
B
R

IC
S

R
S

-02-51
B

rodaletal.:
C

om
puting

R
efined

B
unem

an
Trees

in
C

ubic
T

im
e

BRICS
Basic Research in Computer Science

Computing Refined Buneman Trees in
Cubic Time

Gerth Stølting Brodal
Rolf Fagerberg
Anna Östlin
Christian N. S. Pedersen
S. Srinivasa Rao

BRICS Report Series RS-02-51

ISSN 0909-0878 December 2002



Copyright c© 2002, Gerth Stølting Brodal & Rolf Fagerberg &
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Abstract
Reconstructing the evolutionary tree for a set of n species

based on pairwise distances between the species is a fundamen-
tal problem in bioinformatics. Neighbor joining is a popular dis-
tance based tree reconstruction method. It always proposes fully
resolved binary trees despite missing evidence in the underlying
distance data. Distance based methods based on the theory of
Buneman trees and refined Buneman trees avoid this problem by
only proposing evolutionary trees whose edges satisfy a number
of constraints. These trees might not be fully resolved but there
is strong combinatorial evidence for each proposed edge. The
currently best algorithm for computing the refined Buneman tree
from a given distance measure has a running time of O(n5) and
a space consumption of O(n4). In this paper, we present an algo-
rithm with running time O(n3) and space consumption O(n2).
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1 Introduction

The evolutionary relationship for a set of species is commonly described
by an evolutionary tree, also called a phylogeny, where leaves correspond
to species and internal nodes correspond to points in time where the evo-
lution has diverged in different directions. Reconstructing an unknown
evolutionary tree for a set of species from obtainable information about
the species is a fundamental problem in bioinformatics. A multitude
of models and methods for reconstructing evolutionary trees have been
proposed in the literature, see e.g. [10] for an overview. A large class of
methods use the evolutionary distance between each pair of species as
their primary source of information for reconstructing the unknown evo-
lutionary relationships. Distance data can e.g. be obtained from sequence
data from the species by estimating the evolutionary distance between
homologous sequences in a model of sequence evolution.

A widely used distance based method is the neighbor joining method
by Saitou and Nei [11], which can be implemented with running time
O(n3) and space consumption O(n2), where n is the number of species.
A common critique of neighbor joining based methods is that they always
reconstruct fully resolved evolutionary trees, i.e. unrooted trees where all
internal nodes have degree three. A fully resolved tree can be misleading
because many of its internal edges can be artifacts of the reconstruct-
ing method insisting on a fully resolved tree even though the underlying
distance data contains little phylogenetic evidence hereof. To avoid this
problem, a number of distance based methods have been studied which
only propose evolutionary trees whose edges are well supported by con-
straints expressed in terms of quartets. A quartet is the topological sub-
tree induced by four species. Every edge in an evolutionary tree induces
a set of quartets consisting of the quartets with two species in each of
the two subtrees induced by removing the edge.

The Q∗ method [1, 3], which relates to the tree construction method
introduced by Buneman in [6], imposes constraints on the proposed edges
by requiring that all induced quartets must have positive weight for some
given weight function. The running time of the general Q∗ method is
O(n4), where n is the number of species, and it has been experimentally
shown to introduce very few incorrect edges [3]. If quartets are weighted
according to their Buneman score the resulting evolutionary tree which
satisfies that all induced quartets have positive Buneman score is called a
Buneman tree. Berry and Bryant [2] show how to compute the Buneman
tree for a set of n species in time O(n3) and space consumption O(n2).
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The Buneman tree is a conservative but reliable estimate of the evolution-
ary tree. However, as discussed in [2, 4] and illustrated in [2, Figure 1],
the severe constraints of positive Buneman score for all induced quartets
often result in a proposed evolutionary tree with few resolved edges. This
shortcoming was addressed by Moulton and Steel [9] who proposed the
refined Buneman tree which loosens the constraints by allowing a limited
number of the induced quartets to have negative score. This tree is a
refinement of the Buneman tree in the sense that it contains at least the
edges in the Buneman tree.

