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Abstract

We show that the standard normalization-by-evaluation construction for the
simply-typed λβη-calculus has a natural counterpart for the untyped λβ-calculus,
with the central type-indexed logical relation replaced by a “recursively defined”
invariant relation, in the style of Pitts. In fact, the construction can be seen as
generalizing a computational-adequacy argument for an untyped, call-by-name
language to normalization instead of evaluation.

In the untyped setting, not all terms have normal forms, so the normaliza-
tion function is necessarily partial. We establish its correctness in the senses of
soundness (the output term, if any, is β-equivalent to the input term); standard-
ization (β-equivalent terms are mapped to the same result); and completeness
(the function is defined for all terms that do have normal forms). We also show
how the semantic construction enables a simple yet formal correctness proof for
the normalization algorithm, expressed as a functional program in an ML-like
call-by-value language.

∗Extended version of an article to appear in the proceedings of the 7th International Conference
on Foundations of Software Science and Computation Structures (FOSSACS 2004).

†Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.
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1 Introduction

1.1 Reduction-Based and Reduction-Free Normalization

Traditional accounts of term normalization are based on a directed notion of reduction
(such as β-reduction), which can be applied anywhere within a term. A term is said
to be a normal form if no reductions can be performed on it. If the reduction relation
is confluent, normal forms are uniquely determined, so normalization is a (potentially
partial) function on terms. Some terms (such as Ω) may not have normal forms
at all; or a particular reduction strategy (such as normal-order reduction) may be
required to guarantee arrival at a normal form when one exists; such a strategy is
called complete. There is a very large body of work dealing with normalization in
reduction-based settings.

However, in recent years, a rather different notion of normalization has emerged,
so-called reduction-free normalization. As the name suggests, it is not based on a
directed notion of reduction, but rather on an undirected notion of term equivalence.
Equivalence may be defined as simply the reflexive-transitive-symmetric closure of
an existing reduction relation, but it does not have to be: any congruence relation
on terms may be used. The task of normalization is then to define a normalization
function on terms, such that the output of the function is equivalent to the input,
and such that any two equivalent terms are mapped to identical outputs [3].

For some notions of equivalence (such as β-convertibility of untyped lambda-
terms), it is actually impossible to define a computable, total normalization function
with both of these properties; we must thus accept that the normalization function
may be partial. However, even in that case, we can impose a completeness constraint:
if we have an independent syntactic characterization of acceptable normal forms, we
can require that the function both produce terms in this form as output, and that it
be defined on all terms equivalent to a normal form.

1.2 Normalization by Evaluation

A particularly natural way of obtaining a reduction-free normalization function is
known as normalization by evaluation (NBE), based on the following idea: Suppose
we can construct a denotational model of the term syntax (i.e., such that equivalent
terms have the same denotation), with the property that a syntactic representation
of the term (up to equivalence) can be be extracted from its denotation; such a model
is called residualizing. Then the normalization function can be expressed simply as a
(compositional) interpretation in the model, followed by extraction.

A priori, such a normalization function is not necessarily effectively computable. It
can be given a computational interpretation if the denotational model is constructed in
intuitionistic set theory [3], but this gets somewhat complicated for domain-theoretic
models, especially those involving reflexive domains. In such cases, it is often easier
to establish that the constructions are effective by showing that they can expressed
as images of program terms in a language for which the domain-theoretic semantics
is already known to be computationally adequate.

(It should be noted that the term NBE is also sometimes used for a related concept,
based on reducing – usually in a compositional way – the normalization problem, which
may in general involve open terms of higher type, to an evaluation problem, which
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involves normalization of only closed terms of base type. The required transformation
is often syntactically related to the model-based construction above, but the model
itself is not made explicit; and in fact, the subsequent evaluation process may still be
specified entirely in terms of reductions.)

1.3 The Berger-Schwichtenberg Normalization Algorithm

Perhaps the best-known NBE algorithm is due to Berger and Schwichtenberg [2]. It
finds βη-long normal forms of simply-typed λ-terms. We present here its outline,
glossing over inessential details.

Types are of the form τ ::= b | τ1 → τ2. A natural set-theoretic model interprets
each base type b as some set, and the function type as the set of all functions between
the interpretations of the types, i.e., [[τ1 → τ2]] = [[τ1]]→ [[τ2]]. For a type assignment
Γ, we also take [[Γ]] =

∏
x∈domΓ[[Γ(x)]].

