
B
R

IC
S

R
S

-02-50
H

ansen
etal.:

C
ircuits

on
C

ylinders

BRICS
Basic Research in Computer Science

Circuits on Cylinders

Kristoffer Arnsfelt Hansen
Peter Bro Miltersen
V. Vinay

BRICS Report Series RS-02-50

ISSN 0909-0878 2002

Copyright c© 2002, Kristoffer Arnsfelt Hansen & Peter Bro
Miltersen & V. Vinay.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/02/50/

Circuits on Cylinders

Kristoffer Arnsfelt Hansen∗ Peter Bro Miltersen∗ V Vinay†

December 2002

Abstract

We consider the computational power of constant width polynomial
size cylindrical circuits and nondeterministic branching programs. We
show that every function computed by a Π2 ◦ MOD ◦ AC0 circuit can
also be computed by a constant width polynomial size cylindrical non-
deterministic branching program (or cylindrical circuit) and that every
function computed by a constant width polynomial size cylindrical circuit
belongs to ACC0.

1 Introduction

x1 x2 x3 x4 x5

x2 x3 x4

x1 x2 x3 x4

x2 x3 x4 x5

Figure 1: A cylindrical branching program of width 2 computing PARITY.

In this paper we consider the computational power of constant width,
polynomial size cylindrical branching programs and circuits.

It is well known that there is a rough similarity between the computational
power of width restricted circuits and depth restricted circuits, but that this

∗Department of Computer Science, University of Aarhus and
BRICS, Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.
Email: {arnsfelt,bromille}@daimi.au.dk

†Indian Institute of Science, Bangalore, India.
Email: vinay@csa.iisc.ernet.in

1

similarity is not a complete equivalence. For instance, the class of functions
computed by a family of circuits of quasi-polynomial size and polylogarith-
mic depth is equal to the class of functions computed by a family of circuits
of quasi-polynomial size and polylogarithmic width. On the other hand, the
class of functions computed by a family of circuits of polynomial size and poly-
logarithmic width (non-uniform SC) is, in general, conjectured to be different
from the class of functions computed by a family of circuits of polynomial
size and polylogarithmic depth (non-uniform NC). For the case of constant
depth and width, there is a provable difference in computational power; the
class of functions computable by constant depth circuits of polynomial size,
i.e, AC0, is a proper subset of the functions computable by constant width
circuits (or branching programs) of polynomial size, the latter being, by Bar-
rington’s Theorem [1], the bigger class NC1. On the other hand, Vinay [7] and
Barrington et al [2, 3] showed that by putting a geometric restriction on the
computation, the difference disappears: The class of functions computable by
plane, constant width, polynomial size circuits (or nondeterministic branching
programs) is exactly AC0. Thus, both AC0 and NC1 can be captured by a
constant width as well as by a constant depth circuit model. It is then natu-
ral to ask if one can similarly capture classes between AC0 and NC1 defined
by various constant depth circuit models, such as ACC0 and TC0, by some
natural constant width circuit or branching program model.

In this paper we make some progress towards answering this question by
considering a slightly more relaxed geometric restriction than planarity: We
consider the functions computed by cylindrical polynomial size, constant width
circuits (or nondeterministic branching programs). Informally (for formal def-
initions, see the next section), a layered circuit (branching program) is cylin-
drical if it can be embedded on the surface of a cylinder in such a way that
each layer is embedded on a cross section of the cylinder (disjoint from the
cross sections of the other layers), no wires intersect and all wires between two
layers are embedded on the part of the cylinder between the two corresponding
cross sections (see Figure 1).

It is immediate that constant width polynomial size cylindrical branching
programs have more computational power than constant width polynomial
size plane branching programs: The latter compute only functions in AC0 [2]
while the former may compute PARITY (see Figure 1). We ask what their
exact computational power is and show that their power does not extend much
beyond computing functions such as PARITY. Indeed, they can only compute
functions in ACC0. To be precise, the first main result of this paper is the
following lower bound on the power of cylindrical computation.

Theorem 1 Every Boolean function computed by a polynomial size
Π2 ◦ MOD ◦ AC0 circuit is also computed by a constant width, polynomial
size cylindrical nondeterministic branching program.

2

By a Π2 ◦ MOD ◦ AC0 circuit we mean a polynomial sized circuit with
an AND gate at the output, a layer of OR gates feeding the AND gate, a
layer of MODm gates (perhaps for many different constant-bounded values of
m) feeding the OR gates and a (multi-output) AC0 circuit feeding the MOD
gates. It is not known if the inclusion is proper. We prove Theorem 1 by a
direct construction, generalising and extending the simple idea of Figure 1.

Our second main result is the following upper bound on the power of cylin-
drical computation.

Theorem 2 Every Boolean function computed by a constant width, polyno-
mial size cylindrical circuit is in ACC0.

The proof of Theorem 2 is the most technical part of this paper. The
simulation is done (as were many previous results about constant width com-
putation) by using the theory of finite monoids and the results of Barrington
and Therien [4]. Thus, we show the inclusion by relating the computation of
cylindrical circuits to solving the word problem of a certain finite monoid and
then show that this monoid is solvable.

