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Joerg Abendroth∗
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Abstract

The π-calculus has been developed to reason about behavioural equiv-
alence. Different notions of equivalence are defined in terms of process
interactions, as well as the context of processes. There are various exten-
sions of the π-calculus, such as the SPI calculus, which has primitives to
facilitate security protocol design.
Another area of computer security is access control research, which in-
cludes problems of access control models, policies and access control
mechanism. The design of a unified framework for access control re-
quires that all policies are supported and different access control models
are instantiated correctly.
In this paper we will utilise the π calculus to reason about access control
policies and mechanism. An equivalence of different policy implementa-
tions, as well as access control mechanism will be shown. Finally some
experiences regarding the use of π-calculus are presented.

1 Introduction

The π-calculus has been developed to reason about behavioural equivalence.
One notion of equivalence may take into account the process interactions, such
as the channels a process is capable to send or receive information.
The work of Abadi and Gordon proposed the SPI-calculus [2], an extension of
the π-calculus with cryptographical primitives. Using the spi-calculus security
protocols can be shown to fail in the presence of a certain attacker. Hereby,
the important application of the SPI-calculus is that the correctness of security
protocols can be expressed as statements of behavioural equivalence.
Research in access control is concerned with access control models, policies

∗This work is conducted while the author visited BRICS University of Aarhus, Danmark
supported by EU IHP ’Marie Curie Fellowship’ HPMT-CT-2000-00093.
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and access control mechanism. Development of a specialised access control
model allows efficient access decisions in novel computer usage scenarios.
Research in access control policies aims at a comprehensive policy description
language. Both, access control models and policies build on the research of
access control mechanism, which combines results of authentication protocols
with results of other areas to provide mechanism to evaluate the access control
decision function correctly. A simple approach is to design an access control
mechanism for each security model or policy uniquely. First approaches to
provide a unifying mechanism can be seen in the Kerberos project [6] or the
certificate based systems like the SPKI1 [34]. A recent approach combines
ideas of active capabilities [33] with the ones of proxy-based authorisation [23,
15]. While a prototype implementation [4] has shown positive experiences,
the final framework design should be guided by formal methods such as a
specification in the π-calculus.
In this paper we present the design of a unified access control mechanism able
to instantiate different kind of policies and can be summarised as follows:

• Different access control policies can be compared and shown to be equiv-
alent

• The behaviour of the unified framework does not influence the access
control decision

• The basic and extended version of the unified framework can be shown to
be behavioural equivalent to a simple conventional access control mech-
anism.

The remainder of this paper is organised as follows, after discussing related
works in section 2. We will describe the goals of a unified access control mech-
anism in section 3. The final part of the introduction is the π-calculus formal
foundation (section 4), which includes syntax, behavioural equivalences, re-
duction rules and proof system.
The rest of the paper can be seen as two applications of the π-calculus. Sec-
tion 5 describes the ACL2 access control model using an informal policy. The
policy will be represented as an access matrix and the process expressions to
describe the model derived. After presenting a second version of the process
expression description we will validate in section 5.5 the process expressions.
Finally it will be shown that both process expressions demonstrate the same
behaviour by showing a bisimulation in section 5.6.
The second example is the process expressions of different versions of the AS-
Cap unified access control mechanism. Section 6 explains how the process
expressions are derived. Section 6.3.1 shows behavioural equivalence of the

1Simple Public Key Infrastructure
2Access Control List
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proxy based setup to a hybrid approach. Section 6.3.2 does the same for the
external security server based version. After discussion the lessons learned
(section 6.4), section 7 gives conclusion and advise for future work.

2 Related Work

Most papers about the π-calculus focus on variants of the language and proof
techniques. The SPI calculus [2] can be seen as an example. It originates in
research on authentication protocols [21] with the desire to formalise proof of
their correctness.
Other papers discus the use of the π-calculus driven by the need to apply the
π-calculus to practice. One paper discusses the representation and simula-
tion of biochemical processes [1]. In this paper Regev, Silverman and Shapiro
demonstrate how to standardise the encoding of protein networks to be able to
share and manipulate the body of existing knowledge. The syntax is the main
feature used for describing the biomolecular processes. Further properties of
the calculus such as the different equivalences were not studied.
Padget and Bradford employ the π-calculus to model the spanish fish marked,
a well known example of multi agent environment. Here [26], different process
expressions and their derivation are presented. Unfortunately a final comment
suggests that there are still components missing, due to the complexity of the
scenario. It is left open whether e.g. potential cheating loopholes could be
detected during a simulation, but their application provides valuable insight
for our work.
Esterline and Rorie [5] investigates how far the π-calculus could be used to
model NASA’s LOGOS3 multiagent system. 11 different components were
identified and a specification scenario presented. After identifying the differ-
ent communication paths the process expressions of each component is given,
they derive a development methodology in which the equational congruence
testing is used to prove refinements up to the actual implementation being
behavioural equivalent to the original specification.
Some other research in the domain of π-calculus is worth mentioning, such
as Pierce’s PICT programming language [11], which allows to write programs
in a π-calculus like syntax. The use of PICT allows automatically generated
applications from specifications used to investigate certain behavioural prop-
erties. A stepwise refinement as proposed by Esterline and Rorie would not
be necessary, thus saving the proof work.
Victor’s Mobility Workbench [7, 35](MWB) automates the search for bisimu-
lations for given process expressions. The MWB can be seen as a prototype

3Lights Out Ground Operations System
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for verification systems in the direction of Smolka et all, [28] work on the use
of formal methods to find configuration vulnerabilities in a simplified Unix
system. Although it seems they considered the π-calculus in early stages they
decided to develop XMC [27], their own tool-set.
In the domain of access control research our work has been influenced by
Jajodia’s ”unified framework for multiple access control policies” [20], which
derives an authorisation specification language and flexible authorisation man-
ager to derive access control. Evaluation of correct access control model im-
plementation is left to correct a formulation of the model in the authorisation
language.
Olivier’s research [24] is lead by the desire to provide unified access control
framework and is concentrated mostly on the operation system level. A formal
verification technique is not described in the available literature. Here we pro-
pose to use the π-calculus formal methods with the aim of showing behavioural
equivalence to classical access control mechanism implementations.

3 Specification of a Unified Access Control Mecha-
nism

Research in access control has proposed various access control models [19, 25,
10, 32, 13, 30]. Often each of these models is implemented using a special
enforcement mechanism. Part of a successful research includes the technology
transfer toward real life use in industry. However in cases where specialised
access control mechanisms are required, this can cumbersome. Today most
applications are provided with a quasi standard enforcement mechanism pro-
viding only a very limited single access control model.
We aim to design an access control enforcement mechanism, which is able
to support various access control models. This will allow to select the most
suitable access control model at employ time, including the most recent ones.
Access control model developer may take advantage of the unified framework
by providing their model to a wider user base compared to the use of a cus-
tomised enforcement mechanism.
Finally, a unified enforcement mechanism allows to detach application devel-
opment from the security part following the ideas of hidden-software capabil-
ities [15] and component-based programming [29].