Let Λ be the set of syntactic λ-terms (written with explicit constructors for em-
phasis) over a set of variables V . For a well-typed term Γ ` m : τ , we can then express
its semantics [[m]] ∈ [[Γ]]→ [[τ ]] as follows:

[[VAR(x)]] ρ = ρ(x)
[[LAM(xτ ,m0)]] ρ = λa[[τ ]]. [[m0]] ρ[x 7→ a]
[[APP(m1,m2)]] ρ = [[m1]] ρ ([[m2]] ρ)

It is easy to check that such a model is sound for conversion, i.e., that whenm↔βη m
′,

then [[m]] = [[m′]].
Consider now a model where all base types are interpreted as the set of (open)

syntactic λ-terms, i.e., [[b]] = Λ for all b. In this model, we can define a pair of type-
indexed function families: reification, ↓τ : [[τ ]] → Λ, and reflection, ↑τ : Λ → [[τ ]], by
mutual induction on types:

↓b l = l

↓τ1→τ2 f = LAM(xτ1 , ↓τ2 (f(↑τ1 VAR(x)))) (where x is chosen “fresh”)

↑b l = l

↑τ1→τ2 l = λa[[τ1]]. ↑τ2 (APP(l, ↓τ1 a))

For simplicity, let us only consider normal forms of closed terms. Then reification can
serve directly as an extraction function: one can check that, for a term ` m : τ in βη-
long normal form, ↓τ ([[m]] ∅) ↔α m. Hence, by soundness of the model, for any term
m′ with m′ ↔βη m, ↓τ ([[m′]] ∅) = ↓τ ([[m]] ∅) ↔α m ↔βη m

′. Alternatively, one can
show the latter property directly, for an arbitrary m′. Either way, the typical proof
ultimately involves a logical-relations argument, even if this argument is pushed en-
tirely into a standard result about the syntax (namely, that every well-typed term has
a βη-long normal form). The latter approach, however, generalizes better, especially
to systems where not all terms have normal forms.

1.4 A Tentative Algorithm for Untyped Terms

In an untyped (or, more accurately, unityped) setting, we may hope to get a residu-
alizing model by interpreting the single type of terms as a domain D = Λ+(D→D).
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(Again, we gloss over domain-theoretic subtleties for expository purposes.) We can
then define variants of reification, ↓ : D → Λ, and reflection, ↑ : Λ → D, roughly
analogous to the simply-typed case:

↓ d = case d of
{
in1(l) → l
in2(f) → LAM(x, ↓ (f(↑VAR(x)))) (x “fresh”)

↑ l = in1(l)

Note that reification is now defined by general recursion, rather than induction. We
can also construct an interpretation, [[m]] ∈ (V →D)→D, by

[[VAR(x)]] ρ = ρ(x)
[[LAM(x,m0)]] ρ = in2(λd. [[m0]] ρ[x 7→ d])

[[APP(m1,m2)]] ρ = case [[m1]] ρ of
{
in1(l) → ↑ (APP(l, ↓ ([[m2]] ρ)))
in2(f) → f ([[m2]] ρ)

Here, reflection is performed “on demand”: when application needs a semantic func-
tion, but [[m1]]ρ is a piece of syntax, it is reflected just enough to allow the application
to be performed.

Again, it can be checked that β-convertible terms have the same denotation. It
is also fairly easy to verify that, for a closed m in β-normal form, ↓ ([[m]] ∅) ↔α m.
What is not obvious at all, however, is that when ↓ ([[m′]] ∅) = m for a general m′,
then m′ must be syntactically β-convertible to a normal form. Indeed, the problem
is a generalization of the usual computational-adequacy problem for a denotational
semantics of a functional language: if the denotation of a closed term is not ⊥, must
the term then evaluate to a value?

For a simply typed language, PCF, adequacy of the natural domain-theoretic
semantics was shown by Plotkin, using a logical-relations argument [7]. Pitts showed
that essentially the same argument applies to an untyped language, except that the
central relation is no longer constructed by induction on types, but as a solution of a
more general “relation equation”; he also showed a general method for solving such
equations, yielding invariant relations [5].

In this paper, we first formalize the construction of the normalization function
from above, addressing especially the issues of potential divergence and generation
of fresh variable names (Section 2). We then show correctness of this function by a
generalized computational-adequacy construction (Section 3). Finally, we show how
the domain-theoretic analysis directly validates a functional program implementing
the construction (Section 4).

1.5 Related Work

The closest related work to ours is probably the NBE-based (in the alternate sense)
algorithm for untyped β-normalization proposed by Aehlig and Joachimski [1]. How-
ever, while the functional programs ultimately derived from the analyses are quite
similar, the correctness arguments are completely different: theirs are based entirely
on syntactic concepts and results from higher-order rewriting theory, rather than on
the domain-theoretic constructions underlying ours. In particular, their algorithm is
very explicitly reduction-based, departing from the original meaning of NBE as term
extraction from a denotational model of a conversion relation.
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We believe that the domain-theoretic approach enables a more direct and pre-
cise correctness proof for the normalizer, as actually implemented. In Aehlig and
Joachimski’s work, the abstract algorithm is expressed as a small-step operational
semantics for a specialized, two-level λ-calculus with named bound variables; yet the
actual normalization program is expressed as a compositional interpreter in Haskell,
using de Bruijn indices for bound variables, and a reflexive type for the meanings
of higher-typed terms. No connection is made to a formal semantics (operational or
otherwise) of the relevant Haskell fragment. While it may well be possible to formally
close this gap, it remains as a potentially major undertaking. On the other hand,
formally relating the domain-theoretic constructions in the model-based normalizer
to the functional terms implementing them is completely straightforward. We ex-
pect, but have not formally investigated, that Aehlig and Joachimski’s interesting
extensions of the basic algorithm to infinite normal forms (Böhm trees) could also be
expressed naturally in the denotational setting, and be used to validate a functional
program producing such normal forms lazily.