Bryant and Moulton [5] presented the first polynomial time algorithm
to compute the refined Buneman tree. The running time is O(n6). Berry
and Bryant [2, 4] gave an improved algorithm with running time O(n5)
and space consumption O(n4). In this paper we present a method for
constructing the refined Buneman tree for a set of n species in time O(n3)
and space O(n2).

Our algorithm is based on an incremental approach also used in the
algorithms presented in [2, 4, 5]. The central difference is that we do not
construct a sequence of refined Buneman trees, but instead construct a
sequence of over-approximations to refined Buneman trees from which
we can extract the desired refined Buneman tree at the end.

The improved running time and the simplicity of our algorithm makes
the method of refined Buneman trees computational competitive to meth-
ods based on neighbor joining and on plain Buneman trees. It will also
make it possible to perform comprehensive experiments on biological data
to examine the virtues of refined Buneman trees against trees produced
by these other methods. An implementation of our algorithm is currently
being made, and it is planned to be part of release 4.0 of the well-known
SplitsTree package [8].

The rest of this paper is organized as follows. In Section 2 we intro-
duce notation and earlier results related to Buneman and refined Bune-
man trees. In Section 3 we describe how to maintain a set of compatible
splits. In Sections 4 and 5 we present our improved algorithm for com-
puting refined Buneman trees.

2 Preliminaries

In the following we let the set of species be denoted X = {x1, . . . , xn},
and for an integer k ∈ {1, . . . , n} we let Xk = {x1, . . . , xk}.
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Figure 1: The possible topologies of four species.

Evolutionary tree An evolutionary tree (or X-tree) for a set of species
X is an unrooted tree T = (V, E) together with an injective labeling of
the leaves by members of X.

Dissimilarity measure A dissimilarity (or distance) measure δ on a
set of species X is a symmetric function δ : X2 → R+ where δ(x, x) = 0
for all x ∈ X.

Quartets To every set of four species a, b, c, d ∈ X, there are four ways
to associate a leaf-labeled tree, as shown in Figure 1. The three possible
binary tree resolutions, quartets, are denoted by ab|cd, ac|bd and ad|bc,
indicating how the central edge of the binary tree bipartitions the four
species. We say that an edge e in an X-tree induces a quartet ab|cd if e
bipartitions the four species in the same way as the central edge of the
quartet.

Splits The partition of a finite set into two non-empty parts U and
V is denoted a split U |V . In this paper we represent a split U |V as a
bit-vector A such that xi ∈ U if and only if A[i] = 0. If |U | = 1 or
|V | = 1 the split is called trivial. Removing an edge e from an X-tree T
partitions the leaf set of the tree into two parts. This is called the split
of T associated with the edge e. The complete set of splits associated
with each of its edges is denoted splits(T ). The lemma below is proved
in [7], but also follows from the construction in Section 3.

Lemma 1 (Gusfield [7]) Any unrooted X-tree with n leaves can be
constructed from its set of non-trivial splits in time O(kn), where k is
the number of non-trivial splits.

The set of quartets associated with a split U |V is defined by q(U |V ) =
{uu′|vv′ : u, u′ ∈ U ∧ v, v′ ∈ V }. Here u and u′ (similarly v and v′) need
not be distinct.
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Compatibility A set of splits S is compatible if S ⊆ splits(T ) for some
tree T .

Lemma 2 (Buneman [6]) Two splits A|B and C|D are compatible if
and only if one of A ∩ C, A ∩ D, B ∩ C or B ∩ D is empty. A set of
splits is compatible if and only if it is pairwise compatible.

Buneman trees Buneman [6] shows how to construct a weighted un-
rooted tree from a dissimilarity measure δ on X by considering quartets.
The Buneman score of a quartet q = ab|cd, where a, b, c, d ∈ X is defined
as:

βq =
1

2
(min{ac + bd, ad + bc} − (ab + cd)) , (1)

where ab denotes δ(a, b) for a, b ∈ X. Two distinct quartets q1 and q2 for
the same four species satisfy

βq1 + βq2 ≤ 0 . (2)

The Buneman index of a split σ = U |V of X is

µσ(δ) = min
u,u′∈U,v,v′∈V

βuu′|vv′ .

