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Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard
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University of Aarhus†
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Abstract

We bridge the gap between functional evaluators and abstract ma-
chines for the λ-calculus, using closure conversion, transformation into
continuation-passing style, and defunctionalization of continuations.

We illustrate this bridge by deriving Krivine’s abstract machine from
an ordinary call-by-name evaluator and by deriving an ordinary call-by-
value evaluator from Felleisen et al.’s CEK machine. The first derivation
is strikingly simpler than what can be found in the literature. The second
one is new. Together, they show that Krivine’s abstract machine and the
CEK machine correspond to the call-by-name and call-by-value facets of
an ordinary evaluator for the λ-calculus.

We then reveal the denotational content of Hannan and Miller’s CLS
machine and of Landin’s SECD machine. We formally compare the corre-
sponding evaluators and we illustrate some relative degrees of freedom in
the design spaces of evaluators and of abstract machines for the λ-calculus
with computational effects.

For the purpose of this work, we distinguish between virtual machines,
which have an instruction set, and abstract machines, which do not. The
Categorical Abstract Machine, for example, has an instruction set, but
Krivine’s machine, the CEK machine, the CLS machine, and the SECD
machine do not; they directly operate on λ-terms instead. We present the
abstract machine that corresponds to the Categorical Abstract Machine.
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1 Introduction and related work

In Hannan and Miller’s words [21, Section 7], there are fundamental differences
between denotational definitions and definitions of abstract machines. While a
functional programmer tends to be familiar with denotational definitions [34],
he typically wonders about the following issues:

• How does one design an abstract machine? How were existing abstract
machines, starting with Landin’s SECD machine, designed? How does
one make variants of an existing abstract machine? How does one extend
an existing abstract machine to a bigger source language? How does one
go about designing a new abstract machine? How does one relate two
abstract machines?

• How does one prove the correctness of an abstract machine? Assuming it
implements a reduction strategy, should one prove that each of its transi-
tions implements a part of this strategy? Or should one characterize it in
reference to a given evaluator, or to another abstract machine?

• Why do some abstract machines operate on λ-terms directly whereas oth-
ers operate on compiled λ-terms expressed with an instruction set?

A variety of answers to these questions can be found in the literature. Landin
invented the SECD machine as an implementation model for functional lan-
guages [25]. Plotkin proved its correctness in connection with an evaluation
function [29, Section 2]. Krivine discovered an abstract machine from a logi-
cal standpoint [24]. Crégut proved its correctness in reference to a reduction
strategy and he generalized it from weak to strong normalization [6]. Curien dis-
covered the Categorical Abstract Machine from a categorical standpoint [5, 7].
Felleisen et al. invented the CEK machine from an operational standpoint [16].
Hannan and Miller discovered the CLS machine from a proof-theoretical stand-
point [21]. Many people derived, invented, or re-discovered Krivine’s machine.
Many others proposed modifications of existing machines. And recently, Hardin,
Maranget, and Pagano introduced a method to extract the reduction strategy
of a machine by extracting axioms from its transitions and structural rules from
its architecture [22].

In this article, we propose one simple answer to all the questions above.
We present a correspondence between functional evaluators and abstract ma-
chines based on a two-way derivation: closure conversion, transformation into
continuation-passing style (CPS), and defunctionalization. This two-way deriva-
tion lets us connect each of the machines above with an evaluator, and makes it
possible to echo variations over the evaluator into variations over the abstract
machine, and vice versa. The evaluator puts the reduction strategy of the ma-
chine in the open. The abstract machine makes the evaluation steps explicit in
a transition system. In addition, we also distinguish between abstract machines
and virtual machines in the sense that virtual machines have an instruction set
and abstract machines do not; instead, they directly operate on source terms
and do not need a compiler.
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Prerequisites: We use ML as a meta-language, and we assume a basic fa-
miliarity with Standard ML and reasoning about ML programs. In particular,
given two pure ML expressions e and e’ we write e ∼= e’ to express that e and
e’ are observationally equivalent. Most of our implementations of the abstract
machines raise compiler warnings about non-exhaustive matches. These are
inherent to programming abstract machines in an ML-like language. The warn-
ings could be avoided with an option type or with an explicit exception, at the
price of readability and direct relation to the usual mathematical specifications
of abstract machines.

It would be helpful to the reader to know at least one of the machines
considered in the rest of this article, be it Krivine’s machine, the CEK machine,
the CLS machine, the SECD machine, or the Categorical Abstract Machine. It
would also be helpful to have already seen a λ-interpreter written in a functional
language [19, 30, 33, 37].

We make use of the CPS transformation [11, 31]: a term is CPS-transformed
by naming all its intermediate results, sequentializing their computation, and
introducing continuations. Plotkin was the first to establish the correctness of
the CPS transformation [29].

We also make use of Reynolds’s defunctionalization [30]: defunctionalizing
a program amounts to replacing each of its function spaces by a data type
and an apply function; the data type enumerates all the function abstractions
that may give rise to inhabitants of this function space [14]. In particular, clo-
sure conversion amounts to replacing each of the function spaces in expressible
and denotable values by a tuple, and inlining the corresponding apply func-
tion. Nielsen, Banerjee, Heintze, and Riecke have established the correctness of
defunctionalization [2, 28].

Overview: The rest of this article is organized as follows. We first consider
a call-by-name and a call-by-value evaluator, and we present the correspond-
ing machines, which are Krivine’s machine and the CEK machine. We then
consider the CLS machine and the SECD machine, and we present the corre-
sponding evaluators. We finally turn to the Categorical Abstract Machine. For
simplicity, we do not cover laziness and sharing, but they come for free by CPS
transformation and threading of a heap of updateable thunks.