3.1 Requirements

A unified access control mechanism will be used by different parties, each of
them has certain expectations from the mechanism.
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Client Interface

The client does not want to be occupied with more tasks then required by a
conventional access control mechanism of the same model. This includes, in
cases where different external security servers are employed, that the client
is not required to manually set up channels and connections to any of those
servers.

• Unified mechanism and customised mechanism interface has to be indis-
tinguishable

• No extra information or channel setup is required

Server Interface

In a customised implementation the server will implement the access control
model (decision function) directly, while in a unified framework the implemen-
tation will be provided by means of the unified access control mechanism. The
server needs to provide a unique interface towards the access decision function
called policy in the following. There are requirements that the server has to
have a way to check the trustworthiness of the policy, while the correctness
may be checked similar to a customised mechanism implementation.

• Provide a channel to interact for each part of the access decision function

• Be able to check the trustworthiness of each part of the access decision
function

Policy Interface

The policy in our mechanism design represents the access control model. Later
in this paper we will show, that all policies can be written as π-calculus process
expressions and therefore employed in the unified access control mechanism. A
policy may have different input channels, as well as internal channels to trans-
fer state information. A policy may only have two output channels, which
represent grant and deny as the access control decision result.

• Access control mechanism may not influence the policy behaviour

• Internal channels of policy parts distributed onto different external se-
curity server shall be secret to the outside.
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It shall be possible to split a policy into different separate processes, which
interact using internal channels. Each of these processes may be controlled
by an independent power, thus practically partially outsourcing [3] the access
control decision function onto different entities.
Another desired property of a unified access control mechanism is the possibil-
ity of dynamically changing the access control policy, but because the formal
specification is considered with only one access request case (ie. snapshot mo-
ment) this notion of dynamic policy change is not captured.

General Requirements

As a general requirement onto a unified access control mechanism it can be
seen that the performance overhead should be virtually non-existent. The
security level and whole system behaviour should be the same as a comparative
conventional customised access control mechanism. It is a fact that a more
complex implementation is like to yield more bugs and implementation errors,
part of them may be observable using techniques of software verification (ie.
chapter four in [18]) together with the process expressions presented in this
paper and refinement technique described in [5]:

• System behaviour is equivalent to a comparative conventional customised
access control mechanism

4 Formal Foundation

The task is to prove that a certain access control mechanism design does not
influence the upper lying access control security model. It can be done in
different ways. The use of classical Hoare triples [17] would allow to verify
that certain properties of programs hold. The number of properties and type
would cause the full proof to be complex and very specific. Another approach
combined logical reasoning with calculus for communication systems (CCS)
to capture the security properties, while benefit from the ease of expressing
the communication between different system entities. The idea of having an
object (ie. policy) in one scope (ASCap proxy) and only after some communi-
cations being accessible by other objects (such as server) would, however, be
particularly hard to encode in the CCS.
This brought us to the π-calculus, which was developed to reason about the
behaviour of concurrent communication and mobile systems. The notion of
restriction and scope, turned out to be ideal to express our dynamic system.
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4.1 The π-Calculus

In the following we will give a definition of reduction rules and axioms re-
quired in the later of this paper. We will follow the notation of Sangiorgi and
Walker [31] and benefit from further insights of Milners introduction [22]. All
theorems were taken out of Sangiorgi and Walker’s book [31].

4.2 Syntax

Let us write L(0, π,+,=, |, ν) for the language of terms given by

P ::= 0 | π.P | P + P ′ | ϕPP ′ | P |P ′ | νzP

where the prefixes are given by

π ::= xy | x(z) | τ

and the conditions by

ϕ ::= [x = y] | ¬ϕ | ϕ ∧ ϕ′.

Here xy means sending y on the channel x; x(z) refers to receiving a value on
channel x, which is then bound to z and τ is the internal transition. Finally
to ease notation we abbreviate (νz)xz by x(z).

4.3 Labeled Transition Relations

Each system described by a process expression can transit into other process
expression by the transition relations given below. We will use the late tran-
sition rules, which are distinguished by the time when the placeholder z is
instantiated. The instantiates occurres late, when the communication is in-
ferred, rather than when the input by the receiver is inferred.

Definition 4.1 Late transition relations The late transition relations, { α7−→
|α ∈ π}, are defined by the rules in Table 1.

We shall define an additional transition rules for ϕPQ (mismatch opera-
tor).

MISM1 : P
α7−→P ′ [|ϕ|]=true

ϕPQ
α7−→P ′

MISM2 : Q
α7−→Q′ [|ϕ|]=false

ϕPQ
α7−→Q′

7



The Late Transition Rules

L-Out
xy.P

xy7−→P
L-Inp

x(z).P
x(z)7−→P

L-Tau
τ.P

τ7−→P
L-Mat π.P

α7−→P ′

[x=x]π.P
α7−→P ′

L-Sum-L P
α7−→P ′

P+Q
α7−→P ′

L-Par-L P
α7−→P ′

P |Q α7−→P ′|Q bn(α) ∩ fn(Q) = 0

L-Comm-L P
xy7−→P ′ Q

x(z)7−→Q′

P |Q τ7−→P ′|Q′{y/z}

L-Close-L P
x(z)7−→P ′ Q

x(z)7−→Q′

P |Q τ7−→νz(P ′|Q′)

L-Res P
α7−→P ′

νzP
α7−→νzP ′ z 6∈ n(α) L-Open P

xz7−→P ′

νzP
x(z)7−→P ′

z 6= x

L-Rep-Act P
α7−→P ′

!P
α7−→P ′|!P

L-Rep-Comm P
xy7−→P ′ P

x(z)7−→P ′′

!P
τ7−→(P ′|P ′′{y/z})|!P

L-Rep-Close P
x(z)7−→P ′ P

x(z)7−→P ′′

!P
τ7−→(νz(P ′|P ′′))|!P

Table 1: The late transition rules

4.4 Behavioural Equivalence

The basic equivalence is the structural congruence, which is defined as:

Definition 4.2 Structural Congruence Structural congruence, written
≡, is the process congruence over P determined by the following equations:

1. Change of bound names (alpha-conversion)

2. Reordering of terms in a summation

3. P |0 ≡ P ,P |Q ≡ Q|P ,P |(Q|R) ≡ (P |Q)|R
4. νa(P |Q) ≡ P |νaQ if a 6∈ fn(P )

5. νa0 ≡ 0, νabP ≡ νbaP

In the literature other forms of behavioural equivalence have been de-
scribed. We are going to restriction us to the form of weak late congruence,
which has a stronger notion than weak late bisimilarity.

Definition 4.3 Weak late bisimilarity Weak late bisimilarity is the largest
symmetric relation, ≈l, such that whenever P ≈l Q,
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1. P
x(z)7−→ P ′ implies there is Q′ such that Q

x(z)7−→ Q′ and P ′{y/z} ≈l Q′{y/z}
for every y

2. if α is not an input action then P
α7−→ P ′ implies Q

α7−→≈l P ′.

Definition 4.4 Weak late congruence P and Q are weak late congruent,
P ≈c

l Q, if Pσ ≈l Qσ for every substitution σ.