Buneman showed that the set of all splits B(δ) = {σ : µσ(δ) > 0} is
compatible. The Buneman tree corresponding to a given dissimilarity
measure δ is defined to be the weighted unrooted tree whose edges rep-
resent the splits σ ∈ B(δ) and are weighted according to µσ(δ).

Anchored Buneman tree One relaxation of the condition that
µU |V > 0 is to only look at quartets containing a certain fixed species x ∈
X. For each split U |V with x ∈ U define

µx
U |V (δ) = min

u∈U,v,v′∈V
βxu|vv′ ,

and let Bx(δ) = {U |V : µx
U |V > 0}. Clearly B(δ) ⊆ Bx(δ). Bryant and

Moulton show that the set of splits Bx(δ) is compatible [5, Lemma 1]. The
weighted unrooted tree representing Bx(δ) with the edge representing
a split σ ∈ Bx(δ) given the weight µx

σ(δ), is called the Buneman tree
anchored at x.

Lemma 3 (Bryant and Moulton [5, Proposition 2])
B(δ) = ∩x∈XBx(δ).

Lemma 4 (Berry and Bryant [2, Section 3.2]) Bx(δ) can be com-
puted in time (and space) O(n2).
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Refined Buneman tree Given a split σ for a set size n, let m = |q(σ)|
and let q1, . . . , qm be an ordering of the elements of q(σ) in non-decreasing
order of their Buneman scores. The refined Buneman index of the split
σ is defined as

µ̄σ(δ) =
1

n − 3

n−3∑

i=1

βqi
. (3)

Moulton and Steel show that the set of splits {σ : µ̄σ > 0} is com-
patible [9, Corollary 5.1]. They define the refined Buneman tree as the
weighted unrooted tree representing the set RB(δ) = {σ : µ̄σ > 0}, with
the edge representing the split σ ∈ RB(δ) given the weight µ̄σ(δ).

Lemma 5 Given two incompatible splits σ1 and σ2, there exist an i ∈
{1, 2} such that µ̄σi

≤ 0, which can be computed in O(n) time.

Proof. Let σ1 = U1|V1 and σ2 = U2|V2. Since σ1 and σ2 are incompatible,
the sets A = U1 ∩ U2, B = U1 ∩ V2, C = V1 ∩ U2 and D = V1 ∩ V2 are all
non-empty. From the bitvector representations of σ1 and σ2 these four
sets can be computed in time O(n). Since |A| · |B| · |C| · |D| ≥ n− 3 and
βab|cd + βac|bd ≤ 0 for every a ∈ A, b ∈ B, c ∈ C and d ∈ D by (2), we can
find at least n − 3 pairs of quartets (q1

i , q
2
i ), where q1

i and q2
i contain the

same four species and 1 ≤ i ≤ n−3, such that q1
i ∈ q(σ1), q

2
i ∈ q(σ2) and

βq1
i
+ βq2

i
≤ 0. Thus, we have

n−3∑

i=1

βq1
i
+ βq2

i
≤ 0 ,

which implies
n−3∑

i=1

βq1
i
≤ 0 or

n−3∑

i=1

βq2
i
≤ 0 .

It follows that µ̄σ1 ≤ 0 or µ̄σ2 ≤ 0. By calculating the two sums
∑n−3

i=1 βq1
i

and
∑n−3

i=1 βq2
i

in time O(n) we get two upper bounds for µ̄σ1 and µ̄σ2 and
can discard at least one of the two splits. 2

The following lemma is due to Bryant and Moulton and forms the
basis of the incremental algorithms presented in [2, 4, 5] as well as the
algorithm we present in this paper.