2 Call-by-name, call-by-value, and the λ-calculus

We first go from a call-by-name evaluator to Krivine’s abstract machine (Sec-
tion 2.1) and then from the CEK machine to a call-by-value evaluator (Sec-
tion 2.2). The derivation steps consist of closure conversion, transformation
into continuation-passing style, and defunctionalization of continuations.

Krivine’s abstract machine operates on de Bruijn-encoded λ-terms, and the
CEK machine operates on λ-terms with names. Starting from the corresponding
evaluators, it is simple to construct a version of Krivine’s abstract machine
that operates on λ-terms with names, and a version of the CEK machine that
operates on de Bruijn-encoded λ-terms (Section 2.3).
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2.1 From a call-by-name evaluator to Krivine’s machine

Krivine’s abstract machine [6] operates on de Bruijn-encoded λ-terms. In this
representation, identifiers are represented by their lexical offset, as traditional
since Algol 60 [38].

datatype term = IND of int (* de Bruijn index *)

| ABS of term

| APP of term * term

Programs are closed terms.

2.1.1 A higher-order and compositional call-by-name evaluator

Our starting point is the canonical call-by-name evaluator for the λ-calculus [33,
35]. This evaluator is compositional in the sense of denotational semantics [32,
35, 39] and higher order. It is compositional because it solely defines the mean-
ing of each term as a composition of the meaning of its parts. It is higher
order because the data types denval and expval contain functions. Denotable
values are thunks and expressible values are functions [36]. Environments are
represented as lists of denotable values. A program is evaluated in an empty
environment.

structure Eval0

= struct

datatype denval = THUNK of unit -> expval

and expval = FUNCT of denval -> expval

(* eval : term * denval list -> expval *)

fun eval (IND n, e)

= let val (THUNK thunk) = List.nth (e, n)

in thunk ()

end

| eval (ABS t, e)

= FUNCT (fn v => eval (t, v :: e))

| eval (APP (t0, t1), e)

= let val (FUNCT f) = eval (t0, e)

in f (THUNK (fn () => eval (t1, e)))

end

(* main : term -> expval *)

fun main t

= eval (t, nil)

end

2.1.2 From higher-order functions to closures

In Eval0, the function spaces in the data types of denotable and expressible
values are only inhabited by instances of the λ-abstractions fn v => eval (t,
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v :: e) in the meaning of abstractions, and fn () => eval (t1, e) in the mean-
ing of applications. Each of these λ-abstractions has two free variables: a
term and an environment. We defunctionalize these function spaces into clo-
sures [14, 25, 30], and we inline the corresponding apply functions.

structure Eval1

= struct

datatype denval = THUNK of term * denval list

and expval = FUNCT of term * denval list

(* eval : term * denval list -> expval *)

fun eval (IND n, e)

= let val (THUNK (t, e’)) = List.nth (e, n)

in eval (t, e’)

end

| eval (ABS t, e)

= FUNCT (t, e)

| eval (APP (t0, t1), e)

= let val (FUNCT (t, e’)) = eval (t0, e)

in eval (t, (THUNK (t1, e)) :: e’)

end

(* main : term -> expval *)

fun main t

= eval (t, nil)

end

The definition of an abstraction is now Eval1.FUNCT (t, e) instead of fn v =>

Eval0.eval (t, v :: e), and its use is now Eval1.eval (t, (Eval1.THUNK (t1,

e)) :: e’) instead of f (Eval0.THUNK (fn () => Eval0.eval (t1, e))). Simi-
larly, the definition of a thunk is now Eval1.THUNK (t1, e) instead of Eval0.THUNK
(fn () => Eval0.eval (t1, e)) and its use is Eval1.eval (t, e’) instead of
thunk ().

The following proposition is a corollary of the correctness of defunctional-
ization.

Proposition 1 (full correctness) For any ML value p : term denoting a pro-
gram, evaluating Eval0.main p yields a value FUNCT f and evaluating Eval1.main

p yields a value FUNCT (t, e) such that

f ∼= fn v => Eval1.eval (t, v :: e)

2.1.3 CPS transformation

We transform eval into continuation-passing style.1 Doing so makes it tail
recursive.

1Since programs are closed, applying List.nth cannot fail and therefore it denotes a total
function. We thus keep it in direct style [13].
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structure Eval2

= struct

datatype denval = THUNK of term * denval list

and expval = FUNCT of term * denval list

(* eval : term * denval list * (expval -> ’a) -> ’a *)

fun eval (IND n, e, k)

= let val (THUNK (t, e’)) = List.nth (e, n)

in eval (t, e’, k)

end

| eval (ABS t, e, k)

= k (FUNCT (t, e))

| eval (APP (t0, t1), e, k)

= eval (t0, e, fn (FUNCT (t, e’))

=> eval (t, (THUNK (t1, e)) :: e’, k))

(* main : term -> expval *)

fun main t

= eval (t, nil, fn v => v)

end

The following proposition is a corollary of the correctness of the CPS trans-
formation. (Here observational equivalence reduces to structural equality over
ML values of type expval.)

Proposition 2 (full correctness) For any ML value p : term denoting a pro-
gram,

Eval1.main p ∼= Eval2.main p

2.1.4 Defunctionalizing the continuations

The function space of the continuation is inhabited by instances of two λ-
abstractions: the initial one in the definition of Eval2.main, with no free vari-
ables, and one in the meaning of an application, with three free variables. To
defunctionalize the continuation, we thus define a data type cont with two sum-
mands and the corresponding apply cont function to interpret these summands.

structure Eval3

= struct

datatype denval = THUNK of term * denval list

and expval = FUNCT of term * denval list

and cont = CONT0 | CONT1 of term * denval list * cont

(* eval : term * denval list * cont -> expval *)

fun eval (IND n, e, k)

= let val (THUNK (t, e’)) = List.nth (e, n)

in eval (t, e’, k)

end

| eval (ABS t, e, k)

= apply_cont (k, FUNCT (t, e))
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| eval (APP (t0, t1), e, k)

= eval (t0, e, CONT1 (t1, e, k))

and apply_cont (CONT0, v)

= v

| apply_cont (CONT1 (t1, e, k), FUNCT (t, e’))

= eval (t, (THUNK (t1, e)) :: e’, k)

(* main : term -> expval *)

fun main t

= eval (t, nil, CONT0)

end

The following proposition is a corollary of the correctness of defunctionaliza-
tion. (Again, observational equivalence reduces here to structural equality over
ML values of type expval.)