A standard simulation shows that every Boolean function computed by
a constant width, polynomial size cylindrical nondeterministic branching pro-
gram is also computed by a constant width, polynomial size cylindrical circuit.
For completeness, we describe this simulation in Proposition 3. Thus, one can
exchange “cylindrical nondeterministic branching program” with “cylindrical
circuit” and vice versa in our two main results.

Organisation of Paper

In section 2, we formally define the notions of cylindrical branching program
and circuits. We also give an overview of the algebraic tools we use. In section
3, we show Theorem 1. In section 5, we show Theorem 2. As this proof is
quite technical, we warm up by showing, in section 4 by a somewhat easier
proof that cylindrical branching programs (rather than circuits) compute only
functions in ACC0. We conclude with some discussions and open problems
in section 6.

2 Preliminaries

Bounded depth circuits

Let A ⊂ {0, . . . ,m − 1}. Using the notation of Grolmusz and Tardos [5], a
MODA

m gate takes n boolean inputs x1, . . . , xn and outputs 1 if
∑n

i=1 xi ∈ A
(mod m) and 0 otherwise. We let MOD denote the family of MODA

m gates
for all constant bounded m and all A. Similarly will AND and OR denote
the family of unbounded fanin AND and OR gates.

3

If G is a family of boolean gates and C is a family of circuits we let G ◦ C
denote the class of polynomial size circuit families consisting of a G gate taking
circuits from C as inputs.

AC0 is the class of functions computed by polynomial size bounded depth
circuits consisting of NOT gates and unbounded fanin AND and OR gates.
ACC0 is the class of functions computed when we also allow unbounded fanin
MOD gates computing MODk for constants k. We will also use AC0 and
ACC0 to denote the class of circuits computing the languages in the respective
classes.

Cylindrical branching programs and circuits

A digraph D = (V,A) is called layered if there is a partition V = V0 ∪ V1 ∪
· · · ∪ Vh such that all arcs of A goes from layer Vi to the next layer Vi+1 for
some i. We call h the depth of D, |Vi| the width of layer i and k = max |Vi|
the width of D.

Let [k] denote the integers {1, . . . , k}. For a, b ∈ [k] where a 6≡ b + 1
(mod k) we define the (cyclic) interval [a, b] to be the set {a, . . . , b} if a ≤ b
and {a, . . . , k} ∪ {1, . . . , b} if a > b. Furthermore let (a, b) = [a, b] \ {a, b}, and
let (a, b) = [k] \ {a, b} if a ≡ b + 1 (mod k).

Let D be a layered digraph in which all layers have width k. We will
assume the nodes in each layer numbered 1, . . . , k, and refer to nodes by these
numbers. Then, D is called a cylindrical if the following property is satisfied:
For every pair of arcs going from layer l to layer l + 1 connecting node a to
node c and node b to node d the following must hold: Nodes in the interval
(a, b) of layer l can only connect to nodes in the interval [c, d] of layer l+1 and
nodes in the interval (b, a) of layer l can only connect to nodes in the interval
[d, c] of layer l + 1.

Notice this is equivalent of saying that nodes in the interval (c, d) of layer
l +1 can only connect to nodes in the interval [a, b] of layer l and nodes in the
interval (d, c) of layer l + 1 can only connect to nodes in the interval [b, a] of
layer l.

A nondeterministic branching program 1 is a acyclic digraph where all arcs
are labelled by either a literal, i.e. a variable or a negated variable, or a
boolean constant, and an initial and a terminal node. An input is accepted if
and only if there is a path from the initial node to the terminal node in the
graph that results from substituting constants for the literals according to the
input and then deleting arcs labelled by 0.

1Our definition deviates slightly from the usual definition where nodes rather than edges
are labelled by literals and unlabelled nodes serve as special nondeterministic “choice”-nodes,
but it is easily seen to be polynomially equivalent - also in the cylindrical case - and it is
more convenient for us.

4

We will only consider branching programs in layered form, that is, viewed
as a digraph it is layered. We can assume that the initial node is in the first
layer and the terminal node in the last layer, and furthermore that these are
the only nodes incident to arcs in these layers. We can also assume that all
layers have the same number of nodes, by the addition of dummy nodes.

By a cylindrical branching program we will then mean a bounded-width
nondeterministic branching program in layered form, which is cylindrical when
viewed as a digraph.

A cylindrical circuit is a circuit consisting of fanin 2 AND and OR gates
and fanin 1 COPY gates, which when viewed as a digraph is a cylindrical
digraph. Inputs nodes can be literals or boolean constants. The output gate
is in the last layer. We can assume that all layers have the same number of
nodes by adding dummy input nodes to the first layer and dummy COPY
gates to the other layers.

A standard simulation of nondeterministic branching programs by circuits
extends to cylindrical branching programs and cylindrical circuits. We give
the details for completeness.

Proposition 3 Every function computed by a width k, depth d cylindrical
branching program is also computed by a width O(k), depth O(d log k) cylin-
drical circuit

Proof Replace every node in the branching program by an OR-gate. Replace
each arc, going from, say, node u to node v and labelled with the literal x,
with a new AND-gate taking two inputs, gate u and the literal x and with the
output of the AND-gate feeding gate v.