4.5 Proof System

We also record and name the rules of equational reasoning for this language:

REFL P = P
SY MM P = Q implies Q = P
TRANS P = Q and Q = R implies P = R
SUM P = Q implies P + R = Q + R.

To reason about bisimilarity of summations we add axioms saying that + is
associative,commutative, idempotent, and 0 has an identity:

S1 (P + Q) + R = P + (Q + R)
S2 P + Q = Q + P
S3 P + 0 = P
S4 P + P = P.

Now consider late bisimilarity on L(0, π,+,=). For the input prefix we
need to separate out the sound part,

PRE1 P = Q implies π.P = π.Q ifπ is not of the form x(z),

and introduce the rule:

PRE2 P{y/z} = Q{y/z} for all y ∈ fn(P,Q, z) implies x(z).P = x(z).Q.

For conditions we have to formulate the simple congruence rule

C4 P = Q implies ϕP = ϕQ.

Then we have an axiom that allows us to replace a condition by an equiv-
alent one

C5 ϕP = ϕ′P ifϕ ⇔ ϕ′

and four axioms for conditional forms:

C6 ¬[x = x]P = ¬[x = x]Q
C7 ϕPP = P
C8 ϕPQ = ¬ϕQP
C9 ϕ(ϕ′P ) = (ϕ ∧ ϕ′)P

9



Then we have a kind of distribution axiom involving conditions and sum-
mations:

C10 ϕ(P + P ′)(Q + Q′) = ϕPQ + ϕP ′Q′

And finally, we have two axioms concerning conditions and prefixing, namely

C11 ϕ(π.P ) = ϕπ.ϕP
C12 [x = y](π.P ) = [x = y](π{y/x}).P

We need some axioms for expanding compositions and for manipulating
restrictions. Consider expansion first. The axiom will be called E:
If P =

∑
i ϕiπi.Pi and P ′ =

∑
j ϕ′

jπ
′
j.P

′
j , then

P |P ′ =
∑

i
ϕiπi.(Pi|P ′) +

∑
j
ϕ′

jπ
′
j .(P |P ′

j) +
∑

πioppπ′
j

(ϕi ∧ ϕ′
j ∧ [xi = x′j])τ.Rij

where πiopp4π′j if

(1) πi is xiy and π′j is x′j(z), when Rij is Pi|P ′
j{y/z},or

(2) πi is xi(z) and π′j is x′j(z), when Rij is νz(Pi|P ′
j),

or vice versa. Now we can introduce the rules for restrictions:

RES P = Q implies νzP = νzQ

RES1 νzνwP = νwνzP
RES2 νz(P + Q) = νzP + νzQ
RES3 νzπ.P = π.νzP ifz 6∈ n(π)
RES4 νzπ.P = 0 if π is z(w) or zy or z(w)
RES5 νz[x = y]P = [x = y]νzP if x, y 6= z
RES6 νz[z = y]P = 0 if y 6= z.

Then to obtain axiomatisations for weak late congruence on L(0, π,+, ϕ),
it suffices to add the following axioms

TAU1 π.τ.P = π.P
TAU2 τ.P + P = τ.P
TAU3 π.(P + τ.Q) = π.(P + τ.Q) + π.Q.

Finally, an axiom for replication:

REP !(P |Q) = (!P )|(!Q)

Let LD be the collection of axioms and rules: REFL, SYMM, TRANS,
SUM, S1-S4, C4-C12, E, RES, RES1-RES6, TAU1, TAU2, TAU3 and REP.

4read opposes
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Theorem 4.1 LD is an axiomatisation for weak late congruence of the terms
in L(0, π,+, ϕ, |, ν).

The proofs for the theorems and rule applications can be found in Sangiorgi
and Walker [31].

5 Access Control Policies

In this part we will use the π-calculus to express the behaviour of the simple
ACL5 access control model. To enhance the practical relevance we will start
with an informal description of the rule, draw some conclusions to understand
the model and derive the process expressions in the last step.

5.1 Informal Policy

In a company user might be given numerical user ids as usernames and be
divided into three groups with different permissions. The informal policy,
formulated by the security administrator, reads as follows:
Odd numbered users have only r right, even number user rw rights, if the user
id is dividable by four the user gets rwx rights. Our system only uses the
accounts with id 1 to 5.

5.2 Access Matrix

From the informal policy above an access matrix as described by Bell [8] can
be built. Each row summarises the rights a user has, while each column shows
all permissions to the corresponding object. Intersecting cells hold the specific
access of the user to the object. Below an access matrix of the example policy
is shown:

User Object 1 ... Object n
u1 r
u2 rw
u3 r
u4 rwx
u5 r

5.3 Process Expression Version 1

To derive the process expression for the given policy, one may first determine
the row (userid) and then the access rights. This would result in the process

5Access Control List
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expression below:

Pacl1
def= l(u).[u = 1]U1([u = 2]U2([u = 3]U3([u = 4]U4([u = 5]U5D))))

U1 = U3 = U5
def= l(p).[p = r]GD

U2
def= l(p).[p = r]G([p = w]GD)

U4
def
= l(p).[p = r]G([p = w]G([p = x]GD))

G
def
= lgrant

D
def
= ldeny + l().D

This process receives information on the channel l, which can be under-
stood as a login channel. After some transitions the result (grant or deny) is
transmitted on the l channel. Pacl1 is the start state of the policy process, U1

etc. are the states according to the userid, G can be understood as a Grant
state, and D as deny. In D the process may receive additional information
on l(), which will be ignored, this behaviour is required as an invalid user id
might result in a default denial regardless of the right requested.

5.4 Process Expression Version 2

A different implementation might derive the process expression directly from
the informal description, thus resulting in the following process:

Pacl2
def= (νk)(Saccountcheck|Srightcheck)

Saccountcheck
def
= l(u).[u = 1]ko([u = 2]ken4(

[u = 3]ko([u = 4]ke4([u = 5]koD))))

Srightcheck
def
= k(g).[g = o]Uo(

[g = en4]Uen4([g = e4]Ue4D))

Uo
def= l(p).[p = r]GD

Uen4
def= l(p).[p = r]G([p = w]GD)

Ue4
def= l(p).[p = r]G([p = w]G([p = x]GD))

G
def
= lgrant

D
def
= ldeny + l().D

12



Note that the indices refer to the following meanings:o= odd (ie.in respect to
an imaginary userid), en4=even, but not dividable by 4, e4=even and divid-
able by 4. Saccountcheck can be understood as translating a userid into a group
(g)(or role like in RBAC [14]), while Srightcheck decides the permissions.

5.5 Validating the Process Expressions

For validation rule-test expressions can be written, which compliment a cor-
rect policy implementation and send out a passed to the environment upon
completion. Some rule-test expressions are given below:

R1
def= l1.lr.l(z).[z = grant]passed

R2
def
= l1.lw.l(z).[z = deny]passed

R3
def
= l6.lr.l(z).[z = deny]passed

One test would be to compose a test system with one of the rule-test
expression and the policy process expression, and verify that such a system
should be reducible to a single output passed.
Note, that it can be shown that all possible combinations (rule-test,policy
expression) will reduce correctly, but for space reasons we will print out only
the following two systems:

1. T1 = Pacl1|R1 →∗ passed

2. T2 = Pacl2|R3 →∗ passed

5.5.1 T1 = Pacl1|R1 →∗ passed

In the following we give the reductions used.

l(u).[u = 1]U1([u = 2]U2( | l1.lr.l(z).[z = grant]passed

[u = 3]U3([u = 4]U4([u = 5]U5D))))

REACT (Communication on l).