Proposition 3 (full correctness) For any ML value p : term denoting a pro-
gram,

Eval2.main p ∼= Eval3.main p

We identify that cont is a stack of thunks, and that the transitions are those
of Krivine’s abstract machine.

2.1.5 Krivine’s abstract machine

To obtain the canonical definition of Krivine’s abstract machine, we abandon the
distinction between denotable and expressible values and we use thunks instead,
we represent the defunctionalized continuation as a list of thunks instead of a
data type, and we inline apply cont.

structure Eval4

= struct

datatype thunk = THUNK of term * thunk list

(* eval : term * thunk list * thunk list -> term * thunk list *)

fun eval (IND n, e, s)

= let val (THUNK (t, e’)) = List.nth (e, n)

in eval (t, e’, s)

end

| eval (ABS t, e, nil)

= (ABS t, e)

| eval (ABS t, e, (t’, e’) :: s)

= eval (t, (THUNK (t’, e’)) :: e, s)

| eval (APP (t0, t1), e, s)

= eval (t0, e, (t1, e) :: s)

(* main : term -> term * thunk list *)

fun main t

= eval (t, nil, nil)

end
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The following proposition is straightforward to prove.

Proposition 4 (full correctness) For any ML value p : term denoting a pro-
gram,

Eval3.main p ∼= Eval4.main p

For comparison, the canonical definition of Krivine’s abstract machine is as
follows [6, 20, 24], where t denotes terms, v denotes expressible values, e denotes
environments, and s denotes stacks of expressible values:

• Source syntax:
t ::= n | λt | t0 t1

• Expressible values (closures):

v ::= [t, e]

• Initial transition, transition rules, and final transition:

t ⇒ 〈t, nil , nil〉
〈n, e, s〉 ⇒ 〈t, e′, s〉, where [t, e′] = nth(e, n)

〈λt, e, [t′, e′] :: s〉 ⇒ 〈t, [t′, e′] :: e, s〉
〈t0 t1, e, s〉 ⇒ 〈t0, e, [t1, e] :: s〉
〈λt, e, nil〉 ⇒ [t, e]

Variables n are represented by their de Bruijn index, and the abstract machine
operates on triples consisting of a term, an environment, and a stack of express-
ible values.

Each line in the canonical definition matches a clause in Eval4. We con-
clude that Krivine’s abstract machine can be seen as a defunctionalized, CPS-
transformed, and closure-converted version of the standard call-by-name evalu-
ator for the λ-calculus. This evaluator evidently implements Hardin, Maranget,
and Pagano’s K strategy [22, Section 3].

2.2 From the CEK machine to a call-by-value evaluator

The CEK machine [15, 16] operates on λ-terms with names and distinguishes
between values and computations in their syntax (i.e., it distinguishes trivial
and serious terms, in Reynolds’s words [30]).

datatype term = VALUE of value

| COMP of comp

and value = VAR of string (* name *)

| LAM of string * term

and comp = APP of term * term

Programs are closed terms.
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2.2.1 The CEK abstract machine

Our starting point reads as follows [18, Figure 2, page 239], where t denotes
terms, w denotes values, v denotes expressible values, k denotes evaluation
contexts, e denotes environments, and s denotes stacks of expressible values:

• Source syntax:
t ::= w | t0 t1

w ::= x | λx.t

• Expressible values (closures) and evaluation contexts:

v ::= [x, t, e]
k ::= stop | fun(v, k) | arg(t, e, k)

• Initial transition, transition rules (two kinds), and final transition:

t ⇒eval 〈t, mt , stop〉
〈w, e, k〉 ⇒eval 〈k, γ(w, e)〉

〈t0 t1, e, k〉 ⇒eval 〈t0, e, arg(t1, e, k)〉
〈arg(t1, e, k), v〉 ⇒cont 〈t1, e, fun(v, k)〉

〈fun([x, t, e], k), v〉 ⇒cont 〈t, e[x 7→ v], k〉
〈stop, v〉 ⇒cont v

where γ(x, e) = e(x)
γ(λx.t, e) = [x, t, e]

Variables x are represented by their name, and the abstract machine consists
of two mutually recursive transition functions. The first transition function
operates on triples consisting of a term, an environment, and an evaluation
context. The second operates on pairs consisting of an evaluation context and
an expressible value. Environments are extended in the fun-transition, and
consulted in γ. The empty environment is denoted by mt .