This transformation clearly preserves the cylindricality of the graph. Also,
the width of the circuit is linear in the width of the branching program. The
resulting OR-gates may have fan-in bigger than two. We replace each such
gate with a tree of fan-in two OR-gates, preserving the width and blowing up
the depth by at most a factor of O(log k). �

Monoids and groups

Let x and y be elements of a group G. The commutator of x and y is the ele-
ment x−1y−1xy. The subgroup G(1) of G generated by all of the commutators
in G is called the commutator subgroup of G. In general, let G(i+1) denote
the commutator subgroup of G(i). G is solvable if G(n) is the trivial group for
some n. It follows that an Abelian group, and in particular a cyclic group, is
solvable.

A monoid is a set M with an associative binary operation and a two sided
identity. A subset G of M is a group in M if it is a group with respect to the

5

operation of M . Note that a group G in M is not necessarily a submonoid of
M as the identity element of G may not be equal to the identity element of
M . M is called solvable if every group in M is solvable. The word problem
for a finite monoid M is the computation of the product x1x2 . . . xn given
x1, x2, . . . , xn as input. A theorem by Barrington and Therien [4] states that
the word problem for a solvable finite monoid is in ACC0.

3 Simulation of bounded depth circuits by cylindri-

cal branching programs

In this section, we prove Theorem 1. As a starting point, we shall use the
“only if” part of the following correspondence established by Vinay [7] and
Barrington et al [2]. We include here a proof of the “only if” part for com-
pleteness.

Theorem 4 A language is in AC0 if and only if it is accepted by a polynomial
size, constant width plane branching program.

Here a plane branching program is a layered branching program satisfying,
that for every pair of arcs going from layer l to layer l + 1 connecting node a
to node c and node b to node d, if a < b then c ≤ d.

We need some simple observations. First observe that if we can simulate
a class of circuits C with plane (cylindrical) branching programs, then we can
also simulate AND ◦ C by plane (cylindrical) branching programs by simply
concatenating the appropriate branching programs.

Another way to combine branching programs is by substitution where we
simply substitute a branching program for the edges corresponding to a par-
ticular literal. The effect of this is captured in the following lemma.

Lemma 5 If f(x1, . . . , xn) is computed by a plane (cylindrical) branching pro-
gram of size s1 and width w1 and g1, . . . , gn and g1, . . . , gn are computed by
plane branching programs, each of size s2 and width w2 then f(g1, . . . , gn) is
computed by a plane (cylindrical) branching program of size O(s1w1s2) and
width O(w2

1w2).

• 1 //• • 1 //• 1 //•

• 1 //
x1~~~

??~~~

• 1 //
x2~~~

??~~~

• • 1 //
xn−1~~~

??~~~

•
xn~~~

??~~~

Figure 2: A planar branching program computing OR.

6

Combining the above observations with the construction in Figure 2, sim-
ulating an OR gate, we have established the “only if” part of Theorem 4.

Simulation of a MODA
m gate can be done as shown in Figure 3 if one dis-

regards the top nodes in the first and last layers and modifies the connections
between the second-to-last layer to take the set A into account. Thus, com-
bining this construction with Lemma 5, the “only if” part of Theorem 4 and
the closure of cylindrical branching programs under polynomial fan-in AND,
we have established that we can simulate AND ◦ MOD ◦ AC0 circuits by
bounded width polynomial size cylindrical circuits.

• x1
//

x1

��*
*

*
*

*
*

*
• x2

//
x2

��*
*

*
*

*
*

*
• • xn

//
xn

��*
*

*
*

*
*

*
•

1
@@@

��@
@@

•
1~~~

??~~~

1 //

1
@@@

��@
@@
• x1

//
x1~~~

??~~~

• x2
//

x2~~~

??~~~

• • xn
//

xn~~~

??~~~

• 1 //•

•
1

@@@

��@
@@
• x1

//
x1~~

??~~~~
• x2

//
x2~~

??~~~~
• • xn

//
xn~~

??~~~~
•

1~~~

??~~~

•

• x1
//

x1~~~

??~~~

• x2
//

x2~~~

??~~~

• • xn
//

xn~~~

??~~~

•
1~~~

??~~~

Figure 3: A cylindrical branching program fragment for MOD4.

The construction as shown in Figure 3 has actually more use, by seeing
it as computing elements of M2, where M2 is the monoid of binary relations
on [2]. The general construction of a branching program fragment for MODA

m

taking n inputs is as follows: Without loss of generality we can assume that
|A| = 1 and in fact A = {0} since we aim for simulating OR ◦ MOD. The
branching program fragment will have n + 3 layers. The first and last layer
of width 2 and the middle layers of width m. The top node in the first layer
has arcs to all nodes but node 1 and the bottom node has an arc to node
1. The top node in the last layer has arcs from all nodes but the one in A
and the bottom node has an arc from this node. The nodes in the middle
layers represent the sum of a prefix of the input modulo m in the obvious way.
Consider now the elements of M2 shown in Figure 4. The branching program
fragment just described corresponds to (a) and (b) for m = 2 and m > 2
respectively, when the simulated MOD gate evaluates to 0. In both cases, the
fragment correspond to (c) when the simulated MOD gate evaluates to 0.