[1 = 1]U1([1 = 2]U2( | lr.l(z).[z = grant]passed

[1 = 3]U3([1 = 4]U4([1 = 5]U5D))))

MISM1 and expand U1.

13



l(p).[p = r]GD | lr.l(z).[z = grant]passed

REACT (Communication on l).

[r = r]GD | l(z).[z = grant]passed

MISM1 and expand G.

lgrant | l(z).[z = grant]passed

REACT (Communication on l).

0 | [grant = grant]passed

Ignoring empty process and MISM1.

passed

5.5.2 T2 = Pacl2|R3 →∗ passed

Reduction rules from ?? are given for each step.

(νk)(Saccountcheck|Srightcheck) | l6.lr.l(z).[z = deny]passed

Expanding Saccountcheck and Srightcheck.

(νk)(l(u).[u = 1]ko([u = 2]ken4( | l6.lr.l(z).[z = deny]passed

[u = 3]ko([u = 4]ke4([u = 5]koD))))|
k(g).[g = o]Uo([g = en4]Uen4([g = e4]Ue4D)))k

REACT (Communication on l).

(νk)([6 = 1]ko([6 = 2]ken4( | lr.l(z).[z = deny]passed

[6 = 3]ko([6 = 4]ke4([6 = 5]koD))))|
k(g).[g = o]Uo([g = en4]Uen4([g = e4]Ue4D)))k

MISM2.

(νk)([6 = 2]ken4( | lr.l(z).[z = deny]passed

[6 = 3]ko([6 = 4]ke4([6 = 5]koD)))|
k(g).[g = o]Uo([g = en4]Uen4([g = e4]Ue4D)))k

4x MISM2 and expand D.
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(νk)(ldeny + l.D|k(g). | lr.l(z).[z = deny]passed

[g = o]Uo([g = en4]Uen4([g = e4]Ue4D)))k
REACT (Communication on l) and expand D.

(νk)(ldeny + l.D|k(g). | l(z).[z = deny]passed

[g = o]Uo([g = en4]Uen4([g = e4]Ue4D)))k
REACT (Communication on l).

(νk)(0|k(g).[g = o]Uo([g = en4] | [deny = deny]passed

Uen4([g = e4]Ue4D)))k
MISM1.

(νk)(0|k(g).[g = o]Uo([g = en4] | passed

Uen4([g = e4]Ue4D)))k
Because k is the only reduction possible, but k is
not known outside of the scope, the process and re-
striction can be ignored. This argument goes along
RES4 of the proof system.

passed

5.6 Showing Behavioural Equivalence

A validation as done in the previous section may show similar behaviour in
the context of certain test expressions. For achieving confidence that both
expressions correctly depict the informal policy it is necessary to show that
both processes are weakly late bisimilar.
First we have to notice that version 2 consists of two concurrent process com-
municating by the bound channel k. Srightcheck has no other means to be
reduced then by initially receiving on k. Saccountcheck final action is sending
on k. If we are able to convince ourself, that τ[u=1] in Saccountcheck (see sec-

tion 5.4) strictly leads to τo
def= ko|k(g).[g = o] (see figure 2), we can show that

Pacl1 ≈ Pacl2 using the bisimulation S.

S = ((Pacl1, Pacl2), (P ′
acl1, P

′
acl2), (U1, Uo), (U1, U

′′
o ), (U3, Uo), (U3, U

′′
o )

, (U5, Uo), (U5, U
′′
o ), (U2, Uen4), (U2, U

′′
en4), (U4, Ue4), (U4, U

′′
e4), (U

′
1, U

′
o),

(U ′
3, U

′
o), (U

′
5, U

′
o), (U

′
2, U

′
en4), (U

′
4, U

′
e4), (D,D), (G,G)).
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Using the tree diagrams given below, it is possible to verify the correctness
of the bisimulation. Please note that leaves, which result into the same state,
such as D or Uo are cut for a better overview.

Pacl1

P ′
acl1

l(u)

τ[u=1] τ[u=2] τ[u=3] τ[u=4] τ[u=5]

τelse

τelseτelseτelse

τelse

τelse

l(p) l(p)l(p)l(p)l(p)
U1 U2 U3 U4 U5

D

DD

D

D

D

D

U ′
1 U ′

2 U ′
3 U ′

4 U ′
5

τ[p=r]

τ[p=r]τ[p=r]τ[p=r]

τ[p=r] τ[p=w]τ[p=w] τ[p=x]
GGG

GG

GG

G

lgrant

ldenyl()

Figure 1: Tree of policy version 1

Pacl2

P ′
acl2

l(u)

τ[u=1] τ[u=2] τ[u=3] τ[u=4] τ[u=5]

τelse

τelse

τelse

τelse

l(p) l(p)l(p)

U ′′
o U ′′

en4 U ′′
o U ′′

e4 U ′′
o

D

D

D

D

D

Uo Uen4 Uo Ue4 Uo

τ[p=r]

τ[p=r]

τ[p=r] τ[p=w]τ[p=w] τ[p=x]
GGG

G

GG

lgrant

ldenyl()τoτoτo τen4 τe4

U ′
o U ′

en4 U ′
e4

Figure 2: Tree of policy version 2
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5.7 Conclusion and Lessons of First Part

In this part we have shown how to derive process expressions from the an
informal access control policy definition. To convince ourself of the correct
behaviour we wrote test expressions and verified that each system is reducible
to the proposed outcome. This validates each system, but may not capture
hidden differences in behaviour. Therefore we showed that the two systems
are weakly late bisimilar.
The results suggest two things: it is possible to express access models in the
π-calculus by using the mismatch construct, and one can reason about differ-
ent models and their behavioural equivalence. In the presented systems we
found the bisimulation ”by hand”, but a automated tool, such as the mobility
workbench [7] can be helpful for bigger systems.
Access control models can be classified into three categories: The access mod-
els, the information flow models and the new area of trust based models. The
ACL model presented belongs to the first category. Hennessy and Riely’s
work [16] suggest that also information flow models can be expressed using
the π-calculus.
An open problem is how trust based models can be expressed using the π-
calculus. Carbone, Nielsen and Sassone are currently undertaking work [9] on
developing a process-calculus with trust values.

6 Process Expressions of the Unified Access Con-
trol Mechanism

The π-calculus can also be used to describe the behaviour of a unified access
control mechanism. In the first section of this part general thoughts about
practical systems will be presented. Then in section 6.2 the actual process
expressions will be derived. Section 6.3.1 and 6.3.2 show the equivalence using
the proof system presented in 4. In section 6.4 an analysis of the mechanism
and proof will conclude this chapter.

