Thus,

f(1) ∈ hK(K) ⇔ δ1 · · · δn ∈ K

⇔ u |= ϕ.

It follows that

Lϕ = {u ∈ Σ∗ : f(1) ∈ hK(K)}.

This proves that Lϕ is recognizable by (S,A) ◦r (T,B). 2

Recall that E1 denotes the mg-pair ({1, a, b}, {a, b}), where 1 is the identity
element and a, b are both left-zeroes. Note that E1 is just the syntactic mg-pair
of the language a(a+ b)∗.

Theorem 1. For any class K of finite mg-pairs, every language in FTL(K) is
recognizable by some mg-pair in K̂ ∨ Dr.
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Proof. Let ϕ denote a deterministic formula over Σ in FTL(K). When ϕ is pσ,
for some σ ∈ Σ, then Lϕ = σΣ∗, which is recognizable by E1 ∈ Dr. We continue
by induction on the structure of ϕ. Assume that ϕ = ϕ1 ∨ ϕ2 such that Lϕi is
recognizable by (Si, Ai) in K̂∨Dr , i = 1, 2. Then Lϕ is recognizable by the direct
product (S1, A1)× (S2, A2) which is also in K̂∨Dr. When ϕ = ¬ϕ1, where Lϕ1

is recognizable by (S1, A1) above, then Lϕ is recognizable by the same mg-pair
(S1, A1). Finally, when ϕ = L(δ 7→ ϕδ)δ∈∆ and each Lϕδ

is recognizable by some
mg-pair in K̂ ∨ Dr, then it follows by Proposition 8 that Lϕ is recognizable by
some mg-pair in K̂ ∨ Dr. (Note that since K̂ ∨ Dr is closed with respect to
the direct product, we may assume without loss of generality that each Lϕδ

is
recognizable by the same mg-pair (M,A) in K̂ ∨ Dr, and in fact by the same
morphism (Σ∗, Σ) → (M,A).) 2

Theorem 2. Suppose that the next modality is expressible in FTL(K), where K
is a class of finite mg-pairs. Then a language L belongs to FTL(K) iff Synt(L)
belongs to K̂ ∨ Dr.

Proof. First, by Corollary 5, we have FTL(K) = FTL(K1), where K1 = K ∪
{E}, so that K̂1 = K̂∨Dr. Let us define the rank of (S,A) ∈ K̂∨Dr to be the
smallest number of reverse semidirect product and division operations needed
to generate (S,A) from K1. We prove by induction on the rank of (S,A) that
every language recognizable by (S,A) is in FTL(K1). When the rank is 0 we
have (S,A) ∈ K1. Thus the result follows from Proposition 1. When the rank
of (S,A) is positive, then (S,A) either divides an mg-pair (T,B) in K̂ ∨ Dr

of smaller rank, or (S,A) is the reverse semidirect product of some mg-pairs in
K̂∨Dr of smaller rank. In the first case, every language recognizable by (S,A) is
recognizable by (T,B). In the second case, the result follows from Proposition 7.

To necessity part of Theorem 2 follows from Theorem 1. 2

Corollary 6. For each class L of regular languages, FTL(L) consists of regular
languages.

Call a nonempty class of regular languages L closed if FTL(L) ⊆ L and if
L is closed with respect to quotients. By Propositions 1, 3 and 4, every closed
class is a literal variety, i.e., it is closed with respect to the boolean operations,
quotients, and inverse literal homomorphisms. Moreover, by Corollaries 1, 2 and
3, L is closed iff L = FTL(L′) for a class L′ of regular languages closed with
respect to quotients iff L = FTL(K) for a class K of finite mg-pairs.

The assignment V 7→ LV defines an order isomorphism between varieties
V of finite mg-pairs and literal varieties of regular languages, cf. Ésik, Larsen
[7]. The inverse assignment maps a literal variety L to the class of those finite
mg-pairs (M,A) such that every language recognizable by (M,A) belongs to L.

Theorem 3. The assignment V 7→ LV = FTL(V) defines an order isomor-
phism between closed varieties V of finite mg-pairs containing Dr and closed
classes L of regular languages containing (a+ b)b(a+ b)∗.
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Proof. If V is a closed variety containing Dr, then by Theorem 1, LV is a closed
class of regular languages containing (a+ b)b(a+ b)∗. Since FTL(V) is the least
closed class containing LV, it follows that LV = FTL(V). As mentioned above,
we have V1 ⊆ V2 iff LV1 ⊆ LV2 . Finally, the map is surjective, for if L is a closed
class of regular languages containing (a + b)b(a + b)∗, then L = LV for some
variety V of finite mg-pairs containing E. By Proposition 7, V is closed with
respect to the reverse semidirect product. Since V contains E, by Proposition 5
it also contains all the reverse definite mg-pairs. 2

We refer to Almeida [1] for a detailed study of varieties of finite semigroups
closed with respect to the semidirect product. Any such variety gives rise to a
closed variety of finite mg-pairs.