•
��@

@
@ •

•

??~~~~~~ •
(a)

• //

��@
@

@ •

•

??~~~~~~ •
(b)

• //•

• //•
(c)

•
��@

@
@ •

• //

??~~~~~~ •
(d)

Figure 4: Some elements of M2.

7

We can now describe our construction for simulating OR◦MOD circuits.
The construction interleaves branching program fragments for (d) between
the branching program fragments for the MOD gates. This can be seen as a
way of “short circuiting” the branching program in the case that one of the
MOD gates evaluate to 1. Finally we add layers at both ends picking out
the appropriate nodes for the simulation. The entire construction is shown in
Figure 5. The correctness can easily be verified.

The simulation of OR ◦ MOD circuits, the “only if” part of Theorem 4,
Lemma 5, and the closure of cylindrical branching programs under polynomial
fan-in AND, together completes the proof of Theorem 1.

• •
1

��

• •
1

��

• •
1

��

• •

• 1 //•
MOD

• 1 //
1~~

??~~~~
•
MOD

• 1 //
1~~

??~~~~
• • 1 //

1~~

??~~~~
•
MOD

• 1 //•

_ _ _�
�
�

�
�
�_ _ _

_ _ _�
�
�

�
�
�_ _ _

_ _ _�
�
�

�
�
�_ _ _

Figure 5: A cylindrical branching program computing MOD ∨ · · · ∨ MOD.

4 Simulation of cylindrical branching programs by
bounded depth circuits

In this section, we warm up to the proof of Theorem 2 to be presented in
the next section, by giving a simpler (but similar) proof of the weaker result
that bounded width polynomial size cylindrical nondeterministic branching
programs compute only functions in ACC0.

In fact, we shall prove that for fixed k the following “branching program
value problem” BPVk is in ACC0: Given a width k cylindrical branching
program and a truth assignment to its variables, decide if the program accepts.
As any function computed by width k cylindrical polynomial size branching
program clearly is a Skyum-Valiant projection [6] of BPVk, we will be done.

We shall prove that BPVk is in ACC0 by showing that it reduces, by an
AC0 reduction, to the word problem of the monoid Mk we define next. Then,
we show that the monoid Mk is solvable, and since this implies, by the result
of Barrington and Therien [4] that the word problem for Mk is in ACC0, our
proof will be complete.

We define Mk to be the monoid of binary relations on [k] which capture
the calculation of width k branching programs embedded on a cylinder in the
following sense: Mk is the monoid generated by all the relations which express
how arcs can travel between two adjacent layers in an width k cylindrical
digraph. The monoid operation is the usual composition operation of binary
relations, i.e., if A,B ∈ Mk and x, y ∈ [k], xABy ⇔ ∃z : xAz ∧ zBy.

BPVk reduces to the word problem for Mk by the following AC0 reduction:

8

Substitute constants for the literals in the branching program according to the
truth assignment. Consider now the cylindrical digraph D consisting only of
arcs which have the constant 1 associated. Then, the branching program
accepts the input given if and only if there is a path from the initial node in
the first layer to the terminal node in the last layer of D. We can decide this
by simply decomposing D into a sequence A1, A2, . . . , Ah of elements from Mk,
computing the product A = A1A2 · · ·Ah and checking whether this is different
from the zero element of Mk.

Thus, we just need to show that Mk is solvable. Our proof is finished by
the following much stronger statement.

Proposition 6 All groups in Mk are cyclic.

Proof Let G ⊆ Mk be a group with identity E. Let A ∈ G and let R be the
set of all x such that xEx. As will be shown next it will be enough to consider
elements of R to capture the structure of A.

Let x ∈ R. Since AA−1 = E there exists z such that xAz and zA−1x.
Since A−1A = E it follows zEz, that is, z ∈ R. Hence there exists a function
πA : R → R such that

∀x : xAπA(x) ∧ πA(x)A−1x

To see that A is completely described by by πA, we define a relation Â on [k]
such that xÂy ⇔ πA(x) = y. That is, Â is just πA viewed as a relation. Since
Â ⊆ A it follows EÂE ⊆ EAE = A. Conversely let xAy. Since EkA = A
there exists z ∈ R such that xEz and zAy. Since πA(z)A−1z we get πA(z)Ey.
That is xEz, zÂπA(z) and πA(z)Ey. Thus xEÂEy. Hence we obtain that
A = EÂE.

We would like to have both that πA is a permutation and that {πA|A ∈ G}
is a group. This is in general not true, since E can be any transitive relation
in Mk.

To obtain this we will first simplify the structure of the elements of G using
the following equivalence relation on [k] defined by

x ∼ y ⇔ (xEy ∧ yEx) ∨ x = y.

Let A ∈ G. If x ∼ x′ and y ∼ y′ then xAy ⇔ x′Ay′, since EAE = A. Thus A
gives rise to a relation Ã on [k]/∼ where xAy ⇔ [k]xÃ[k]y and it will follow
that {Ã|A ∈ G} is an isomorphic group of G.