6.1 A Unified Access Control Mechanism

In section 3 the specification of a unified access control mechanism was given.
The specification does not require specific implementation details, which will
be discussed in this section.
An access control mechanism may have three different general forms

1. Hybrid

2. Proxy Based

17



3. External Security Server Based

(1)

(3)

(2)

C1

C1

C1

P

P

Shybrid

Sascap1

Ascap1

Saccountcheck

Extsecserv

Srightcheck

Ascap2
Sascap2

Figure 3: The different access control mechanism.

Figure 3 shows an abstract view of the three different systems. C1 rep-
resents the Client on the left side, and the server is situated on the right.
Ascap is the access control mechanism proxy in the middle area of the figure.
Note that in (3) in Figure 3 (Srightcheck|Saccountcheck = Pacl2) ≈ Pacl using the
bisimulation of Section 5.6.

Hybrid

A hybrid access control mechanism can be seen as the basic form. The full
policy and authentication implementation is situated in the server, the client
access the server directly. Security in this system can be shown by verify-
ing the server implementation. This can be identified as the current practice,
which requires a customised implementation of the access control mechanism
in each server.

Proxy Based

In a proxy based system the server and client are separated by a security mech-
anism proxy, which handles authentication and policy object selection. The
server does not have the policy, but gets a references (or the whole executable
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signed code object) from the proxy. Security depends not only on the imple-
mentation, but integrity of the policy and trust into its source is required. In
return the advantage of flexibility and dynamic policy adaption is gained.

External Security Server Based

The proxy based system can be extended by allowing the policy to be split
into different parts, which will be hosted on different entities (named external
security servers). Such a system is required to behave equivalently to a hybrid
system with policy parts residing in the same server.

In the following section we will derive process expressions for each of these
systems, and we will see the hybrid system as a measurement for the correct
system behaviour. Therefore our proof will show behavioural equivalence of
the two extended versions to the simple hybrid version.

6.2 Deriving the π-Calculus Expressions

In the following we will derive process expressions for a hybrid, seen to be
conventional system, the client process expression and the two unified access
control mechanism.

6.2.1 Hybrid System

Shybrid
def
= (νl)(cl|P )

The server has the policy implementation P (e.g. Pacl1), as well as the l channel
to access it in its private scope. Upon an access request the server extends
the scope of the l channel to the client. The policy may have a format like
that described in section 5 taking the userid and requested right as input and
sending a grant or deny on the same channel as output. A system including a
full authentication, use of cryptography like described by Abadi et all [2] and
a compute process on the server side is also deceivable, but will be neglected
for our behaviour study.

6.2.2 Client Process

C1
def
= c(n).n1.nr.n(x).[x = grant]passed

The client process expression is alike a test expression in the first part.
The difference is that first a new channel name is received, which will be used
as login channel.
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6.2.3 Proxy Based Setup

This is the first of two unified framework setups.

ASCap Proxy in Proxy Based

The proxy based setup consists of a server and an ASCap Proxy (see [4] for
an introduction to the roots of ASCap). The ASCap proxy consists of three
components.

• Secure Server Connection Setup

• Policy-Server Interface

• Client-Server Interface

A secure connection is setup to an available server (νm)(csam.mcsp.mcsl).
The channel csa is used to provide the two communication channels (sl=Server
login-information; sp=Server Policy). The restriction of m can be implemented
i.e. by a fresh symmetric key. The policy implementation residing in the AS-
Cap proxy needs to be accessible by the server ((νl)(csp(l)|P )). In practice the
scope extrusion can be implemented in different ways, either the server receives
a reference to the policy implementation (i.e. residing on a secure repository)
or a signed full policy object (mobile code) can be transfered. This aspect is
also described by Milner in [22].
Finally the login information from the client interface needs to be made acces-
sible to the server (csl(b).cb). The full ASCap proxy process expression reads
as follows:

Ascap
def= (νcsp, csl) [(νm)(csam.mcsp.mcsl) | (νl)(cspl|P ) | (csl(b).cb)]

Server in Proxy Based Setup

In the proxy based setup the server process expression needs to adapt to the
policy and client connection being provided by the ASCap proxy.

Sascap1
def= csa(d).d(p).d(q).p(a).qa

The sever receives the fresh channels on csa and via the new channel p and
q. Then in the simplest case the server provides the client (q) with the login
channel received from the policy (p). This means a new channel between the
client and policy is created by the server.
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6.2.4 External Security Server Based

This is the second unified framework. It is an extension of the proxy based
setup using external security servers to further out source part of the policy
behaviour.

ASCap Proxy in External Security Server Based

The ASCap Proxy in the external security server based setup is extended
with the external security server communication part. In an implementation
this would require additional connection setup code and signature checking.
Core process is (νh)(cess(a).cess(a′).csl(d).csl(d′).ch.h(b).a′b.a(x).dx.h(b′).d′b′),
which provides a login information channel to the client ch receives information
on it h(b) and redirects it (cess(a).h(b) and a′b) to either the Saccountcheck part
of the policy (resided in the external security server), or Srightcheck (csl(d′)
and h(b′).d′b′). Further on the two policy parts require to interact on a private
channel k, which is handled by cess(a′).csl(d) and a(x).dx. It becomes obvious,
that once a policy has a different interaction pattern (i.e. requires more secret
channels, or different login information at different points), this part of the
ASCap proxy has to be adapted. Therefore in the following the proof of
equivalent behaviour can only be given for the class of policies of the form
Srightcheck of form l′(x). · · · .k′ and Srightcheck of form k(y). · · · .l(z). The full
ASCap proxy process expression is given below:

Ascap2
def
= (νcsl, csp)((νh)(cess(a).cess(a′).csl(d).csl(d′).ch.h(b).

a′b.a(x).dx.h(b′).d′b′)h|
(νl, k)(cspk.cspl|Srightcheck)|csacsp.csacsl)csl,csp

External Security Server in External Security Server Based

An external security server has a form similar to the policy interface part of
an ASCap proxy.

Extsecserv
def= (νl, k)(cessk.cessl|Saccountcheck)

Server in External Security Server Based

The particularity, that the policy is split into two parts is also reflected in the
server process expression.

Sascap2
def= csa(p).csa(q).p(a).qa.p(a).qa

Generally the server will require to handle as many channels as policy parts
in the system exists.
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6.3 Concurrent Systems

This section gives an introduction about the expressiveness of the π-calculus
by presenting different concurrent setups of the ASCap framework. It incor-
porates different servers and clients, which can be expressed by the replication
operator.

(νc)(Client|!Ascap)|!Sascap1a|Sascap1b

client may be c1 (see section 6.2.2) or another client, which issues several
access requests. Ascap is bound statically, i.e. by storing it locally, into the
client scope - only they share c. The replication is used to allow the client
several access requests each one handled by an ASCap proxy instance. At
the same time there are either several independent servers. These servers
(Sascap1a|Sascap1b) can have different internal behaviour, such as different data
sources for a weather forecast. The same server can take

several access requests in parallel (!Sascap1a). Like in section 5.5 it can be
validated, that once the client commits to one server no interference with the
replicas of other server process expressions can take place.

cc1|(νcSA)!(Ascap|Sscap)|(νcSA1)!(Ascap|Sscap1b)

In this case the client can access one of the ASCap proxy, i.e. by downloading
them. Each ASCap proxy is associated with one server - they share a secret
channel cSA, this scope extrusion could be implemented by public key cryp-
tography. In this example the client restricts the server he will use by the
ASCap proxy he downloads at the beginning.