Lemma 6 (Bryant and Moulton [5, Proposition 3])
Suppose |X| > 4, and fix x ∈ X. If σ = U |V is a split in RB(δ) with x ∈
U , and |U | > 2, then either U |V ∈ Bx(δ) or U − {x}|V ∈ RB(δ|X−{x})
or both.
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3 Maintaining a set of compatible splits

The running time of our algorithm for computing refined Buneman trees
is dominanted by the maintenance of a set of compatible splits repre-
sented by an X-tree T . In this section, we consider how to support the
operations below on X-trees. Recall that we represent a split U |V by a
bit-vector A such that xi ∈ U if and only if A[i] = 0.

• Incompatible(T, σ) Return a split σ′ in T that is incompatible with
σ. If all splits in T are pairwise compatible with σ then return nil.

• Insert(T, σ) Insert a new split σ into T . It is assumed that σ is
pairwise compatible with all existing splits in T .

• Delete(T, σ) Remove the split σ from T .

Theorem 1 The operations Incompatible, Insert, and Delete can be sup-
ported in time O(n), where n = |X|.

Proof. For the operation Incompatible(T, σ), where σ = U |V , we root T
at an arbitrary leaf, and by a depth first traversal of T for each node v
of T compute the number of leaves below v which are in respectively
U and V in time O(n). If the parent edge of a node v represents the
split σ′ = U ′|V ′, where U ′ are the elements below v, then the two counts
represent respectively |U ′∩U | and |U ′∩V |. From the equalities |V ′∩U | =
|U | − |U ′ ∩ U | and |V ′ ∩ V | = |V | − |U ′ ∩ V |, we can now in constant
time decide if σ′ is incompatible with σ, since σ and σ′ by definition are
incompatible if and only if |U ′ ∩ U |, |U ′ ∩ V |, |V ′ ∩ U |, and |V ′ ∩ V |
are all non-zero. We return the first incompatible split found during the
traversal of T . If no edge represents a split incompatible with σ, we
return nil.

To perform Delete(T, σ) we in linear time find the unique edge (v, u)
representing the split σ, by performing a depth first traversal to locate
the node v, where the subtree rooted at v contains all elements from U
and no element from V or vice versa. Finally we remove the edge (v, u),
where u is the parent of v, by contracting v and u into a single node
inheriting the incident edges of both nodes.

Finally consider Insert(T, σ), where σ = U |V . We claim that, since σ
is assumed pairwise compatible with all splits in T , there exist a node v,
such that removing v and its incident edges leaves us with a set of subtrees
where each subtree contains only elements from either U or V . We prove

7



the existence of v below. To locate v we similar to the Incompatible
operation root T at an arbitrary leaf and bottom-up calculate for each
node the number of leaves below in respectively U and V . We stop when
we find the node v described above. We replace v by two nodes vU

and vV connected by the edge e = (vU , vV ). Each subtree incident to v
containing only elements from respectively U or V is made incident to
respectively vU or vV . This ensures that e represents the split σ, and
that all other edges remain representing the same set of splits.

What remains is to show that such a node v exists. If |U | = 1 or
|V | = 1 the statement is trivially true. Otherwise, assume |U | > 1 and
|V | > 1, and that the root r is a leaf in U . Let a be a leaf in V . We now
argue that the lowest node v on the path from a to the root r containing
at least one element from U in its subtree is the node required. Let u
be the predecessor of v on the path from a to the root r. By definition
u only contains elements from V in its subtree. Let u′ be a sibling of u
that contains at least one leaf b from U in its subtree. Assume now for
the sake of contradiction that removing v and its incident edges leaves us
with a set of subtrees including a subtree containing elements c ∈ U and
d ∈ V . Consider the case that c and d are not contained in the subtree
of u′, but in a subtree that was connected to v with an edge representing
a split U ′|V ′, where c ∈ V ′ and d ∈ V ′. Then the splits U |V and U ′|V ′

are incompatible, since a ∈ V ∩U ′, b ∈ U∩U ′, c ∈ U∩V ′, and d ∈ V ∩V ′.
Otherwise if c and d are contained in the subtree of u′, then let U ′|V ′ be
the split represented by the edge (u′, v). The splits U |V and U ′|V ′ are
then incompatible by a ∈ V ∩U ′, r ∈ U ∩U ′, c ∈ U ∩V ′, and d ∈ V ∩V ′.