This specification is straightforward to program in ML:

signature ENV

= sig

type ’a env

val mt : ’a env

val lookup : ’a env * string -> ’a

val extend : string * ’a * ’a env -> ’a env

end

Environments are represented as a structure Env : ENV containing a represen-
tation of the empty environment mt, an operation lookup to retrieve the value
bound to a name in an environment, and an operation Env.extend to extend an
environment with a binding.
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structure Eval0

= struct

datatype expval = CLOSURE of string * term * expval Env.env

datatype evaluation_context = STOP

| ARG of term * expval Env.env * evaluation_context

| FUN of expval * evaluation_context

(* eval : term * expval Env.env * evaluation_context -> expval *)

fun eval (VALUE v, e, k)

= continue (k, eval_value (v, e))

| eval (COMP (APP (t0, t1)), e, k)

= eval (t0, e, ARG (t1, e, k))

and eval_value (VAR x, e)

= Env.lookup (e, x)

| eval_value (LAM (x, t), e)

= CLOSURE (x, t, e)

and continue (STOP, w)

= w

| continue (ARG (t1, e, k), w)

= eval (t1, e, FUN (w, k))

| continue (FUN (CLOSURE (x, t, e), k), w)

= eval (t, Env.extend (x, w, e), k)

(* main : term -> expval *)

fun main t

= eval (t, Env.mt, STOP)

end

2.2.2 Refunctionalizing the evaluation contexts into continuations

We identify that the data type evaluation context and the function continue

are a defunctionalized representation. The corresponding higher-order evaluator
reads as follows. As can be observed, it is in continuation-passing style.

structure Eval1

= struct

datatype expval = CLOSURE of string * term * expval Env.env

(* eval : term * expval Env.env * (expval -> ’a) -> ’a *)

fun eval (VALUE v, e, k)

= k (eval_value (v, e))

| eval (COMP (APP (t0, t1)), e, k)

= eval (t0,

e,

fn (CLOSURE (x, t, e’))

=> eval (t1,

e,

fn w

=> eval (t,

Env.extend (x, w, e),

k)))
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and eval_value (VAR x, e)

= Env.lookup (e, x)

| eval_value (LAM (x, t), e)

= CLOSURE (x, t, e)

(* main : term -> expval *)

fun main t

= eval (t, Env.mt, fn w => w)

end

The following proposition is a corollary of the correctness of defunctional-
ization. (Observational equivalence reduces here to structural equality over ML
values of type expval.)

Proposition 5 (full correctness) For any ML value p : term denoting a pro-
gram,

Eval0.main p ∼= Eval1.main p

2.2.3 Back to direct style

CPS-transforming the following direct-style evaluator yields the evaluator of
Section 2.2.2 [9].

structure Eval2

= struct

datatype expval = CLOSURE of string * term * expval Env.env

(* eval : term * expval Env.env -> expval *)

fun eval (VALUE v, e)

= eval_value (v, e)

| eval (COMP (APP (t0, t1)), e)

= let val (CLOSURE (x, t, e’)) = eval (t0, e)

val w = eval (t1, e)

in eval (t, Env.extend (x, w, e))

end

and eval_value (VAR x, e)

= Env.lookup (e, x)

| eval_value (LAM (x, t), e)

= CLOSURE (x, t, e)

(* main : term -> expval *)

fun main t

= eval (t, Env.mt)

end

The following proposition is a corollary of the correctness of the direct-style
transformation. (Again, observational equivalence reduces here to structural
equality over ML values of type expval.)
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Proposition 6 (full correctness) For any ML value p : term denoting a pro-
gram,

Eval1.main p ∼= Eval2.main p

2.2.4 From closures to higher-order functions

We observe that the closures, in Eval2, are defunctionalized representations with
an apply function inlined. The corresponding higher-order evaluator reads as
follows.

structure Eval3

= struct

datatype expval = CLOSURE of expval -> expval

(* eval : term * expval Env.env -> expval *)

fun eval (VALUE v, e)

= eval_value (v, e)

| eval (COMP (APP (t0, t1)), e)

= let val (CLOSURE f) = eval (t0, e)

val w = eval (t1, e)

in f w

end

and eval_value (VAR x, e)

= Env.lookup (e, x)

| eval_value (LAM (x, t), e)

= CLOSURE (fn w => eval (t, Env.extend (x, w, e)))

(* main : term -> expval *)

fun main t

= eval (t, Env.mt)

end

The following proposition is a corollary of the correctness of defunctional-
ization.

Proposition 7 (full correctness) For any ML value p : term denoting a pro-
gram, evaluating Eval2.main p yields a value CLOSURE (x, t, e) and evaluating
Eval3.main p yields a value CLOSURE f such that

fn w => Eval2.eval (t, Env.extend (x, w, e)) ∼= f

2.2.5 A higher-order and compositional call-by-value evaluator

The result in Eval3 is a call-by-value evaluator that is compositional and higher-
order. This call-by-value evaluator is the canonical one for the λ-calculus [33,
35]. We conclude that the CEK machine can be seen as a defunctionalized,
CPS-transformed, and closure-converted version of the standard call-by-value
evaluator for λ-terms.
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2.3 Variants of Krivine’s machine and of the CEK ma-
chine

It is easy to construct a variant of Krivine’s abstract machine for λ-terms with
names, by starting from a call-by-name evaluator for λ-terms with names. Sim-
ilarly, it is easy to construct a variant of the CEK machine for λ-terms with
de Bruijn indices, by starting from a call-by-value evaluator for λ-terms with
indices. It is equally easy to start from a call-by-value evaluator for λ-terms
with de Bruijn indices and no distinction between values and computations;
the resulting abstract machine coincides with Hankin’s eager machine [20, Sec-
tion 8.1.2].

Abstract machines processing λ-terms with de Bruijn indices often resolve
indices with transitions:

〈0, v :: e, s〉 ⇒ v :: s
〈n + 1, v :: e, s〉 ⇒ 〈n, e, s〉

Compared to the evaluator of Section 2.1.1, page 5, the evaluator corresponding
to this machine has List.nth inlined and is not compositional:

fun eval (IND 0, denval :: e, s)

= ... denval ...

| eval (IND n, denval :: e, s)

= eval (IND (n - 1), e, s)

| ...