For this we need to show that ÃB = ÃB̃. This follows since [k]xÃB[k]z ⇔
xABz ⇔ ∃y : xAy ∧ yBz ⇔ ∃y : [k]xÃ[k]y ∧ [k]yB̃[k]z ⇔ [k]xÃB̃[k]z

We can find an isomorphic copy of this group in Mk as follows. Choose for
each equivalence class [k]x a representative r([k]x) in [k]x. Define a relation
C on [k] such that xCy ⇔ x = y = r([k]x). Thus ∀x : r([k]x)Cr([k]x). Let

9

σ : G → Mk be given by σ(A) = CAC. Then σ(G) is the desired isomorphic
copy of G. We can thus assume that the equivalence classes with respect to
∼ are of size 1.

We now return to the study of πA. The following property, that for x, y ∈ R
it holds that xEy ⇔ πA(x)EπA(y), is satisfied:

If xEy then πA(x)A−1y since A−1E = A−1. As A−1A = E it follows that
πA(x)EπA(y).

Conversely if πA(x)EπA(y) then xAπA(y) since xAπA(x) and AE = A. As
πA(y)A−1y and AA−1 = E it then follows that xEy.

We can now conclude that πA is a permutation on R: If πA(x) = πA(y)
then πA(x) ∼ πA(y) so x ∼ y, that is, x = y. Also πA is uniquely defined :
Assume π̂A : R → R satisfies

∀x : xAπ̂A(x) ∧ π̂A(x)A−1x

Let x ∈ R. We then obtain πA(x) ∼ π̂A(x) so πA(x) = π̂A(x). Hence πA = π̂A.
Now we can conclude that {πA|A ∈ G} is a permutation group which is

isomorphic to G. For this we need to show that πAB = πB ◦ πA.
Let x ∈ R. Since xAπA(x) and πA(x)BπB◦πA(x) it follows xABπB◦πA(x).
Since πB ◦πA(x)B−1πA(x) and πA(x)A−1x it follows πB ◦πA(x)B−1A−1x,

i.e. πB ◦ πA(x)(AB)−1x
Since πAB is uniquely defined the result follows.
To show that {πA|A ∈ G} is cyclic we need the following fact, which easily

follows from the definition of cylindricality
Fact: Let A be a relation which can be directly embedded on a cylinder.

Let p1 < p2 < . . . pm and q1 < q2 < · · · < qm and π a permutation on [m]
such that ∀i : piAqπ(i). Then π is in the cyclic group of permutations on [m]
generated by the cycle (1 2 . . . m).

Now let r1 < r2 < · · · < rm be the elements of R. Write A ∈ G as
A = A1A2 . . . Ah where the Ai’s can be directly embedded on the cylinder.
Since riAπA(ri) we have for all i, elements of [k], ri = q0

i , q
1
i , . . . , q

h
i = πA(ri)

such that qj
i Aj+1q

j+1
i . For fixed j all the qj

i ’s are distinct. If not we would have
i1 and i2 such that ri1AπA(ri2) and ri2AπA(ri1). But then since πA(ri1)A

−1ri1

and πA(ri2)A
−1ri2 we then get ri1Eri2 and ri2Eri1 . That is ri1 ∼ ri2 which

implies ri1 = ri2 . Now by the fact and induction on h we have a permutation π
in the cyclic group generated by the cycle (1 2 . . . m) such that rπ(i) = πA(ri).
Thus πA is in the cyclic group generated by the cycle (r1 r2 . . . rm) and we can
conclude that G is cyclic.

�

10

5 Simulation of cylindrical circuits by bounded depth

circuits

In this section we prove Theorem 2. Following the outline of last section, we
consider for fixed k the following “circuit value problem” CVk: Given a width
k cylindrical circuit and a truth assignment to its input variables, decide if
the circuit evaluates to 1. We shall reduce CVk, by an AC0 reduction, to
the word problem of the monoid N̂k defined next, which will be proved to be
solvable. By the result of Barrington and Therien [4] it then follows that CVk

is in ACC0.
Consider a width k cylindrical circuit C with k variable input nodes, all

placed in the first layer. We can view this as computing a function mapping
{0, 1}k to {0, 1}k by reading off the values of the nodes in the last layer.

We let Nk be the monoid of functions mapping {0, 1}k to {0, 1}k which are
computed by such circuits with constant input nodes disallowed.

We let N̂k be the monoid of functions mapping {0, 1}k to {0, 1}k where we
in addition to the above also allow nodes in the last layer to be constant input
nodes.

We will call C a Nk circuit and N̂k circuit, respectively. That N̂k is in fact
a monoid follows from the following lemma

Lemma 7 Even if we allow constants in all but the first layer in N̂k circuits,
only functions in N̂k are computed.

Proof Consider a cylindrical circuit of depth d with possible constant input
nodes in all layers. By induction the depth d − 1 subcircuit of the first layers
d layers can be computed by a cylindrical circuit such that all constant input
nodes are at layer d. Consider now a node in layer d + 1 which has an arc
from a constant input node. If it always evaluates to a constant we can simply
replace it by a constant input node. Otherwise the node is an OR or an AND
node which can be replaced by a COPY node, copying the non-constant input
node of the old gate. Now all constant input nodes in layer d can simply be
replaced by dummy COPY nodes, since they have no outgoing arcs anymore.
�

We are now able to describe the AC0 reduction of CVk to the word prob-
lem for N̂k: Substitute constants for the variable input nodes according to
the truth assignment. Each layer of the circuit except the first can now be
viewed as a depth 1 N̂k circuit by preceeding it by a layer of k variable input
nodes. Let C1, C2, . . . , Ch be the circuits obtained this way, and compute the
corresponding elements f1, f2, . . . , fh of N̂k (represented e.g. by tabulation).
Now compute the product f = fh ◦· · · ◦f2 ◦f1 and evaluate it on the constants
appearing in the first layer of the circuit. The output of the circuit can then

11

be read off in the entry of this result corresponding to the output node of the
circuit.