Further scenario can be simulated using the replication, but in the following
we will retreat to a single entity of each process.

6.3.1 Showing Behavioural Equivalence Of Hybrid and Version 1

In this section the process expressions will be rewritten using the axiomati-
sation system of section 4 to show weak late congruence. First the process
expressions are copied for ease of reading:

Ascap
def
= (νcsp, csl)((νm)((csa(m).mcsp.mcsl) | (νl)(csp(l)|Pacl1) | (csl(b).cb)

Sascap1
def
= csa(d).d(p).d(q).p(a).qa

Then we would like to introduce an axiom to put a policy P out of a scope
of a restriction:

SA (νl)(csp(l)|P ) ≈c
l (νl)(csp(l).P ) if P of form l(x). · ··

To proof this axiom it has to be noted, that P can not do a transition before
csp(l) extends the scope of l thus allowing other expressions to communicate
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with P .

In the following the commented sequence of equations are given:

(νcsa)(Ascap | Sascap1)

We restrict csa as we only consider the case in which this
Ascap and Sascap1 use csa to communicate with each other
instead of with other processes. This restriction can be
implemented using public key cryptography.
Note we are using the abbreviated form for the restriction
(νm).

(νcsa)((νcsp, csl) (

A︷ ︸︸ ︷
(csa(m).m(csp).m(csl)) |

B︷ ︸︸ ︷
(νl)(csp(l)|Pacl1) | (csl(b).cb)) |

C︷ ︸︸ ︷
csa(d).d(p).d(q).p(a).qa)

It has to be kept in mind that every (νcsp, csl) in the ex-
pansion is the same as in the wider scope.

Using E on (νcsp, csl)(B|
1︷ ︸︸ ︷

A)|C with
P = csa(m).m(csp).m(csl)
and P ′ = csa(d).d(p).d(q).p(a).qa.

1)P |P ′ = (csa(m).(m(csp).m(csl)|csa(d).d(p).d(q).p(a).qa) +
csa(d).(csa(m).m(csp).m(csl)|d(p).d(q).p(a).qa) +

([csa = csa])τ(νm)(

2︷ ︸︸ ︷
m(csp).m(csl)|m(p).m(q).p(a).qa))

After this expansion it can be seen that the system can
proceed in three ways. Either the proxy establishes a con-
nection with an arbitrary server (by doing csa(m)); Or the
server receives an connection from a different proxy (csa(a));
or both interact with each other. As we restricted csa we
can rule out the first two cases by using RES4,RES2 and
RES1.
Now we apply E to 2 with P = m(csp).m(csl)
and P ′ = m(p).m(q).p(a).qa .

2)P |P ′ = m(csp).(m(csl)|m(p).m(q).p(a).qa) +
m(p).(m(q).p(a).qa|m(csp).m(csl)) +
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τ.(νcsp)

3︷ ︸︸ ︷
(m(csl)|m(q).csp(a).qa)

Although the expansion results in three nondeterministic
choices, the upper two can be removed by RES4 and RES2
thus we expand (3) further.
The (νcsp) is the same as in wider scope.
E with P = m(csl) and P ′ = m(q).csp(a).qa .

3)P |P ′ = m(csl).(0|m(q).csp(a).qa) +
m(q).(csp(a).qa|m(csl)) +
τ.(νcsl)(0|csp(a).csla)

The upper two choices can be removed using RES4, RES2
and RES1. We need to recall, that E in 1) used the form
(νcsp, csl)(B|A)|C with A|C like (1(2(3))). We rewrite the
original term now as:

(νcsp, csl) ( (νl)(cspl|Pacl1) | (csl(b).cb) |
τ.(νm)τ.(νcsp)τ.(νcsl)(0|csp(a).csla))

We remember that the scope of the restrictions (νcsp, csl)are
the same as in the wider scope, hence we don’t need to write
it twice . We apply RES3 and RES4 to remove (νm). TAU1
can be used to remove the τ .

(νcsp, csl) ( (νl)(csp(l)|Pacl1)|(csl(b).cb) | csp(a).csla)

Before we can apply the E rule we need to put Pacl1 out
of the scope of (νl). This can be done by applying SA
of above. E can now be used with P = csp(l).Pacl1 and
P ′ = csp(a).csla.

4)P |P ′ = (csp(l).(Pacl1|csp(a).csla +
csp(a).(csp(l).Pacl1|csla +
τ.(νl)(Pacl1|csl(l)))

Upper two are 0 according to RES4,RES2 and RES1.
After applying TAU1 and SA use E rule with P =
csl(l).Pacl1 and P ′ = csl(b).cb.

5)P |P ′ = csl(l).(Pacl1|csl(b).cb) +
csl(b).(csl(l).Pacl1|cb) +
τ.(νl)(Pacl1|c(l)))
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Upper two are 0 according to RES4,RES2 and RES1. τ
removed by TAU1. Then use (4) and (5) to rewrite the
original term and remove (νcsp, csl) by RES3 and RES4, we
get:

(νl) c(l)|Pacl1

Recalling that Shybrid
def
= (νl)(cl|Pacl1) we can now see that

(νl)c(l)|Pacl1 ≈c
l (νl)(cl|Pacl1)

means
Ascap|Sascap1 ≈c

l Shybrid.

This result can be lifted to

!Ascap|!Sascap1 ≈c
l !Shybrid

by showing that the initial communication on csa between Ascap and Sascap1

extends the scope of the fresh m (and later csp, csl). m, csp, csl being secret
prevents instances of Ascap and Sascap1, which are in the same stage of com-
munication to interfere with each other.

Informally that means that infinite parallel running instances of the Ascap

proxy and infinite simultaneous running instances of the Sascap1 are weak late
congruent with infinite number of Shybrid waiting for communication, provided
both use the same policy P as access decision function.

This result holds because in the equational reformulation we were only
using rules which do not modify weak late congruence. However we have to
keep in mind that after using SA, our system is restricted to policies, which
start with an input action on channel l before freely interacting with the
environment. We feel that this limitation is of no burden to the practical
policy appliance.

6.3.2 Showing Behavioural Equivalence Of Hybrid and Version 2

This section shows behavioural equivalence of the external security server
based system described by the process expressions given before:

Ascap2
def= (νcsl, csp)((νh)(cess(a).cess(a′).csl(d).csl(d′).c(h).h(b).a′b.a(x).dx.

h(b′).d′b′)h|(νl, k)(csp(k).csp(l)|Srightcheck) |
csa(csp).csa(csl))csl,csp

Extsecserv
def
= (νl, k)(cess(k).cess(l)|Saccountcheck)
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Sascap2
def
= csa(p).csa(q).p(a).qa.p(a).qa

In the equations below the braces are augmented with indices noting the scope
of restrictions ending by this brace. Also partial expressions are omitted, if it
can be shown that they can be reduced to the empty process. Section 6.3.1
can be used to see examples of the full terms.