Many of the constructions in the present paper are inspired by the first author’s
work on type-directed partial evaluation [4]. Apart from the obvious differences aris-
ing from typed vs. untyped languages, a significant change is also that the TDPE work
considered equivalence defined semantically (equality of denotations for all interpre-
tations of “dynamic” constants), while here we consider syntactic β-convertibility.
Accordingly, the central invariant relation ties denotations to syntactic terms, rather
than to denotations in another semantics.

Essentially the same program as in Section 4, but expressed in FreshML, can be
found in a recent paper by Shinwell et al. [8, Figure 7]. However, the focus there
is on a practical application of fresh-name generation, rather than on normalization
as such. Indeed, the underlying algorithm is only informally attributed to Coquand,
and carries no formal correctness argument. In the present work, generation of fresh
names is handled explicitly: since constructed output terms are never subsequently
analyzed, using a general framework such as FreshML, or higher-order abstract syntax,
is probably overkill. However, we anticipate that a different “back end” for output
generation could be used, and have deliberately tried to keep the constructions and
proofs modular with respect to the term-generation operations. We thus expect that
essentially the same arguments – perhaps even a little simplified – could be used to
verify correctness of the FreshML variant of the normalizer as well.

2 A Semantic Normalization Construction

2.1 Syntax and Semantics of the Untyped λ-Calculus

Syntax Let V be a countably infinite set of (object) variables, with x and v ranging
over V . Let Λ be the set of λ-terms defined by

m ::= VAR(x) | LAM(x,m0) | APP(m1,m2)

The set of free variables of a term, FV (m), is defined in the usual way. For any finite
set of variables ∆, we write Λ∆ for the set of λ-terms over ∆, i.e.,

Λ∆ = {m ∈ Λ | FV (m) ⊆ ∆}

6



Substitutions For technical reasons, we take simultaneous (as opposed to single-
variable), capture-avoiding substitution as the basic concept. Accordingly, we say
that a substitution θ is a finite partial function from variables to terms. We take
FV (θ) =

⋃
x∈dom θ FV (θ(x)), and define the action of θ on a term m in the usual

way, by structural induction on m:

VAR(x)[θ] =
{
θ(x) if x ∈ dom θ
VAR(x) otherwise

LAM(x,m0)[θ] = LAM(x′,m0[θ[x 7→VAR(x′)]])
where x′ 6∈ FV (θ) ∪ (FV (m0)\{x})

APP(m1,m2)[θ] = APP(m1[θ],m2[θ])

As a special case, we use the standard notation m[m′/x] to mean m[ [x 7→m′] ]. To
keep the substitution operation deterministic, we assume that the x′ in the LAM-
clause is picked as some fixed but arbitrary function of the (finite) set of variables it
needs to avoid.

Conversion and normalization We define convertibility between λ-terms, writ-
ten m↔ m′, by the axiom schemas for α- and β-conversion,

LAM(x,m) ↔ LAM(x′,m[x′/x]) (x′ 6∈ FV (m)\{x})
APP(LAM(x,m),m′) ↔ m[m′/x]

together with the standard equivalence and compatibility rules, making ↔ into a
congruence relation on terms.
We further define atomic (also known as neutral) and normal forms, as follows:

àt VAR(x)
àt m1 ǹf m2

àt APP(m1,m2)
àt m

ǹf m
ǹf m0

ǹf LAM(x,m0)

We then expect a normalization function on terms to satisfy that the output, if
any, is in normal form and convertible to the input (soundness); convertible terms
either give the same output, or neither one does (standardization); and if a term has
a normal form at all, the normalization function will return one (completeness).

Semantics A natural way of defining a denotational model of convertibility is in
terms of a reflexive pointed cpo D. Reflexivity means that the continuous-function
space [D→D] is a retract of D, i.e., that there exist continuous functions

φ : [D → D] → D and ψ : D → [D → D] ,

such that ψ ◦ φ = id[D→D]. The induced interpretation, [[m]] ∈ [[V → D] → D], is
then:

[[VAR(x)]] ρ = ρ(x)
[[LAM(x,m0)]] ρ = φ(λdD . [[m0]] ρ[x 7→ d])

[[APP(m1,m2)]] ρ = ψ([[m1]] ρ) ([[m2]] ρ)

7



Lemma 1 The interpretation has two expectable properties:

a. If ∀x ∈ FV (m). ρ(x) = ρ′(x), then [[m]] ρ = [[m]] ρ′.

b. Let θ = [x1 7→m1, . . . , xn 7→mn] be a substitution.
Then [[m[θ]]] ρ = [[m]] ρ[x1 7→ [[m1]] ρ, . . . , xn 7→ [[mn]] ρ].