2.4 Conclusion

We have shown that Krivine’s abstract machine and the CEK abstract machine
are counterparts of canonical evaluators for call-by-name and for call-by-value
λ-terms, respectively. The derivation of Krivine’s machine is strikingly simpler
than what can be found in the literature. That the CEK machine can be derived
is, to the best of our knowledge, new. That these two machines are two sides
of the same coin is also new. We have not explored any other aspect of this
call-by-name/call-by-value duality [8].

Using substitutions instead of environments or inlining one of the standard
computational monads (state, continuations, etc. [37]) in the call-by-value eval-
uator yields variants of the CEK machine that have been documented in the
literature [15, Chapter 8]. For example, inlining the state monad in a monadic
evaluator yields a state-passing evaluator. The corresponding abstract machine
has one more component to represent the state. In general, inlining monads
provides a generic recipe to construct arbitrarily many new abstract machines.
It does not seem as straightforward, however, to construct a “monadic abstract
machine” and then to inline a monad; we are currently studying the question.

On another note, one can consider an evaluator for strictness-annotated
λ-terms—represented either with names or with indices, and with or without
distinction between values and computations. One is then led to an abstract
machine that generalizes Krivine’s machine and the CEK machine [12].
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Finally, it is straightforward to extend Krivine’s machine and the CEK ma-
chine to bigger source languages (with literals, primitive operations, conditional
expressions, block structure, recursion, etc.), by starting from evaluators for
these bigger languages. For example, all the abstract machines in “The essence
of compiling with continuations” [18] are defunctionalized continuation-passing
evaluators, i.e., interpreters.

In the rest of this article, we illustrate further the correspondence between
evaluators and abstract machines.

3 The CLS abstract machine

The CLS abstract machine is due to Hannan and Miller [21]. In the following, t
denotes terms, v denotes expressible values, c denotes lists of directives (a term
or the special tag ap), e denotes environments, l denotes stacks of environments,
and s denotes stacks of expressible values.

• Source syntax:
t ::= n | λt | t0 t1

• Expressible values (closures):

v ::= [t, e]

• Initial transition, transition rules, and final transition:

t ⇒ 〈t :: nil , nil :: nil , nil〉
〈λt :: c, e :: l, s〉 ⇒ 〈c, l, [t, e] :: s〉

〈(t0 t1) :: c, e :: l, s〉 ⇒ 〈t0 :: t1 :: ap :: c, e :: e :: l, s〉
〈0 :: c, (v :: e) :: l, s〉 ⇒ 〈c, l, v :: s〉

〈n + 1 :: c, (v :: e) :: l, s〉 ⇒ 〈n :: c, e :: l, s〉
〈ap :: c, l, v :: [t, e] :: s〉 ⇒ 〈t :: c, (v :: e) :: l, s〉

〈nil , nil , v :: s〉 ⇒ v

Variables n are represented by their de Bruijn index, and the abstract machine
operates on triples consisting of a list of directives, a stack of environments, and
a stack of expressible values.

3.1 The CLS machine

Hannan and Miller’s specification is straightforward to program in ML:

datatype term = IND of int (* de Bruijn index *)

| ABS of term

| APP of term * term

Programs are closed terms.
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structure Eval0

= struct

datatype directive = TERM of term

| AP

datatype env = ENV of expval list

and expval = CLOSURE of term * env

(* run : directive list * env list * expval list -> expval *)

fun run (nil, nil, v :: s)

= v

| run ((TERM (IND 0)) :: c, (ENV (v :: e)) :: l, s)

= run (c, l, v :: s)

| run ((TERM (IND n)) :: c, (ENV (v :: e)) :: l, s)

= run ((TERM (IND (n - 1))) :: c, (ENV e) :: l, s)

| run ((TERM (ABS t)) :: c, e :: l, s)

= run (c, l, (CLOSURE (t, e)) :: s)

| run ((TERM (APP (t0, t1))) :: c, e :: l, s)

= run ((TERM t0) :: (TERM t1) :: AP :: c, e :: e :: l, s)

| run (AP :: c, l, v :: (CLOSURE (t, ENV e)) :: s)

= run ((TERM t) :: c, (ENV (v :: e)) :: l, s)

(* main : term -> expval *)

fun main t

= run ((TERM t) :: nil, (ENV nil) :: nil, nil)

end

3.2 A disentangled definition of the CLS machine

In the definition of Section 3.1, all the possible transitions are meshed together
in one recursive function, run. Instead, let us factor run into several mutually
recursive functions, each of them with one induction variable.

In this disentangled definition,

• run c interprets the list of control directives, i.e., it specifies which transi-
tion to take if the list is empty, starts with a term, or starts with an apply
directive. If the list is empty, the computation terminates. If the list starts
with a term, run t is called, caching the term in the first parameter. If
the list starts with an apply directive, run a is called.

• run t interprets the top term in the list of control directives.

• run a interprets the top value in the current stack.

The disentangled definition reads as follows:

structure Eval1

= struct

datatype directive = TERM of term

| AP
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datatype env = ENV of expval list

and expval = CLOSURE of term * env

(* run_c : directive list * env list * expval list -> expval *)

fun run_c (nil, nil, v :: s)

= v

| run_c ((TERM t) :: c, l, s)

= run_t (t, c, l, s)

| run_c (AP :: c, l, s)

= run_a (c, l, s)

and run_t (IND 0, c, (ENV (v :: e)) :: l, s)

= run_c (c, l, v :: s)

| run_t (IND n, c, (ENV (v :: e)) :: l, s)

= run_t (IND (n - 1), c, (ENV e) :: l, s)

| run_t (ABS t, c, e :: l, s)

= run_c (c, l, (CLOSURE (t, e)) :: s)

| run_t (APP (t0, t1), c, e :: l, s)

= run_t (t0, (TERM t1) :: AP :: c, e :: e :: l, s)

and run_a (c, l, v :: (CLOSURE (t, ENV e)) :: s)