(νcsa)((νcess)(Ascap2|Extsecserv) | Sascap2)
(νcsa)((νcess)((νcsl, csp)( | csa(p).csa(q).p(a).qa.p(a).qa)csa

(νh)(cess(a).cess(a′).csl(d).csl(d′).c(h).h(b).
a′b.a(x).dx.h(b′).d′b′)h|

(νl, k)(csp(k).csp(l)|Srightcheck)|
csa(csp).csa(csl))csl,csp

(νl, k)(cess(k).cess(l)|Saccountcheck))cess

Renaming l & k .

(νcsa)((νcess)((νcsl, csp)( | csa(p).csa(q).p(a).qa.p(a).qa)csa

(νh)(cess(a).cess(a′).csl(d).csl(d′).c(h).h(b).
a′b.a(x).dx.h(b′).d′b′)h|

(νl, k)(csp(k).csp(l)|Srightcheck)|
csa(csp).csa(csl))csl,csp

(νl′, k′)(cess(k′).cess(l′)|Saccountcheck))cess

E with P ′ = cess(k′).cess(l′) and P =
cess(a).cess(a′).csl(d).csl(d′).c(h).h(b).a′b.a(x).dx.h(b′).d′b′ .)

P |P ′ = (cess(a). · · ·+cess(k′). · · ·+
τ.

(νk′)cess(a′).csl(d).csl(d′).
c(h).h(b).a′b.k′(x).dx.h(b′).d′b′|cess(l′))

The first two choices can be reduced to 0 by RES4, RES2 and RES1.
E with P = cess(a′).csl(d).csl(d′).c(h).h(b).a′b.k′(x).dx.h(b′).d′b′ and
Pj = cess(l′).0.

P |P ′ = (cess(a′). · · ·+cess(l′). · · ·+
τ.

(νl′)csl(d).csl(d′).
c(h).h(b).l′b.k′(x).dx.h(b′).d′b′|0)
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The first two choices can be reduced to 0 by RES4, RES2 and RES1.
Hence the whole expression after further simplifications becomes:

(νcsa)((νcess)((νcsl, csp)((νh)(
(νl′, k′)(τ.τ.csl(d).csl(d′). | csa(p).csa(q).p(a).qa.p(a).qa)csa

c(h).h(b).l′b.k′(x).dx.h(b′).d′b′)h|
Saccountcheck)l′,k′ |

(νl, k)(csp(k).csp(l)|Srightcheck)|
csa(csp).csa(csl))csl,csp

E with P = csa(csp).csa(csl) and P ′ = csa(p).csa(q).p(a).qa.p(a).qa.

P |P ′ = csa(csp). · · ·+csa(p). · · ·+
τ.(νcsp)csa(csl)|

csa(q).csp(a).qa.csp(a).qa)

The first two choices can be reduced to 0 by RES4, RES2 and RES1.
E with P = csa(csl) and P ′ = csa(q).csp(a).qa.csp(a).qa.

P |P ′ = csa(csl). · · ·+csa(q). · · ·+
τ.(νcsl)0|

csp(a).csla.csp(a).csla)

The first two choices can be reduced to 0 by RES4, RES2 and RES1.
After further simplifications the full expression becomes.

(νcsa)((νcess)((νcsl, csp)((νh)(
(νl′, k′)(τ.τ.csl(d).csl(d′). | τ.τ.csp(a).csla.csp(a).csla)csl,csp)csa

c(h).h(b).l′b.k′(x).dx.h(b′).d′b′)h|
Saccountcheck)l′,k′ |

(νl, k)(csp(k).csp(l)|Srightcheck)

E with P = csp(k).csp(l) and P ′ = csp(a).csla.csp(a).csla.

P |P ′ = csp(k). · · ·+csp(a). · · ·+
τ.

(νk)(csp(l)|csl(k).csp(k).csl(k)

The first two choices can be removed using RES4, RES2 and RES1.
Hence the full term reads:

(νcsa)((νcess)((νcsl, csp, k)((νh)(
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(νl′, k′)(τ.τ.csl(d).csl(d′). | τ.τ.τcsl(k).csp(k).csl(k))csl,csp,k)csa

c(h).h(b).l′b.k′(x).dx.h(b′).d′b′)h|
Saccountcheck)l′,k′ |

(νl)(csp(l)|Srightcheck)

E with P = csl(d).csl(d′).c(h).h(b).l′b.k′(x).dx.h(b′).d′b′ and P ′ =
csl(k).csp(k).csl(k).

P |P ′ = csl(d). · · ·+csl(k). · · ·+
τ.(νk)csl(d′).c(h).

h(b).l′b.k′(x).kx.h(b′).d′b′|
csp(k).csl(k))

The first two choices can be removed using RES4, RES2 and RES1.
Hence the full term reads:

(νcsa)((νcess)((νcsl, csp, k)((νh)(
(νl′, k′)(τ.τ.τ.csl(d′). | τ.τ.τcsp(k).csl(k))csl,csp,k)csa

c(h).h(b).l′b.k′(x).kx.h(b′).d′b′)h|
Saccountcheck)l′,k′ |

(νl)(csp(l)|Srightcheck)

E with P = csp(k).csl(k) and P ′ = csp(l).

P |P ′ = csp(k). · · ·+csp(l). · · ·+
τ.(νl)csl(l)|0)

The first two choices can be removed using RES4, RES2 and RES1.
Hence the full term reads:

(νcsa)((νcess)((νcsl, csp, k, l)((νh)(
(νl′, k′)(τ.τ.τ.csl(d′). | τ.τ.τ.τcsl(l))csl,csp,k,l)csa

c(h).h(b).l′b.k′(x).kx.h(b′).d′b′)h|
Saccountcheck)l′,k′ |

Srightcheck)

E with P = csl(d′).c(h).h(b).l′b.k′(x).kx.h(b′).d′b′ and P ′ = csl(l).

P |P ′ = csl(d′). · · ·+csl(l). · · ·+
τ.(νl)c(h).h(b).

l′b.k′(x).kx.h(b′).lb′|0)
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The first two choices can be removed using RES4, RES2 and RES1.
Hence the full term reads:

(νcsa)((νcess)((νcsl, csp, k, l)((νh)(
(νl′, k′)(τ.τ.τ.τ. | τ.τ.τ.τ.0)csl,csp,k,l)csa

c(h).h(b).l′b.k′(x).kx.h(b′).lb′)h|
Saccountcheck)l′,k′ | Srightcheck)

Using RES1-RES4 some restrictions can be removed. TAU1 removes
the τ .

(νk, l)((νh)((νl′, k′)(c(h).
h(b).l′b.k′(x).kx.h(b′).lb′)h | Saccountcheck)l′,k′|Srightcheck)k,l

(νk, l)((νh)((νl′, k′) (

A︷ ︸︸ ︷
c(h).h(b).l′b .