2

4 Computing refined Buneman trees

We compute the refined Buneman tree for X by computing a sequence
of sets of splits C4, . . . , Cn, such that each Ck is a set of compatible splits
that is an over-approximation of the refined Buneman splits for Xk, i.e.
Ck ⊇ RB(δk), where δk = δ|Xk

. Each iteration makes essential use of the
characterization given by Lemma 6, that enables us to compute Ck+1 from
Ck together with the anchored Buneman tree for Xk+1 with anchor xk+1.
To avoid a blow up in the number of splits, we use the observation that
given two incompatible splits, we by Lemma 5 can discard one of the
splits as not being a refined Buneman split. By computing the refined
Buneman scores for the final set of splits Cn we can exclude all splits with

8



1. C4 := Bx4(δ4)
2. for k = 5 to n
3. Ck := Bxk

(δk)
4. for U |V ∈ Ck−1

5. for σ ∈ {U ∪ {xk}|V , U |V ∪ {xk}}
6. σ′ := Incompatible(Ck, σ)
7. while σ′ 6= nil and DiscardRight?(σ, σ′)
8. Delete(Ck, σ

′)
9. σ′ := Incompatible(Ck, σ)
10. if σ′ = nil
11. Insert(Ck, σ)
12. Compute refined Buneman index for Cn and discard splits

with a non-positive score

Figure 2: The overall algorithm for computing the refined Buneman tree

a non-positive refined Buneman score, and obtain the refined Buneman
tree RB(δ) for X. In the following we assume that all sets of compatible
splits over Xk are represented by their Xk-tree, i.e. the space usage for
storing a compatible set of splits is O(k).

Theorem 2 Given a dissimilarity measure δ for n species, the refined
Buneman tree RB(δ) can be computed in time O(n3) and space O(n2).

Proof. Pseudo code for the algorithm is contained in Figure 2. The
operations Insert, Delete and Incompatible are the operations on a set of
compatible splits as described in Section 3. The operation DiscardRight?
takes two incompatible splits and returns true/false if the second/first
split has been verified not to be a refined Buneman split, c.f. Lemma 5.

In lines 1-11 we compute a sequence of sets of compatible splits
C4, . . . , Cn, such that Ck ⊇ RB(δk). In line 1 we let C4 be an over-
approximation of Bx4(δ4), which satisfies C4 ⊇ RB(δ4) since each refined
Buneman split for a set of size four must also be contained in any an-
chored Buneman split. In lines 2-11 we (based on Lemma 6) inductively
compute Ck from Ck−1 by letting Ck be the set of splits

Bxk
(δk) ∪

⋃

U |V ∈Ck−1

{U ∪ {xk}|V , U |V ∪ {xk}} ,

except for some incompatible splits that we explicitly verify not being in
RB(δk) (lines 6-11).
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Since Ck and Bxk
(δk) are sets of compatible splits, both contain at

most 2k − 3 splits. It follows that in an iteration of lines 3 − 11 at most
(2k−3)+2(2(k−1)−3) ≤ 6k splits can be inserted and deleted from Ck.
The number of calls to DiscardRight? and Incompatible is bounded by the
number of insertions and deletions of splits. Since by Lemma 4 computing
Bxk

(δk) takes time O(k2) and each operation on a set of compatible splits
takes time O(k), it follows that the total time spent in an iteration of
lines 3-11 is O(k2), i.e. for lines 1-11 the total time used is O(n3). Since
we for each iteration of the for loop in line 2 only require access to Ck−1

and Ck, which are represented by X-trees, it follows that the space usage
for lines 1-11 is O(n) (not counting the space usage for the dissimilarity
measure), if we discard Ck−2 at the beginning of iteration k.