Now we just need show that N̂k is solvable. We will in fact, as in the
previous section obtain the stronger result that all its groups are cyclic. First
we show that it is sufficient to consider Nk.

Proposition 8 Every group in N̂k is isomorphic to a group in Nk.

Proof Suppose G ⊆ N̂k is a group with identity e.
We construct an injective (monoid) homomorphism φ : G → Nk. This

proves the result. First we need to prove the following claim.
Claim: Let f and g be elements of G computed by N̂k circuits C1 and

C2. The output nodes of C1 and C2 that are constant are the same and their
output values are the same in both circuits.

Proof of Claim: Let C ′
1 be a N̂k circuit computing f−1. Note that

C1 ◦ C ′
1 ◦ C2 also computes g. Hence, if C1 has some constant output node

of value 1, then C2 must have the same output node be constant 1 (as seen
by feeding the input 0k through C2). Analogously, if C1 has some constant
output node of value 0, then C2 must have the same output node be constant
0 (as seen by feeding the input 1k through C2). By repeating the argument
with the roles of C1 and C2 reversed, we have proved the claim.

By the claim, a fixed set of output nodes S are constant for all N̂k circuits
computing functions in G. Construct the homomorphism φ as follows: Let
f ∈ G be computed by an N̂k circuit C. Then φ(f) is the function computed
by C, modified as follows: Add an extra layer of input nodes at the bottom of
the circuit. The old input nodes not in S are replaced by COPY nodes copying
the corresponding input node from the new layer. The old input nodes in S
are replaced by constant input nodes corresponding to the constant output
nodes. Then an extra layer of COPY nodes is added on the top of the circuit.
For nodes not in S we just copy the previous value. For a node a ∈ S we pick
a node b /∈ S to copy, where a ≡ b + i (mod k) and i > 0 is minimal. The
resulting circuit is then reduced as in Lemma 7.

It is easy to see that φ is a homomorphism from G to N̂k. We claim that
the constructed circuit is actually a Nk circuit.

To show this, we have to argue that the above construction does not in-
troduce new constant output nodes. This can be seen as follows: Let C and
C ′ be N̂k circuits computing f and f−1 ∈ G. Then if a new constant out-
put node is introduced in the construction for C, the same node is already a
constant output node in the circuit C ◦ C ′, computing e, as C ′ is feeding the
same constants to C in C ◦C ′ as are fed to C in the above construction. This,
however, contradicts the claim above.

Thus φ is a homomorphism from G to Nk. We now just have to argue that
it is injective and we are done. Let C and Ce be N̂k circuits computing f ∈ G

12

and e, where f 6= e. We then have that for some x, C(x) 6= Ce(x). Since the
output nodes in S have the same value there is an output node not in S where
the values differ. By noting that the above construction retains the values of
the output nodes not in S, we obtain that φ(f)(x) 6= φ(e)(x). �

Now we can turn to the study of the monoid Nk. Note that it is generated
by the depth 1 Nk circuits. This will be useful in some of the following prop-
erties we will prove, since it allows us, by induction, to just consider depth 1
circuits.

As in [3] it will be convenient to identify input vectors in {0, 1}k with its
set of maximal 1-intervals, only here we consider cyclic intervals. For example
is the vector 1010011011 identified with the set of intervals {[3, 3], [6, 7], [9, 1]}.

We will only do this identification for inputs which contain at least one
interval, that is, we disregard the vectors 0k and 1k.

Lemma 9 Let x ∈ {0, 1}k contain m interval and f ∈ Nk. Then f(x)
contains at most m intervals. If f(x) in fact contains m intervals and m ≥ 1
then f(x) = {f(I)|I ∈ x}.

Proof Clearly f(0k) = 0k and f(1k) = 1k so we can assume m ≥ 1. Assume
that C is a depth 1 Nk circuit computing f . Let c, d ∈ [k] be nodes which
evaluate to 1 on input x. Each of c and d must have an arc from an interval
of x. Suppose c and d have arcs from the same interval I in x, from a to c
and b to d, say. Either [a, b] ⊆ I or [b, a] ⊆ I. If [a, b] ⊆ I then all nodes in the
interval (c, d) evaluate to 1 since they must take arcs from [a, b] ⊆ I. Similarly
if [b, a] ⊆ I then all nodes in the interval (d, c) evaluate to 1.

Thus nodes which have arcs to the same interval in x are in the same
interval of C(x) if any, and the first part follows.

Now assume that there also is m intervals in C(x). To show the second
part we have to rule out that an interval in C(x) can take arcs from more than
one interval in x. But if that were case there would also different intervals with
arcs from the same interval in x, contradicting the above. �

Any subset of {0, 1}k becomes a poset by lifting the order 0 < 1 pointwise.
The functions in Nk are monotone with respect to this order. When consider-
ing only intervals this order coincides with the subset inclusion order and we
will use these orders interchangeably.