B︷ ︸︸ ︷
k′(x).kx .

C︷ ︸︸ ︷
h(b′).lb′)h|

Saccountcheck)l′,k′|Srightcheck)k,l

Notable in this process expression is, that Saccountcheck and Srightcheck have
no direct communication channel, ie. they reside in different servers. From
section 5.4 we know that Saccountcheck requires communication on l′ before it
does internal communication on k′. The part A receives the login information
from the client and sends it to Saccountcheck. B transfers the internal informa-
tion from Saccountcheck to Srightcheck and C provides Srightcheck with the next
information received from the client.
If Saccountcheck has the form l′(x).···.k′ and Srightcheck has the form k(y).···.l(z)
then the system can be shown to be ≈c

l Shybrid using the bisimulation given
in section 5.6.

6.4 Conclusion and Lessons of Second Part

In this section the π-calculus specifications of a unified access control frame-
work has been discussed. After giving the process expression of a hybrid
system, which stands for today’s customised access control mechanism built
into each proprietary server, two versions of a unified access control mech-
anism were presented. The first version (proxy based) introduced dynamic
policy change by migrating the location were the policy is stored. The second
version extended the setup by external security servers, which allows the pol-
icy to be split into parts, to be stored and administrated by different entities.
The section concludes with two proofs that both frameworks do not change
the behaviour of the full system. This is a substantial result as the gained
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flexibility comes at no costs.
The process expression of an exemplified client is also given, which allows
the reader to verify that from the client perspective the systems appear in-
distinguishable. This is important as existing clients, once the ASCap unified
access control mechanism is interfaced, can use any kind of mechanism without
changing their interface. Hence new access control models could be employed
without modifying the client application.

6.4.1 Lessons

Writing the process expressions involves understanding both the π-calculus
and the idea of the framework to be described. An interesting question was
whether certain properties could not be encoded. Obvious candidates were
performance properties, cryptographical algorithms or deterministic choices
in the policy expressions.In the following we will discuss different encoded
properties.

Performance Properties

Performance properties can be seen as parallel to the communication behaviour
and would require further primitives in the π-calculus. It is possible to guess
from the amount of label transitions and τ transitions whether a process might
have a overhead, but further encoding would be needed.

Security Properties

Security properties, such as cryptographical algorithms are similar to the per-
formance properties - additional primitives in the π-calculus are needed. These
had been provided in the SPI-calculus by Abadi [2].

Deterministic Choices

Deterministic choices is not included in the simple π-calculus, but the polyadic
form provides the match and mismatch operator. Further variants include
choices on priority or types.

Online Modification

In real life applications it is conceivable that a server receives login informa-
tion of the client in form of an authentication certificate. After checking the
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correctness of the key, it reformats the information or modifies certain values.
This is different to simple information passing. It is possible to encode this in
the π-calculus as x(a).M{a/b}.y(b) or x(a).τ.y(a). However during the proof
it became clear, that these encodings can introduce substantial complexity.
Recalling that the π-calculus describes the communication behaviour of pro-
cesses a reformatting of information does not change the information content,
thus it has to be decided if it has to be included in the system specification.

Impressiveness of Process Expressions

Above we were recalling which properties can and should be encoded in the
process expressions. Now it will be discussed, which analysis can be done
using the process expressions. The obvious answerable questions include, if
a certain information is accessible by a certain process (ie. can the server
access the policy residing inside the ASCap proxy only communicating on the
secret channel l - Answer: Using scope extrusion it can be derived). But dur-
ing the behavioural equivalence proof it became clear that further statements
are derivable. The ASCap framework incorporates the channel cSA between
the ASCap proxy and server. If this channel is not cryptographically secured
(meaning restricted), it is possible that the client commits into communica-
tion with an arbitrary server, or even a Man in the Middle Attack becomes
possible. If the framework is only implemented the need to throughoutness
is less immediate, while by using formal methods (ie. π-calculus) to rewrite
the equation the strictness of rules points out weaknesses. In our case for
the equivalence proof we wanted to erase two nondeterministic choices, but it
became clear that using an unrestricted channel cSA these choices exist. In
the implementation this would allow not only the ASCap proxy to connect to
the server, but to other malicious servers, too.
For our framework this means that we could prove weak late congruence and
not open bisimilarity. Formally this was caused by the use of mismatch op-
erator and is expressed that congruent expresses may not be equivalent after
renaming of channels or in different contexts. An example would be, that the
client process expression renames r to w and vice versa, thus changing the
meaning of a channel name.

Specification and Implementation

Like stated in the paper of Esterline and Rorie [5] the π-calculus expressions
act as system specifications and it is possible to use them as verification tools
for an actual implementation. The process expression would then need to be
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refined gradually, showing for each step a proof, that behavioural equivalence
is given.

Generalisation

It is desirable to proof behavioural equivalence for all policy expressions, but
the proof of the external security server based setup has shown, that this is not
possible. Recalling that this setup allows one or more external security servers
to be incorporated, or in different terms the policy to be split into one or more
parts, it is clear, that different ASCap proxies and server implementations
must exist. This is reflected also in the process expressions. We have chosen
to present a proof restricting the form the policy expression can take and it
is conceivable to generalise this approach to derive policy expression classes.
Future work in π-calculus may categories expressions, practically categorising
system behaviour.
A different approach to generalisation is the use of automated equivalence test-
ing tools, such as the mobility workbench [7]. Automated tools are convenient
to use, but may have limitations such as that not all primitives can be used or
only one class of equivalence is tested. This resulted in our case to reconsider
to manually proof the equivalence.

7 Conclusions

In the previous sections we have shown that behavioural equivalence between
different policy implementations, as well as access control mechanism can be
done using the π-calculus.

This result can be beneficial in two ways, in the first it shows that a unified
access control mechanism can safely simulate all behaviour an equivalent hy-
brid system can do. The access control community may ravish from this result
by safely implementing new models, policy languages or management tools us-
ing the unified framework. The practitioner eventually will be provided with
a unified access control mechanism implementing all possible access control
models. In marketing terms: the time to market from the research develop-
ments will be drastically reduced. Secondly this result shall be interesting to
the theoretical computer science community to allow insights of the thoughts
and needs practitioners may have. Especially the section of access control
policy and mechanism process expression derivation should show that existing
π-calculus derivates are sufficient. However the mismatch encoding might be a
bit clumsy in larger frameworks and research toward a programming language
like syntax might help non-theoretical employment of the existing calculus.
Further on the theoretical calculus community evolves around terms of con-
gruence, equivalence or bisimulation. Employing a calculus in the security
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setting clearness of meaning and relevance of the different terms may change.
To clarify this further examples of the differences of the different terms includ-
ing their translation into the practical world may be useful. It may be well
possible that techniques to emphasise the difference of process expressions,
such as showing contexts in which the similarity fails will lead to development
of automated security checking tools. Some examples of this can be seen in
Abadi’s work on formalising authentication protocols [21]. Or the automated
protocol checker of Crazzolara and Milicia [12].
Finally it can be said that although formal methods require a certain insider
knowledge they are already today ready to employ to practical world problems.
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