Proof: Part (a) is a straightforward induction on the structure of m. Part (b)
follows by induction on the structure of m, using part (a) in the LAM-case. �

Lemma 2 (model soundness) If m↔ m′ then [[m]] = [[m′]]

Proof: By induction on the derivation of m ↔ m′, using Lemma 1 for α- and
β-conversion, and using that ψ ◦ φ = id[D→D] for β-conversion. �

2.2 Output-Term Generation

We want to account rigorously for the generation of fresh names, and do so in a mod-
ular manner. We will therefore construct a set Λ̂ (dependent on the name generation
scheme) with elements denoted by l, together with wrapper functions,

V̂AR : V → Λ̂, L̂AM : [V → Λ̂] → Λ̂, ÂPP : Λ̂× Λ̂ → Λ̂

where, in particular, L̂AM provides a fresh name to be used in constructing the body
of the λ-abstraction.

Let N be a set (discrete cpo) containing at least the natural numbers, with an
operation · + 1 : N → N , agreeing with the successor operation on naturals. Let
{g0, g1, ...} be a countably infinite subset of V , such that gi = gj implies i = j, and
let gen : N → V be such that gen(n) = gn when n ∈ N.

We write b·c for the inclusion from A to A⊥; and for f : A→B with B pointed, we
write · ? f for f ’s strict extension to A⊥, i.e., ⊥ ? f = ⊥B and bac ? f = f a. We then
take Λ̂ = [N → Λ⊥] and define wrapper functions for constructing λ-terms using de
Bruijn-level (not -index!) naming as follows:

V̂AR(v) = λnN . bVAR(v)c
L̂AM(f) = λnN . f gen(n) (n+ 1) ? λmΛ

0 . bLAM(gen(n),m0)c
ÂPP(l1, l2) = λnN . l1 n ? λmΛ

1 . l2 n ? λm
Λ
2 . bAPP(m1,m2)c

Note 1 If we took freshness as a primitive concept, like in FreshML, we could simply
use Λ̂ = Λ⊥; V̂AR(v) = bVAR(v)c; L̂AM(f) = f x?λm0. bLAM(x,m0)c, with x fresh
for f ; and ÂPP(l1, l2) = l1 ? λm1. l2 ? λm2. bAPP(m1,m2)c.

2.3 A Residualizing Model

From standard domain-theoretic results (e.g., [5]), we know that there exists a pointed
cpo Dr, together with an isomorphism

i : Dr
∼=→ (Λ̂ + [Dr → Dr])⊥

Moreover, this solution is a so-called minimal invariant, which we will need in the
next section.
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We first define the reification function ↑ : Λ̂ → Dr and reflection function ↓ :
Dr → Λ̂, as follows:

↓ d = case i(d) of



bin1(l)c → l

bin2(f)c → L̂AM(λxV . ↓ (f(↑ V̂AR(x))))
⊥ → ⊥bΛ

↑ l = i−1(bin1(l)c)

where the recursive definition of ↓ is interpreted in the usual least-fixed-point sense.
Using these, we construct appropriate functions φr : [Dr →Dr]→Dr and ψr : Dr →
[Dr →Dr]:

φr(f) = i−1(bin2(f)c)

ψr(d) = case i(d) of



bin1(l)c → λd′Dr . ↑ ÂPP(l, ↓ d′)
bin2(f)c → f

⊥ → ⊥[Dr→Dr ]

Clearly, we have that ψr ◦ φr = id[Dr→Dr ], since i was an isomorphism. The in-
duced interpretation is denoted by [[·]]r . We can now define a putative normalization
function:

Definition 1 For any ∆, let ]∆ = max ({n + 1 | gn ∈ ∆} ∪ {0}) (i.e., the least n
such that ∀n′ ≥ n. gn′ 6∈ ∆). We then define the function norm∆ : Λ∆ → Λ⊥ by

norm∆(m) = ↓ ([[m]]r (λxV . ↑ V̂AR(x))) ]∆

In particular, when ∆ is disjoint from the set of gi-names (so ]∆ = 0), we write just
norm for norm∆.

3 Correctness of the Construction

3.1 Correctness of the Wrappers

Let s ∈ {at, nf} be a syntactic-form designator. We first define a quaternary relation,
l /∆

s m, expressing that if l represents a term at all, then that term only has free
variables in ∆, is of the syntactic form s, and is convertible to m:

Definition 2 For l ∈ Λ̂ and m ∈ Λ∆, we then define the relation / by

l /∆
s m iff ∀n ≥ ]∆,m′ ∈ Λ. l n = bm′c ⇒ m′ ∈ Λ∆ ∧ s̀ m

′ ∧m′ ↔ m

Lemma 3 For fixed ∆, s, and m, the predicate P = {l | l /∆
s m} is pointed (i.e.,

⊥bΛ ∈ P ) and inclusive (i.e., closed under limits of ω-chains).