= run_t (t, c, (ENV (v :: e)) :: l, s)

(* main : term -> expval *)

fun main t

= run_t (t, nil, (ENV nil) :: nil, nil)

end

Proposition 8 (full correctness) For any ML value p : term denoting a pro-
gram,

Eval0.main p ∼= Eval1.main p

Proof: By fold-unfold [4]. The invariants are as follows. For any ML values t

: term, e : expval list, and s : expval list,



Eval1.run c (c, l, s) ∼= Eval0.run (c, l, s)

Eval1.run t (t, c, l, s) ∼= Eval0.run ((TERM t) :: c, l, s)

Eval1.run a (c, l, s) ∼= Eval0.run (AP :: c, l, s)

�

3.3 The evaluator corresponding to the CLS machine

In the disentangled definition of Section 3.2, there are three possible ways to
construct a list of control directives (nil, cons’ing a term, and cons’ing an apply
directive). We could specify these constructions as a data type rather than as a
list. Such a data type, together with run c, is in the image of defunctionalization
(run c is the apply functions of the data type). The corresponding higher-order
evaluator is in continuation-passing style. Transforming it back to direct style
yields the following evaluator:
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structure Eval3

= struct

datatype env = ENV of expval list

and expval = CLOSURE of term * env

(* run_t : term * env list * expval list -> env list * expval list *)

fun run_t (IND 0, (ENV (v :: e)) :: l, s)

= (l, v :: s)

| run_t (IND n, (ENV (v :: e)) :: l, s)

= run_t (IND (n - 1), (ENV e) :: l, s)

| run_t (ABS t, e :: l, s)

= (l, (CLOSURE (t, e)) :: s)

| run_t (APP (t0, t1), e :: l, s)

= let val (l, s) = run_t (t0, e :: e :: l, s)

val (l, s) = run_t (t1, l, s)

in run_a (l, s)

end

and run_a (l, v :: (CLOSURE (t, ENV e)) :: s)

= run_t (t, (ENV (v :: e)) :: l, s)

(* main : term -> expval *)

fun main t

= let val (nil, v :: s) = run_t (t, (ENV nil) :: nil, nil)

in v

end

end

The following proposition is a corollary of the correctness of defunctional-
ization and of the CPS transformation. (Here observational equivalence reduces
to structural equality over ML values of type expval.)

Proposition 9 (full correctness) For any ML value p : term denoting a pro-
gram,

Eval1.main p ∼= Eval3.main p

As in Section 2, this evaluator can be made compositional by refunctional-
izing the closures into higher-order functions and by factoring the resolution of
de Bruijn indices into an auxiliary lookup function.

We conclude that the evaluation model embodied in the CLS machine is
a call-by-value interpreter threading a stack of environments and a stack of
intermediate results with a caller-save strategy (witness the duplication of en-
vironments on the stack in the meaning of applications) and with a left-to-right
evaluation of sub-terms. In particular, the meaning of a term is a partial endo-
function over a stack of environments and a stack of intermediate results.

4 The SECD abstract machine

The SECD abstract machine is due to Landin [25]. In the following, t denotes
terms, v denotes expressible values, c denotes lists of directives (a term or the
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special tag ap), e denotes environments, s denotes stacks of expressible values,
and d denotes dumps (list of triples consisting of a stack, an environment and
a list of directives).

• Source syntax:
t ::= x | λx.t | t0 t1

• Expressible values (closures):

v ::= [x, t, e]

• Initial transition, transition rules, and final transition:

t ⇒ 〈nil , mt , t :: nil , nil〉
〈s, e, x :: c, d〉 ⇒ 〈e(x) :: s, e, c, d〉

〈s, e, (λx.t) :: c, d〉 ⇒ 〈[x, t, e] :: s, e, c, d〉
〈s, e, (t0 t1) :: c, d〉 ⇒ 〈s, e, t1 :: t0 :: ap :: c, d〉

〈[x, t, e′] :: v :: s, e, ap :: c, d〉 ⇒ 〈nil , e′[x 7→ v], t :: nil , (s, e, c) :: d〉
〈v :: s, e, nil , (s′, e′, d′) :: d〉 ⇒ 〈v :: s′, e′, c′, d〉

〈v :: s, e, nil , nil〉 ⇒ v

Variables x are represented by their name, and the abstract machine operates
on quadruples consisting of a stack of expressible values, an environment, a list
of directives, and a dump. Environments are consulted in the first transition
rule, and extended in the fourth. The empty environment is denoted by mt .

4.1 The SECD machine

Landin’s specification is straightforward to program in ML. Programs are closed
terms. Environments are as in Section 2.2.

datatype term = VAR of string (* name *)

| LAM of string * term

| APP of term * term

structure Eval0

= struct

datatype directive = TERM of term

| AP

datatype value = CLOSURE of string * term * value Env.env

fun run (v :: nil, e’, nil, nil)

= v

| run (s, e, (TERM (VAR x)) :: c, d)

= run ((Env.lookup (e, x)) :: s, e, c, d)

| run (s, e, (TERM (LAM (x, t))) :: c, d)

= run ((CLOSURE (x, t, e)) :: s, e, c, d)

| run (s, e, (TERM (APP (t0, t1))) :: c, d)

= run (s, e, (TERM t1) :: (TERM t0) :: AP :: c, d)
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| run ((CLOSURE (x, t, e’)) :: v :: s, e, AP :: c, d)

= run (nil, Env.extend (x, v, e’), (TERM t) :: nil, (s, e, c) :: d)

| run (v :: nil, e’, nil, (s, e, c) :: d)

= run (v :: s, e, c, d)

(* main : term -> value *)

fun main t

= run (nil, Env.mt, (TERM t) :: nil, nil)

end

4.2 A disentangled definition of the SECD machine

As in the CLS machine, in the definition of Section 4.1, all the possible transi-
tions are meshed together in one recursive function, run. Instead, we can factor
run into several mutually recursive functions, each of them with one induction
variable. These mutually recursive functions are in defunctionalized form: the
one processing the dump is an apply function for the data type representing
the dump (a list of stacks, environments, and lists of directives), and the one
processing the control is an apply function for the data type representing the
control (a list of directives). The corresponding higher-order evaluator is in
continuation-passing style with two nested continuations and one control delim-
iter [11, 17]. The delimiter resets the control continuation when evaluating the
body of a λ-abstraction. (More detail is available in a technical report [10].)