In Section 5 we describe how to compute the refined Buneman indexes
for Cn in time O(n3) and space O(n2), i.e. it follows that the total time
and space usage is respectively O(n3) and O(n2). 2

The algorithms in [2, 4, 5] are based on a similar approach as the
algorithm described above, but use the stronger requirement that Ck =
RB(δk). A central feature of our relaxed computation is that the number
of computations of refined Buneman scores for a set of compatible splits
is reduced from n − 3 to a single computation as the final step of the
algorithm.

5 Refined Buneman indexes

Given an X-tree where the edges E represent a set of compatible splits,
we in this section describe how to compute the refined Buneman indexes
for the set of splits in time O(n3) and space O(n2). The previously best
algorithm for this subtask uses time O(n4) [4, Lemma 3.2] assuming that
the scores of the quartets are given in sorted order.

For each edge e, our algorithm finds the n − 3 quartets of smallest
Buneman score induced by e. The refined Buneman indexes for all edges
can then be computed according to (3) in time O(n2).

To identify for each split the quartets with smallest Buneman score,
we assume an arbitrary ordering of the species and adopt the following
terminology. Let ab|cd be a quartet, where a is the smallest named
species among the four species a, b, c and d in the assumed ordering
of all species. Motivated by the definition of Buneman scores (1), we
consider each quartet ab|cd as two diagonal quartets which we denote
ab||cd and ab||dc. The score of a diagonal quartet ab||cd is defined as

10



ηab||cd = (δ(b, c) − δ(a, b) + δ(a, d) − δ(d, c))/2. From the definitions we
have βab|cd = min{ηab||cd, ηab||dc}.

Instead of searching for quartets with increasing score we search for
diagonal quartets with increasing score. This has the disadvantage that
each quartet can be found up to two times (only one time if c = d).
We say that ab||cd is the minimum diagonal of ab|cd, if ηab||cd < ηab||dc

or ηab||cd = ηab||dc and c is the smallest named species among c and d.
Otherwise ab||dc is the minimum diagonal. Note that the Buneman score
of ab|cd equals the score of the minimum diagonal. When identifying
ab||cd we can by inspecting the quartet check if ab||cd is the minimum
diagonal of ab|cd; if so we identify ab|cd. Otherwise, ab|cd has already
been identified by ab||dc since the diagonal quartets are visited in order
of increasing score.

The main property of diagonal quartets which we exploit is that for
fixed a and c, we can search independently for b and d to find the diagonal
quartet ab||cd of minimum diagonal score: Find respectively b and d such
that respectively δ(b, c) − δ(a, b) and δ(a, d) − δ(d, c) are minimal.

For an edge e defining the split U |V and a ∈ U and c ∈ V , where a
is the smallest named species among a and c, let U e

ac = b1, . . . , b|Ue
ac| ⊆ U

and V e
ac = d1, . . . , d|V e

ac| ⊆ V be the sets of species named at least a,
and where bi and dj appear in sorted order with respect to increasing
δ(bi, c)− δ(a, bi) and δ(a, dj)− δ(dj , c) value. We can consider all abi||cdj

as entries of a matrix Me
ac, where (Me

ac)i,j = ηabi||cdj
. The crucial property

of Me
ac is that each row and column is monotonic non-decreasing. This

allows us to construct Me
ac in a lazy manner while exploring the diagonal

quartets, starting with only computing (Me
ac)1,1 which we denote the

minimal score of the pair (a, c).
For each edge e we will lazily construct a subset Qe of the diagonal

quartets induced by e. We represent each Qe by a linked list. To identify
the n−3 quartets with smallest Buneman score it is sufficient to identify
the 2(n−3) pairs (a, c) with smallest minimum score. Since for a quartet
there are at most two diagonal quartets, the n− 3 quartets induced by e
with smallest Buneman score will have minimum diagonal quartets with
(a, c) among the 2(n − 3) pairs found.