Proof: Straightforward, noting that / is expressed using intersection, inverse image,
and a (necessarily inclusive) predicate on the flat domain Λ⊥. �

Lemma 4 The representation relation is closed under weakening and conversion:

9



a. If l /∆
s m and ∆ ⊆ ∆′, then also l /∆′

s m.

b. If l /∆
s m and m′ ∈ Λ∆ with m↔ m′, then also l /∆

s m′.

Proof: Both parts are immediate from the definition. �

Lemma 5 Representations of terms behave much like the terms themselves:

a. If v ∈ ∆ then V̂AR(v) /∆
at VAR(v).

b. If l1 /∆
at m1 and l2 /∆

nf m2, then ÂPP(l1, l2) /∆
at APP(m1,m2).

c. If l /∆
at m, then also l /∆

nf m.

d. Let f ∈ [V → Λ̂] and m ∈ Λ∆∪{x}. If ∀v /∈ ∆.fv /∆∪{v}
nf m[VAR(v)/x], then

L̂AM(f) /∆
nf LAM(x,m).

Proof: Parts (a), (b), and (c) are straightforward, where (b) uses that convertibility
is a congruence wrt. APP. We will now prove (d).

Let f , x, and m, satisfy the condition of the lemma, and let n ≥ ]∆ and m′

with L̂AM(f) n = bm′c be given; we must show that m′ ∈ Λ∆, ǹf m
′, and m′ ↔

LAM(x,m).
From the definition of L̂AM(f), we must have that, for some m0, f gn (n+ 1) =

bm0c and m′ = LAM(gn,m0). By definition of ], gn 6∈ ∆, so by assumption on f ,
f gn /∆∪{gn}

nf m[VAR(gn)/x]. Further, since n + 1 ≥ ](∆ ∪ {gn}), the definition of
/ gives us that m0 ∈ Λ∆∪{gn}, ǹf m0, and m0 ↔ m[VAR(gn)/x]. But then clearly
LAM(gn,m0) ∈ Λ∆, ǹf LAM(gn,m0), and

LAM(gn,m0) ↔ LAM(gn,m[VAR(gn)/x]) ↔ LAM(x,m) ,

where the first conversion is by congruence wrt. LAM and the second is a valid α-
conversion, since gn 6∈ ∆ ensures that gn 6∈ FV (m)\{x}. �

3.2 Adequacy of the Residualizing Model

To construct the central relation between denotations and terms, we first state an
abstract version of a result due to Pitts [5]:

Theorem 1 (existence of invariant relations) Let A be a cpo, and let i : D ∼=→
(A+[D→D])⊥ be a minimal-invariant solution of the domain equation X ∼= (A+[X→
X ])⊥. Let T be a set, and let predicates P1 ⊆ A × T , P2 ⊆ T , and P3 ⊆ T × T × T
be given, such that {a | P1(a, t)} is inclusive for every t ∈ T . Then there exists a
relation C ⊆ D × T , with {d | d C t} inclusive for every t ∈ T , and such that, for all
d ∈ D and t ∈ T :

d C t iff i(d) = ⊥
or ∃a. i(d) = bin1(a)c ∧ P1(a, t)
or ∃f. i(d) = bin2(f)c ∧ P2(t) ∧

∀d′ ∈ D; t′, t′′ ∈ T. P3(t, t′, t′′) ∧ d′ C t′ ⇒ f(d′) C t′′.

Proof: See Appendix A �
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We can then establish the existence of a Kripke-style invariant relation, using sets of
variables as worlds:

Lemma 6 There exists a relation . such that for all ∆, d ∈ Dr and m ∈ Λ∆,

d .∆ m iff i(d) = ⊥
or ∃l. i(d) = bin1(l)c ∧ l /∆

at m

or ∃f. i(d) = bin2(f)c ∧ (∃x ∈ V,m0 ∈ Λ∆∪{x}.LAM(x,m0) ↔ m)
∧ ∀∆′ ⊇ ∆, d′ ∈ Dr,m

′ ∈ Λ∆′
,m1 ∈ Λ∆′

.

m↔ m1 ∧ d′ .∆′
m′ ⇒ f(d′) .∆′

APP(m1,m
′)

Proof: By Theorem 1, taking A = Λ̂ and T = {(∆,m) | ∆ ⊆fin V ∧m ∈ Λ∆}, with
the predicates chosen as