Lemma 10 Let {[ai, bi] | i = 1, . . . ,m} and {[ci, di] | i = 1, . . . ,m} be an-
tichains of intervals in {0, 1}k such that a1 < · · · < am and c1 < · · · < cm.
Let f ∈ Nk and assume π is a permutation on [m] such that f([ai, bi]) =
[cπ(i), dπ(i)]. Then π is in the cyclic group of permutations on [m] generated
by the cycle (1 2 · · ·m).

13

Proof Assume C is a depth 1 Nk circuit computing f . In the following
all index arithmetic is done modulo m. There must be an arc from [ai, bi] \
[ai+1, bi+1] to [cπ(i), dπ(i)]\[cπ(i)+1, dπ(i)+1] for all i since otherwise [cπ(i), dπ(i)] ⊆
[cπ(i)+1, dπ(i)+1]. From this the result follows. �

Say that an interval [a0, b0] ⊆ [a1, b1]∩ [a2, b2] is in between intervals [a1, b1]
and [a2, b2] if there is a3 ∈ [a1, b1] \ [a2, b2] and b3 ∈ [a2, b2] \ [a1, b1] such that
[a0, b0] ⊆ (a3, b3).

If {[a1, b1], [a2, b2]} form an antichain this is equivalent of requiring that
[a2, b0] ⊆ [a1, b0].

Lemma 11 Suppose [c0, d0] ⊆ [c1, d1]∩[c2, d2] is in between [c1, d1] and [c2, d2].
Suppose f ∈ Nk maps intervals [ai, bi] to [ci, di] for i = 1, 2, 3. If [a0, b0] ⊆
[a1, b1] ∩ [a2, b2] then [a0, b0] is in between [a1, b1] and [a2, b2].

Proof Assume f is computed by a depth 1 Nk circuit C.
By assumption there is c3 ∈ [c1, d1] \ [c2, d2] and d3 ∈ [c2, d2] \ [c1, d1] such

that [c0, d0] ⊆ (c3, d3). There must exist a3 ∈ [a1, b1]\[a2, b2] such that there is
an arc from a3 to c3 in C, since otherwise we would have c3 ∈ [c2, d2]. Similarly
there exists b3 ∈ [a2, b2] \ [a1, b1] such that there is an arc from b3 to d3 in C.
Since [c0, d0] ⊆ (c3, d3) all arcs to [c0, d0] must thus go from [a3, b3]. It follows
[a0, b0] ⊆ [a3, b3], in fact [a0, b0] ⊆ (a3, b3) since [a0, b0] ⊆ [a1, b1] ∩ [a2, b2]. �

In the following let G be a group in Nk with identity e. Since e ◦ e = e we
get that e is the identity mapping on the image of e, Im e. Thus any f ∈ G
is a permutation of Im e, since f ◦ f−1 = f−1 ◦ f = e and e ◦ f = f .

Lemma 12 Let f ∈ G and S ⊆ Im e. If f is a permutation on S then f a
permutation on the set of minimal elements in S, min(S), with respect to <.

Proof Assume on the contrary that x ∈ min(S) such that f(x) /∈ min(S).
Then there exists y ∈ min(S) such that y < x. But then f−1(y) < x, which
contradicts x ∈ min(S). �

Now we can finally complete the proof of Theorem 2 by the following
proposition.

Proposition 13 All groups in Nk are cyclic

Proof Let G be a group in Nk with identity e and let I be the set of intervals
in Im e.

Let f ∈ G. Since f ◦ e = f it follows that f is completely described by its
restriction to Im e. By Lemma 9 f is furthermore completely described by its
restriction to I.

14

We decompose I into antichains, Ij = min
(
I \ ⋃

i<j Ii

)
.

By Lemma 12 and induction, f is a permutation on Ij and furthermore
a cyclic shift by Lemma 10. Thus G acts as a cyclic group on Ij. It follows
that G is Abelian, which is clearly more than enough to prove Theorem 2.
To obtain that G is in fact cyclic, we will argue that f is in fact completely
described by its restriction to I1.

For an interval I let Ij(I) denote the set {J ∈ Ij | I ⊆ J}. Pick an interval
I ∈ I1 such that Ij(I) 6= ∅. Observe that Ij(f(I)) = {f(J) ∈ Ij | I ⊆ J}.
The intervals of Ij(I) are linearly ordered by having I in between, and likewise
are the intervals of Ij(f(I)) linearly ordered by having f(I) in between. By
Lemma 11 (applied to f−1) these orderings are respected by f . In particular
is the first interval in Ij(I) mapped into the first interval in Ij(f(I)) by f ,
which is enough to describe how f acts on Ij. �

6 Conclusion and open problems

We have located the class of functions computed by small constant
width cylindrical circuits (or nondeterministic branching programs) between
Π2 ◦ MOD ◦ AC0 and ACC0. It would be very interesting to get an exact
characterisation of the power of cylindrical circuits and branching programs in
terms of bounded depth circuits. It is not known whether Π2 ◦ MOD ◦AC0

is different from ACC0 and this seems a difficult problem to resolve, so we
cannot hope for an unconditional separation of the power of cylindrical circuits
from ACC0. On the other hand, it seems difficult to generalise the simulation
of Π2 ◦MOD ◦AC0 by cylindrical branching programs to handle more than
one layer of MOD gates and we tend to believe that such a simulation is in
general not possible. Thus, one could hope that by better understanding the
structure of the monoids we have considered in this paper, it would be possible
to prove an upper bound seemingly better than ACC0, such as for instance
AC0 ◦ MOD ◦AC0.