4.3 The evaluator corresponding to the SECD machine

The direct-style version of the evaluator from Section 4.2 reads as follows:

structure Eval4

= struct

datatype value = CLOSURE of string * term * value Env.env

(* eval : term * value list * value Env.env *)

(* -> value list * value Env.env *)

fun eval (VAR x, s, e)

= ((Env.lookup (x, e)) :: s, e)

| eval (LAM (x, t), s, e)

= ((CLOSURE (x, t, e)) :: s, e)

| eval (APP (t0, t1), s, e)

= let val (s, e) = eval (t1, s, e)

val (s, e) = eval (t0, s, e)

in apply (s, e)

end

and apply ((CLOSURE (x, t, e’)) :: v :: s, e)

= let val (v :: nil, _)

= reset (fn ()

=> eval (t, nil, Env.extend (x, v, e’)))

in (v :: s, e)

end
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(* main : term -> value *)

fun main t

= let val (v :: nil, _)

= reset (fn ()

=> eval (t, nil, Env.mt))

in v

end

end

The following proposition is a corollary of the correctness of defunctional-
ization and of the CPS transformation. (Here observational equivalence reduces
to structural equality over ML values of type value.)

Proposition 10 (full correctness) For any ML value p : term denoting a
program,

Eval0.main p ∼= Eval4.main p

As in Sections 2 and 3, this evaluator can be made compositional by refunc-
tionalizing the closures into higher-order functions.

We conclude that the evaluation model embodied in the SECD machine
is a call-by-value interpreter threading a stack of intermediate results and an
environment with a callee-save strategy (witness the dynamic passage of envi-
ronments in the meaning of applications), a right-to-left evaluation of sub-terms,
and a control delimiter. In particular, the meaning of a term is a partial endo-
function over a stack of intermediate results and an environment. Furthermore,
this evaluator evidently implements Hardin, Maranget, and Pagano’s L strat-
egy, i.e., right-to-left call by value, without us having to “guess” its inference
rules [22, Section 4].

The denotational content of the SECD machine puts a new light on it. For
example, its separation between a control register and a dump register is ex-
plained by the control delimiter in the evaluator. Removing this control de-
limiter gives rise to an abstract machine with a single stack component for
control—not by a clever change in the machine itself, but by a straightforward
simplification in the corresponding evaluator.

5 Variants of the CLS machine and of the SECD
machine

It is straightforward to construct a variant of the CLS machine for λ-terms with
names, by starting from an evaluator for λ-term with names. Similarly, it is
straightforward to construct a variant of the SECD machine for λ-terms with
de Bruijn indices, by starting from an evaluator for λ-term with indices. In the
same vein, it is simple to construct call-by-name versions of the CLS machine
and of the SECD machine, by starting from call-by-name evaluators. It is also
simple to construct a properly tail recursive version of the SECD machine, and
to extend the CLS machine and the SECD machine to bigger source languages,
by extending the corresponding evaluator.
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6 The Categorical Abstract Machine

What is the difference between an abstract machine and a virtual machine? In
a companion article [1], we propose to distinguish them based on the notion of
instruction set: A virtual machine has an instruction set whereas an abstract
machine does not. An abstract machine directly operates on a λ-term, but a
virtual machine operates on a compiled representation of a λ-term, expressed
using an instruction set.

The Categorical Abstract Machine [5], for example, has an instruction set—
categorical combinators—and therefore (despite its name) it is a virtual ma-
chine, not an abstract machine. In contrast, Krivine’s machine, the CEK ma-
chine, the CLS machine, and the SECD machine are all abstract machines, not
virtual machines, since they directly operate on λ-terms. In this section, we
present the abstract machine corresponding to the Categorical Abstract Ma-
chine (CAM). We start from the evaluation model embodied in the CAM, as
obtained in the companion article.

6.1 The evaluator corresponding to the CAM

The evaluation model embodied in the CAM is an interpreter threading a stack
with its top element cached in a register, representing environments as express-
ible values (namely nested pairs linked as lists), with a caller-save strategy
(witness the duplication of the register on the stack in the meaning of appli-
cations below), and with a left-to-right evaluation of sub-terms. In particular,
the meaning of a term is a partial endofunction over the register and the stack.
This evaluator reads as follows:

datatype term = IND of int (* de Bruijn index *)

| ABS of term

| APP of term * term

| NIL

| CONS of term * term

| CAR of term

| CDR of term

Programs are closed terms.

structure Eval0

= struct

datatype expval = NULL

| PAIR of expval * expval

| CLOSURE of expval * (expval * expval list ->

expval * expval list)

(* access : int * expval * ’a -> expval * ’a *)

fun access (0, PAIR (v1, v2), s)

= (v2, s)

| access (n, PAIR (v1, v2), s)

= access (n - 1, v1, s)
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(* eval : term * expval * expval list -> expval * expval list *)

fun eval (IND n, v, s)

= access (n, v, s)

| eval (ABS t, v, s)

= (CLOSURE (v, fn (v, s) => eval (t, v, s)), s)

| eval (APP (t0, t1), v, s)