P1 = {(l, (∆,m)) | l /∆
at m}

P2 = {(∆,m) | ∃x ∈ V,m0 ∈ Λ∆∪{x}.LAM(x,m0) ↔ m}
P3 = {((∆,m), (∆′,m′), (∆′′,m′′)) |

∆ ⊆ ∆′ = ∆′′ ∧ ∃m1 ∈ Λ∆′
.m↔ m1 ∧m′′ = APP(m1,m

′)}

using the equivalence [∀x.(∃y.P (x, y)) ⇒ Q(x)] ⇔ [∀x.∀y.P (x, y) ⇒ Q(x)]. P1 is
inclusive in its first argument by Lemma 3. We write d .∆ m instead of d C (∆,m).
�

Lemma 7 The relation . shares two key properties with /:

a. If d .∆ m and ∆ ⊆ ∆′, then also d .∆′
m.

b. If d .∆ m and m′ ∈ Λ∆ with m↔ m′, then also d .∆ m′.

Proof: We proceed according to the cases for d .∆ m in Lemma 6:

Case i(d) = ⊥: Both parts are immediate.

Case i(d) = bin1(l)c: Both parts follow directly from the corresponding parts of
Lemma 4, taking s = at.

Case i(d) = bin2(f)c: For (a), if m0 ∈ Λ∆∪{x}, then also m0 ∈ Λ∆′∪{x}. Likewise,
any ∆′′ with ∆′′ ⊇ ∆′ in the universal quantification also satisfies ∆′′ ⊇ ∆.

For (b), any m0 satisfying LAM(x,m0) ↔ m also satisfies LAM(x,m0) ↔ m′ by
transitivity. Similarly, the terms m1 satisfying m ↔ m1 are the same as those
that satisfy m′ ↔ m1.

�

The following two lemmas will combine to establish adequacy of our semantics:

Lemma 8 For all l ∈ Λ̂, d ∈ Dr, and m ∈ Λ∆,

a. If l /∆
at m then ↑ l .∆ m

b. If d .∆ m then ↓ d /∆
nf m

11



Proof: Part (a) follows immediately from Lemma 6(⇐) and the definition of ↑ .
For part (b), recall that reification was conceptually defined in terms of the con-

tinuous function Φ : [Dr → Λ̂] → [Dr → Λ̂],

Φ(ϕ) = λdDr . case i(d) of



bin1(l)c → l

bin2(f)c → L̂AM(λxV . ϕ(f(↑ V̂AR(x))))
⊥ → ⊥bΛ

with ↓ = fix(Φ). Consider therefore the predicate

R = {ϕ ∈ [Dr → Λ̂] | ∀d,∆,m ∈ Λ∆. d .∆ m⇒ ϕ(d) /∆
nf m}

It is straightforward to verify that R is pointed and inclusive, using the corresponding
properties of / (Lemma 3). To show that fix(Φ) ∈ R by fixed-point induction, it
therefore suffices to show that for all ϕ ∈ R, Φ(ϕ) ∈ R.

Accordingly, assume that ϕ ∈ R and d .∆ m; we aim to prove that Φ(ϕ)(d) /∆
nf m.

We divide the argument into cases over i(d):

Case i(d) = ⊥: Then Φ(ϕ)(d) = ⊥bΛ, and clearly ⊥bΛ /∆
nf m.

Case i(d) = bin1(l)c: Then Φ(ϕ)(d) = l, and by Lemma 6(⇒) and Lemma 5(c), l /∆
nf

m.

Case i(d) = bin2(f)c: Then Φ(ϕ)(d) = L̂AM(λxV . ϕ(f(↑ V̂AR(x)))). Let v 6∈ ∆ be
arbitrary. By Lemma 5(a), V̂AR(v) /∆∪{v}

at VAR(v), and so by part (a) above,

↑ V̂AR(v) .∆∪{v} VAR(v) .

By assumption on m and Lemma 6(⇒), there exist x and m0 ∈ Λ∆∪{x} such that
LAM(x,m0) ↔ m.

Take ∆′ = ∆ ∪ {v}, d′ = ↑ V̂AR(v), m′ = VAR(v), and m1 = LAM(x,m0). By
assumption on f , we then get that

f(↑ V̂AR(v)) .∆∪{v} APP(LAM(x,m0),VAR(v)) .

Since APP(LAM(x,m0),VAR(v)) ↔ m0[VAR(v)/x], and . is closed under con-
version (Lemma 7(b)), we also have

f(↑ V̂AR(v)) .∆∪{v} m0[VAR(v)/x] .

Hence, by assumption on ϕ,

(λxV .ϕ(f(↑ V̂AR(x)))) v /∆∪{v}
nf m0[VAR(v)/x] .

And thus, by Lemma 5(d),

L̂AM(λxV .ϕ(f(↑ V̂AR(x)))) /∆
nf LAM(x,m0) .