Example 2. The closed class of regular languages corresponding to Dr is the
class of reverse definite languages, where a language L ⊆ Σ∗ is termed reverse
definite iff there is some n ≥ 0 such that the membership of a word u in L depends
only on the maximal prefix of u of length ≤ n. (This condition is equivalent to
requiring that the language is recognizable by some En.)

6 Some Applications

Propositional (future) temporal logic (FTL) was introduced in Pnueli [10]. The
formulas of FTL over an alphabet Σ are constructed from the letters pσ, σ ∈ Σ
by the boolean connectives ∨ and ¬ and the next and until modalities, denoted
Xϕ and ϕUψ. The semantics of FTL are defined similarly to that of FTL(L).
In particular, when u = u1 · · ·un ∈ Σ∗ and ϕ and ψ are formulas over Σ,
1. u |= Xϕ iff n ≥ 1 and u2 · · ·un |= ϕ,
2. u |= ϕUψ iff there exists some i ∈ [n] such that ui · · ·un |= ψ and uj · · ·un |=
ϕ for all j < i.

We let FTL denote the class of languages definable by the formulas in FTL.
Let U r denote the monoid component of E1, i.e., the monoid {1, a, b}, where

a, b are left-zero elements.

Proposition 9. FTL = FTL({U r, E}).
Proof. The inclusion FTL ⊆ FTL({U r, E}) follows from Corollary 4 and the
fact that ϕUψ is expressible as LU(a 7→ ϕ ∧ ¬ψ, b 7→ ψ, c 7→ ¬ϕ ∨ ¬ψ), where
LU denotes the language a∗b(a + b+ c)∗ over the three-letter alphabet {a, b, c}
which can be recognized by U r. For the reverse inclusion, one can show easily
that every language recognizable by U r or E is definable in FTL. For example,
LU is defined by paUpb. It then follows that the modal operator corresponding
to any language recognized by U r or E is expressible in FTL. 2

We call a finite mg-pair aperiodic if its monoid component is aperiodic, cf.
Eilenberg [5]. For example, U r and E are aperiodic. It follows from (the dual
of) the Krohn-Rhodes Decomposition Theorem [5] that the aperiodic mg-pairs
form a closed variety, namely the closed variety generated by U r. Let A denote
the closed variety of aperiodic mg-pairs. For first-order definable languages, we
refer to [9].
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Theorem 4. Mc Naughton-Papert [9] A language is first-order definable iff
Synt(L) ∈ A.

Theorem 5. Let K denote a class of finite mg-pairs such that the next modal-
ity is expressible in FTL(K). Then FTL(K) contains the first-order definable
languages iff A ⊆ K̂ ∨ Dr. Moreover, FTL(K) is the class of all first-order
definable languages iff A = K̂ ∨Dr.

Proof. Immediate from Theorem 2, Theorem 3, the Krohn-Rhodes Decomposi-
tion Theorem and the fact that E is aperiodic. 2

From Theorem 5 and Proposition 9 we immediately have:

Corollary 7. Kamp [8] A language is first-order definable iff it is in FTL.

We now consider cyclic counting. For any formula ϕ over Σ and integers
k ≥ 1 and 0 ≤ r < k, let Crkϕ be a formula with the following semantics. For
any u = u1 · · ·un is Σ∗, u |= Crkϕ iff the number of indices i with ui · · ·un |= ϕ
is congruent to r modulo k. Similarly, let u |= Lrk iff |u| is congruent to r modulo
k. Let K and M be two subsets of the naturals. We denote by FTL(K,M)
the extension of FTL by the modalities Crk , 0 ≤ r < k and Lrm, 0 ≤ r < m
with k ∈ K and m ∈ M . Moreover, we denote by FTL(K,M) the class of all
languages definable by the formulas in FTL(K,M).

For each n ≥ 1, let Zn denote a cyclic group of order n. Below we will
denote by a a cyclic generator of Zn and by 1 the identity element. The division
ideal generated by a set M of naturals consists of all divisors of least common
multiples of finite sets of naturals in M . When M is empty, the division ideal
generated by M is {1}.
Theorem 6. A language L belongs to FTL(K,M) iff Synt(L) = (S,A) satis-
fies the following condition: There is some m in the division ideal generated by
M such that every group contained in the submonoid of S generated by Am is
solvable whose order is a multiple of the prime divisors of the integers in K.