= let val (v, v’ :: s) = eval (t0, v, v :: s)

val (v’, (CLOSURE (v, f)) :: s) = eval (t1, v’, v :: s)

in f (PAIR (v, v’), s)

end

| eval (NIL, v, s)

= (NULL, s)

| eval (CONS (t1, t2), v, s)

= let val (v, v’ :: s) = eval (t1, v, v :: s)

val (v, v’ :: s) = eval (t2, v’, v :: s)

in (PAIR (v’, v), s)

end

| eval (CAR t, v, s)

= let val (PAIR (v1, v2), s) = eval (t, v, s)

in (v1, s)

end

| eval (CDR t, v, s)

= let val (PAIR (v1, v2), s) = eval (t, v, s)

in (v2, s)

end

(* main : term -> expval *)

fun main t

= let val (v, nil) = eval (t, NULL, nil)

in v

end

end

This evaluator evidently implements Hardin, Maranget, and Pagano’s X strat-
egy [22, Section 6].

6.2 The abstract machine corresponding to the CAM

As in Sections 2, 3, and 4, we can closure-convert the evaluator of Section 6.1 by
defunctionalizing its expressible values, transform it into continuation-passing
style, and defunctionalize its continuations. The resulting abstract machine
reads as follows, where t denotes terms, v denotes expressible values, k denotes
evaluation contexts, and s denotes stacks of expressible values.

• Source syntax:

t ::= n | λt | t0 t1 | nil | (cons t1 t2) | (car t) | (cdr t)
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• Expressible values (unit value, pairs, and closures) and evaluation con-
texts:

v ::= null | (v1, v2) | [v, t]
k ::= CONT0 | CONT1(t, k) | CONT2(k) | CONT3(t, k) |

CONT4(k) | CONT5(k) | CONT6(k)

• Initial transition, transition rules (two kinds), and final transition:

t ⇒eval 〈t, null, nil , CONT0〉
〈n, v, s, k〉 ⇒eval 〈k, γ(n, v), s〉
〈λt, v, s, k〉 ⇒eval 〈k, [v, t], s〉
〈nil, v, s, k〉 ⇒eval 〈k, null, s〉
〈t0 t1, v, s, k〉 ⇒eval 〈t0, v, v :: s, CONT1(t1, k)〉

〈(cons t1 t2), v, s, k〉 ⇒eval 〈t1, v, v :: s, CONT3(t2, k)〉
〈(car t), v, s, k〉 ⇒eval 〈t, v, s, CONT5(k)〉
〈(cdr t), v, s, k〉 ⇒eval 〈t, v, s, CONT6(k)〉

〈CONT1(t, k), v, v′ :: s〉 ⇒cont 〈t, v′, v :: s, CONT2(k)〉
〈CONT2(k), v′, [v, t] :: s〉 ⇒cont 〈t, (v, v′), s, k〉
〈CONT3(t1, k), v, v′ :: s〉 ⇒cont 〈t1, v′, v :: s, CONT4(k)〉

〈CONT4(k), v, v′ :: s〉 ⇒cont 〈k, (v′, v), s〉
〈CONT5(k), (v1, v2), s〉 ⇒cont 〈k, v1, s〉
〈CONT6(k), (v1, v2), s〉 ⇒cont 〈k, v2, s〉

〈CONT0, v, nil〉 ⇒cont v

where γ(0, (v1, v2)) = v2

γ(n, (v1, v2)) = γ(n − 1, v1)

Variables n are represented by their de Bruijn index, and the abstract machine
consists of two mutually recursive transition functions. The first transition
function operates on quadruples consisting of a term, an expressible value, a
stack of expressible values, and an evaluation context. The second transition
function operates on triples consisting of an evaluation context, an expressible
value, and a stack of expressible values.

This abstract machine embodies the evaluation model of the CAM. Natu-
rally, more intuitive names could be chosen instead of CONT0, CONT1, etc.
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7 Conclusion and issues

We have presented a constructive, mechanical, and generic correspondence be-
tween functional evaluators and abstract machines. This correspondence builds
on off-the-shelf program transformations: closure conversion, CPS transforma-
tion, defunctionalization, and inlining.2 We have shown how to reconstruct
known machines (Krivine’s machine, the CEK machine, the CLS machine, and
the SECD machine) and how to construct new ones. Conversely, we have re-
vealed the denotational content of known abstract machines. We have shown
that Krivine’s abstract machine and the CEK machine correspond to canon-
ical evaluators for the λ-calculus. We have also shown that they are dual of
each other since they correspond to call-by-name and call-by-value evaluators
in the same direct style.3 In terms of denotational semantics [26, 32], Krivine’s
machine and the CEK machine correspond to a standard semantics, whereas
the CLS machine and the SECD machine correspond to a stack semantics of
the λ-calculus. Finally, we have exhibited the abstract machine corresponding
to the CAM, which puts the reader in a new position to answer the recurrent
question as to whether the CLS machine is closer to the CAM or to the SECD
machine.

It seems to us that this correspondence between functional evaluators and
abstract machines builds a reliable bridge between denotational definitions and
definitions of abstract machines. On the one hand, it allows one to identify the
denotational content of an abstract machine in the form of a functional inter-
preter. On the other hand, it gives one a precise and generic recipe to construct
arbitrarily many new variants of abstract machines (e.g., with substitutions or
environments, or with stacks) or of arbitrarily many new abstract machines,
starting from an evaluator with any given computational monad [27].

Acknowledgments: We are grateful to Ma lgorzata Biernacka and Henning
Korsholm Rohde for timely comments.
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RS-03-3 Claude Cŕepeau, Paul Dumais, Dominic Mayers, and Louis
Salvail. On the Computational Collapse of Quantum Informa-
tion. January 2003. 31 pp.