Finally, since / is closed under conversion (Lemma 4(b)), we get Φ(ϕ)(d) /∆
nf m,

as required. �
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Lemma 9 Let m ∈ ΛΓ, and for all x ∈ Γ, let θ(x) ∈ Λ∆ (in particular, Γ ⊆ dom θ).
If ∀x ∈ Γ. ρ(x) .∆ θ(x) then [[m]]r ρ .∆ m[θ].

Proof: By structural induction on m.

Case m = VAR(x): This follows immediately from the assumption on ρ and θ, since
[[VAR(x)]]r ρ = ρ(x).

Case m = LAM(x,m0): Take f = λd.[[m0]]r ρ[x 7→ d]. Then i([[m]]r ρ) = bin2(f)c, so
to use Lemma 6(⇐), we must establish that f and m[θ] satisfy the requirements
for the third alternative. First, from the definition of substitution, we get that
LAM(x,m0)[θ] = LAM(x′,m′

0) for some x′ and m′
0 = m0[θ[x 7→VAR(x′)]]. Clearly

m′
0 ∈ Λ∆∪{x′}, and LAM(x′,m′

0) ↔ m[θ] by reflexivity of ↔ .

Second, let ∆′ ⊇ ∆, d′, m1 ∈ Λ∆′
and m′ ∈ Λ∆′

be given, with m[θ] ↔ m1 and
d′ .∆′

m′; we must show that f(d′) .∆′
APP(m1,m

′). Take ρ′ = ρ[x 7→ d′] and
θ′ = θ[x 7→m′]. Using the assumption on d′ and m′ for x, and monotonicity of .
(Lemma 7(a)) for the remaining variables in Γ, we get that for all x′′ ∈ Γ ∪ {x},
ρ′(x′′) .∆′

θ′(x′′). Hence, by IH on m0, f(d′) = [[m0]]r ρ′ .∆′
m0[θ′]. And finally,

since

m0[θ′]
↔ APP(LAM(x,m0),VAR(x))[θ′] = APP(LAM(x,m0)[θ′],VAR(x)[θ′])
↔ APP(LAM(x,m0)[θ],m′) = APP(m[θ],m′)
↔ APP(m1,m

′) ,

and . is closed under conversion (Lemma 7(b)), we get f(d′) .∆′
APP(m1,m

′),
as required.

Case m = APP(m1,m2): Here, [[APP(m1,m2)]]r ρ = ψr([[m1]]r ρ) ([[m2]]r ρ). We di-
vide the argument into subcases over i([[m1]]r ρ):

Case i([[m1]]r ρ) = ⊥: Then ψr([[m1]]r ρ)([[m2]]r ρ) = ⊥ .∆ APP(m1,m2)[θ].

Case i([[m1]]r ρ) = bin1(l)c: Then ψr([[m1]]r ρ)([[m2]]r ρ) = ↑ (ÂPP(l, ↓ ([[m2]]r ρ))).
By IH onm1 and Lemma 6(⇒), l /∆

at m1[θ], and by IH onm2 and Lemma 8(b),
↓ ([[m2]]r ρ) /∆

nf m2[θ]. Hence by Lemma 5(b),

ÂPP(l, ↓ ([[m2]]r ρ)) /∆
at APP(m1[θ],m2[θ]) = APP(m1,m2)[θ] = m[θ] .

And thus, by Lemma 8(a), ↑ (ÂPP(l, ↓ [[m2]]r ρ)) .∆ m[θ].

Case i([[m1]]r ρ) = bin2(f)c: Then ψr([[m1]]r ρ)([[m2]]r ρ) = f([[m2]]r ρ). By IH on
m1 and Lemma 6(⇒), we have, in particular, that if d′ .∆ m′ then f(d′) .∆

APP(m1[θ],m′). Take d′ = [[m2]]r ρ and m′ = m2[θ]. Then, using IH on m2,
f([[m2]]r ρ) .∆ APP(m1[θ],m2[θ]) = m[θ]. �

3.3 Correctness of the Normalization Function

Definition 3 The predicate tot(·) ⊆ Λ̂ is given by tot(l) ⇔ ∀n ∈ N. l n 6= ⊥.

Lemma 10 The following properties hold of the wrapper functions:
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a. For all v ∈ V , tot(V̂AR(v)).

b. If for all v ∈ V . tot(f v) then tot(L̂AM(f)).

c. If tot(l1) and tot(l2) then tot(ÂPP(l1, l2)).

Proof: Straightforward verification in each case. �
Lemma 11 For all m ∈ Λ and ρ ∈ [V → Dr] such that for all x ∈ FV (m), there
exists an l with ρ(x) = ↑ l and tot(l),

a. If àt m then ∃l ∈ Λ̂. [[m]]r ρ = ↑ l ∧ tot(l).
b. If ǹf m then tot(↓ ([[m]]r ρ)).

Proof: By simultaneous rule induction on àt · and ǹf ·. The relevant cases are:

Case àt VAR(x): Then [[m]]r ρ = ρ(x), and x ∈ FV (m), so the result follows directly
from the assumption on ρ.