Proof. We have FTL(K,M) = FTL(K), where K consists of U r, E and the mg-
pairs (Zk, {1, a}) and (Zm, {a}), for all k ∈ K and m ∈M . Thus, by Theorem 3,
FTL(K) consists of all languages whose syntactic mg-pair is in K̂. It is shown
in Ésik, Ito [6] that the syntactic mg-pair of a language belongs to this variety
iff the condition described in the Theorem holds. 2

See also Straubing, Therien, Thomas [12], Straubing [11].
For a class K of finite mg-pairs, let FTL + K denote the extension of FTL

by the modal operators corresponding to the languages recognizable by the mg-
pairs in K. Moreover, let FTL + K denote the class of languages definable by
the formulas in FTL + K.

Theorem 7. FTL+K is the class of all regular languages iff the following two
conditions hold:
1. For each m, (Zm, {a}) ∈ K̂.
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2. For each finite (nonabelian simple) group G there is an mg-pair (M,A) in
K such that G divides M .

Proof. First, by Theorem 5 and Theorem 2, it follows that a language belongs to
FTL+K iff its syntactic mg-pair is contained in the closed variety V generated
by K and the aperiodics. Now, by (the dual of) a result proved in Dömösi,
Ésik [4], V is the class of all finite mg-pairs iff the above two conditions hold.
The result now follows by using Theorem 3, since a language is regular iff it is
recognizable by a finite mg-pair. 2

Corollary 8. If FTL+K is the class of all regular languages, then K is infinite.

Example 3. Let K consist of the mg-pairs (Sn, {π, ρ}), n ≥ 3, where Sn denotes
the symmetric group of all permutations of the set [n], and where π is a trans-
position and ρ is a cyclic permutation of [n]. Then FTL + K is the class of all
regular languages.

When K is a class of finite mg-pairs, let FTL + MOD + K denote the
language class FTL + K′, where K′ = K ∪ {(Zn, {1, a}) : n ≥ 2}. The proof of
the following result is similar to that of Theorem 7.

Theorem 8. A language L belongs to FTL + MOD + K iff L is regular and
for every finite nonabelian simple group G, if G divides the syntactic monoid of
L, then G divides the monoid component of an mg-pair in K.

Given a formula ϕ of FTL over the alphabet Σ, let 〈〉ϕ denote the formula
ttUϕ. Thus, for each word u = u1 · · ·un in Σ∗, u |= 〈〉ϕ iff u1 · · ·un |= ϕ,
for some i ∈ [n]. In [3], Cohen, Perrin and Pin studied the expressive power
of the restricted temporal logic RTL whose formulas over an alphabet Σ are
constructed from the atomic formulas pσ, σ ∈ Σ by the X and 〈〉 modalities.
Let RTL denote the class of languages definable by the formulas in RTL. Let
U1 denote a two-element semilattice (which may be identified with the mg-pair
(U1, U1)).

Proposition 10. RTL = FTL({U1, E}).

The proof is based on the observation that U1 is isomorphic to the syntactic
monoid of the two-letter language L = (a+ b)∗b(a+ b)∗, and for any formula ϕ,
〈〉ϕ is expressible as L(a 7→ ¬ϕ, b 7→ ϕ).

Recall that a semigroup S is called L-trivial, cf. Almeida [1], Eilenberg [5], if
Green’s L-relation on S is the equality relation. Moreover, a semigroup S is lo-
cally L-trivial iff for each idempotent e, the monoid eSe is L-trivial. Accordingly,
we call an mg-pair (M,A) locally L-trivial if the subsemigroup of M generated
by A is locally L-trivial.

It follows from well-known facts (cf. [5, 1]) that a finite mg-pair is locally
L-trivial iff it belongs to the least closed variety containing U1 and E1, or U1

and E. Thus, from Proposition 10 and Theorem 2 we may derive:
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Theorem 9. Cohen, Perrin, Pin [3] A language L ⊆ Σ∗ belongs to RTL iff L
is regular and Synt(L) is locally L-trivial.

Following the definitions of the language classes FTL(K,M), we may define
the classes RTL(K,M). For lack of space we omit the proof of the following
result.

Theorem 10. A language L belongs to RTL(K,M) iff Synt(L) = (S,A) satis-
fies the following condition: There is an integer m in the division ideal generated
by M such that for each idempotent e of the subsemigroup T of S generated by
Am, it holds that eT e is a solvable group whose order is a multiple of the primes
that divide the integers in K.
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RS-02-44 Zolt́an Ésik and Zoltán L. Németh. Higher Dimensional Au-
tomata. November 2002. 32 pp. A preliminary version appears
under the title Automata on Series-Parallel Biposetsin Kuich,
Rozenberg and Salomaa, editors,5th International Conference,
Developments in Language Theory, DLT ’01 Revised Papers,
LNCS 2295, 2001, pages 217–227. This report supersedes the
earlier BRICS report RS-01-24.

RS-02-43 Mikkel Christiansen and Emmanuel Fleury. Using IDDs for
Packet Filtering. October 2002. 25 pp.

RS-02-42 Luca Aceto, Jens A. Hansen, Anna Inǵolfsdóttir, Jacob
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