It would also be interesting to separate the power of branching programs
from the power of circuits. As circuits can be trivially negated while pre-
serving cylindricality, we immediately have that not only Π2 ◦ MOD ◦AC0

but also Σ2 ◦ MOD ◦ AC0 can be simulated by small constant width cylin-
drical circuits. On the other hand, we don’t know if Σ2 ◦ MOD ◦ AC0 can
be simulated by small constant width cylindrical branching programs. Note
that in the plane case, both models capture AC0 and in the geometrically
unrestricted case, both models capture NC1, so it is not clear if one should a
priori conjecture the cylindrical models to have different power. Note that if
the models have identical power then they can simulate AC0 ◦MOD ◦AC0.
This follows from the fact that the branching program model is closed under

15

polynomial fan-in AND while the circuit model is closed under negation.
An interesting problems concerns the blowup of width to depth when going

from a cylindrical circuit or branching program to an ACC0 circuit. Our proof
does not yield anything better than a doubly exponential blowup. Again, by
better understanding the structure of the monoids we have considered, one
could hope for a better upper bound.

References

[1] D. A. Barrington. Bounded-width polynomial-size branching programs rec-
ognize exactly those languages in NC1. J. Comput. System Sci., 38(1):150–
164, 1989.

[2] D. A. M. Barrington, C.-J. Lu, P. B. Miltersen, and S. Skyum. Search-
ing constant width mazes captures the AC0 hierarchy. In Proceedings of
the 15th Annual Symposium on Theoretical Aspects of Computer Science,
pages 73–83, 1998.

[3] D. A. M. Barrington, C.-J. Lu, P. B. Miltersen, and S. Skyum. On mono-
tone planar circuits. In 14th Annual IEEE Conference on Computational
Complexity, pages 24–31. IEEE Computer Society Press, 1999.

[4] D. A. M. Barrington and D. Thérien. Finite monoids and the fine structure
of NC1. Journal of the ACM (JACM), 35(4):941–952, 1988.

[5] V. Grolmusz and G. Tardos. Lower bounds for (modp − modm) circuits.
SIAM Journal on Computing, 29(4):1209–1222, Aug. 2000.

[6] S. Skyum and L. G. Valiant. A complexity theory based on boolean algebra.
Journal of the ACM (JACM), 32(2):484–502, 1985.

[7] V. Vinay. Hierarchies of circuit classes that are closed under complement.
In 11th Annual IEEE Conference on Computational Complexity (CCC-96),
pages 108–117, Los Alamitos, May 24–27 1996. IEEE Computer Society.

16

Recent BRICS Report Series Publications

RS-02-50 Kristoffer Arnsfelt Hansen, Peter Bro Miltersen, and V. Vinay.
Circuits on Cylinders. December 2002. 16 pp.

RS-02-49 Mikkel Nygaard and Glynn Winskel. HOPLA—A Higher-
Order Process Language. December 2002. 18 pp. Appears
in Brim, Jan čar, Křetı́nský and Antonı́n, editors, Concurrency
Theory: 13th International Conference, CONCUR ’02 Proceed-
ings, LNCS 2421, 2002, pages 434–448.

RS-02-48 Mikkel Nygaard and Glynn Winskel.Linearity in Process Lan-
guages. December 2002. 27 pp. Appears in Plotkin, editor,
Seventeenth Annual IEEE Symposium on Logic in Computer
Science, LICS ’02 Proceedings, 2002, pages 433–446.

RS-02-47 Zolt́an Ésik. Extended Temporal Logic on Finite Words and
Wreath Product of Monoids with Distinguished Generators. De-
cember 2002. 16 pp. To appear in6th International Conference,
Developments in Language Theory, DLT ’02 Revised Papers,
LNCS, 2002.

RS-02-46 Zolt́an Ésik and Hans Leiß. Greibach Normal Form in Alge-
braically Complete Semirings. December 2002. 43 pp. An ex-
tended abstract appears in Bradfield, editor,European Associ-
ation for Computer Science Logic: 16th International Workshop,
CSL ’02 Proceedings, LNCS 2471, 2002, pages 135–150.

RS-02-45 Jesper Makholm Byskov. Chromatic Number in Time
O(2.4023n) Using Maximal Independent Sets. December 2002.
6 pp.

RS-02-44 Zolt́an Ésik and Zoltán L. Németh. Higher Dimensional Au-
tomata. November 2002. 32 pp. A preliminary version appears
under the title Automata on Series-Parallel Biposetsin Kuich,
Rozenberg and Salomaa, editors,5th International Conference,
Developments in Language Theory, DLT ’01 Revised Papers,
LNCS 2295, 2001, pages 217–227. This report supersedes the
earlier BRICS report RS-01-24.

RS-02-43 Mikkel Christiansen and Emmanuel Fleury. Using IDDs for
Packet Filtering. October 2002. 25 pp.