The pseudo code for the algorithm to find the n− 3 quartets for each
split is given in Figure 3. In lines 1-11 we identify between 2(n− 3) and
3(n − 3) pairs (a, c) with smallest minimal score.

In lines 4-5 and 6-7 we find the b1 and d1 species for entries (Me
ac)1,1.

Note that the two loops process the edges between a and c in differ-
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1. for e ∈ E
2. Qe := ∅
3. for (a, c) ∈ X2 and a < c
4. for each edge e on the path from a to c
5. find be on the same side of e as a with

δ(be, c) − δ(a, be) minimal and be ≥ a
6. for each edge e on the path from c to a
7. find de on the same side of e as c with

δ(a, de) − δ(de, c) minimal and de > a
8. for each edge e on the path from a to c
9. Qe := Qe ∪ {abe||cde}
10. if |Qe| ≥ 3(n − 3)
11. remove the n − 3 quartets with largest score from Qe

12. for e ∈ E
13. Se := ∅
14. while |Se| < n − 3
15. abi||cdj := DeleteMin(Qe)
16. if abi||cdj is a minimum diagonal
17. Insert(Se, abi|cdj)
18. Insert(Qe, abi+1||cd1) provided j = 1 and bi+1 exists
19. Insert(Qe, abi||cdj+1) provided dj+1 exists

Figure 3: Algorithm for computing the n − 3 smallest Buneman scores
induced by each edge of an X-tree

ent directions. Since the set of possible species b (species d) increases
along the path from a to c (from c to a), we can compute the species be

(species de) from the minimum found so far for the predecessor edge on
the path together with the new species not considered yet. For each pair
(a, c) we will then spend a total time of O(n) in lines 4-7.

In lines 10-11 we for an edge e remove the 1/3 of the pairs (a, c)
computed with largest minimum score if |Qe| becomes 3(n − 3), leaving
the 2(n− 3) pairs with smallest minimum score in Qe. This ensures that
for each of the n edges we at most have to store 3(n − 3) pairs, in total
bounding the space required by O(n2). Line 11 can be performed in
O(n) time using e.g. the selection algorithm in [12], i.e. amortized O(1)
time for each element deleted from Qe. In total we spend time O(n3) in
lines 1-11 and use space O(n2),

In lines 12-19 we extract for each edge e the n − 3 quartets Se with
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smallest Buneman score in sorted order. In line 15 we delete the next
diagonal quartet from Qe with smallest diagonal score. If Qe contains
several diagonal quartets with the same score we first delete those which
are minimum diagonals.

In line 18 we ensure that if the j first entries of row i of Me
ac have

been considered, then (Me
ac)i,j+1 is inserted in Qe. Similarly in line 19

we ensure that if the i first entries in the first column of Me
ac have been

considered then (Me
ac)i+1,1 is inserted into Qe. To find the relevant dj+1

in line 18 (bi+1 in line 19), we make a linear scan of the subtree incident
to e which contains a (respectively c). The species bi+1 ≥ a should have
the smallest value δ(bi+1, c) − δ(a, bi+1) ≥ δ(bi, c) − δ(a, bi); in case the
expressions are equal then the smallest bi+1 > bi. Similarly, the species
dj+1 > a should have the smallest δ(a, dj+1) − δ(dj+1, c) ≥ δ(a, dj) −
δ(dj, c); and in case the expressions are equal then the smallest dj+1 > dj.

The for-loop in lines 12-19 is performed n times, and the while-loop in
lines 14-19 is performed at most 2(n− 3) times for each edge, since each
iteration considers one diagonal quartet. Each of the 2(n − 3) deletions
from Qe inserts at most two diagonal quartets into Qe, i.e. |Qe| ≤ 5(n−3).
It follows that DeleteMin in line 15 takes time O(n). Finally, lines 18
and 19 each require time O(n). The total time used by the algorithm
becomes O(n3) and the space usage is O(n2).

Theorem 3 The refined Buneman indexes for all splits in a given X-tree
can be computed in time O(n3) and space O(n2).
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