Case àt APP(m1,m2) because àt m1 and ǹf m2: By IH(a) on the first premise,
there exists an l1 such that [[m1]]r ρ = ↑ l1 and tot(l1). Therefore, [[m]]r ρ =
↑ (ÂPP(l1, ↓ ([[m2]]r ρ))). Take l2 = ↓ ([[m2]]r ρ) and l = ÂPP(l1, l2). By IH(b) on
the second premise, tot(l2), so by Lemma 10(c), tot(l), as required.

Case ǹf m because àt m: By IH(a) on the premise, [[m]]r ρ = ↑ l, with tot(l). But
↓ (↑ l) = l, so also tot(↓ [[m]]r ρ).

Case ǹf LAM(x,m0) because ǹf m0: Expanding the definition of ↓ for the func-
tional case, we have to show that tot(L̂AM(λx.↓ ([[m0]]r ρ[x 7→ ↑ V̂AR(x)]))). By
Lemma 10(b), it suffices to show that tot(↓ ([[m0]]r ρ[x 7→ ↑ V̂AR(v)])), for every
v ∈ V . This follows from IH(b) on the premise, if for every x′ ∈ FV (m0), there
exists an l, such that ρ[x 7→ ↑ V̂AR(v)](x′) = ↑ l and tot(l). But for x′ 6= x, we
must have x′ ∈ FV (m), so this follows from the assumption on ρ; and for x′ = x,
it follows from Lemma 10(a).

�
Theorem 2 (semantic correctness) norm∆ from Definition 1 is a normalization
function on Λ∆, i.e.,

a. (soundness) If norm∆(m) = bm′c then m′ ∈ Λ∆, ǹf m
′, and m↔ m′.

b. (standardization) If m↔ m′ then norm∆(m) = norm∆(m′).
c. (completeness) If m↔ m′ with ǹf m

′ then norm∆(m) 6= ⊥.

Proof: (Soundness) Let θ0 be the substitution mapping every x in ∆ to VAR(x),
and ρ0 = λxV . ↑ V̂AR(x). By Lemma 5(a), for every x ∈ ∆, V̂AR(x) /∆

at VAR(x) =
θ0(x), and hence by Lemma 8(a), ρ0(x) .∆ θ0(x). By Lemma 9, we then get that
[[m]]r ρ0 .∆ m[θ0] ↔ m, and therefore, by Lemma 8(b), ↓ ([[m]]r ρ0) /∆

nf m. Assume
now that norm∆(m) = bm′c. Taking n = ]∆ in Definition 2, we can then immediately
read off that m′ has the required properties.

(Standardization) This follows directly from model soundness (Lemma 2), since
the residualizing model is indeed a model.

(Completeness) Using Lemma 10(a), we see that ρ0 satisfies the condition on ρ in
Lemma 11. Hence, by part (b) of the latter lemma and Definition 3, norm∆(m′) 6= ⊥.
The desired result then follows from (standardization). �
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4 An Implementation of the Construction

4.1 Syntax and Semantics of an ML-like Call-by-Value Lan-
guage

The language is a small fragment of Standard ML where, to sidestep inessential book-
keeping, we have hard-coded the inductive representation of λ-terms,

datatype term = VAR of string | LAM of string*term | APP of term*term

as an additional base type of the language, and simply taken the value sets underlying
string and term to be the sets V and Λ, respectively.

Syntax The fragment is restricted to a single recursive datatype declaration,

datatype dt = In1 of τ1 | · · · | Ink of τk

where types are given by the grammar

τ ::= unit | int | bool | string | term | τ1 -> τ2 | dt

The syntax of ML expressions is then

e ::= x | n | "v" | () | e1 + e2 | e1 = e2 | "g"^Int.toString e |
fn () => e | fn x => e | e1 e2 | VAR(e) | LAM(e1,e2) | APP(e1,e2) |
case e of VAR x1 => e1 | LAM(x2,x′2) => e2 | APP(x3,x′3) => e3 |
In i(e) | case e of In1 x1 => e1| · · · | Ink xk => ek |
if e1 then e2 else e3 | let fun f (x:τ1):τ2 = e1 in e2 end

where x and f range over ML variable names.

Typing We only consider well-typed ML expressions, as captured by the judgement
x1: τ1, ..., xn: τn ` e : τ , asserting that e is of type τ , with free variables x1, ..., xn of
types τ1, ..., τn. The typing rules are shown in Figure 1

Operational semantics A complete program is a closed expression of type τ1->τ2,
where τ1 and τ2 are ground types (i.e., not containing -> or dt). For such types, let
Cτ denote the set of canonical values underlying τ , e.g., Cint = Z.

For a complete program e : τ1->τ2, we can construct a computable partial function
rune : Cτ1 ⇀ Cτ2 , e.g., by

rune(c1) = c2 iff (e c1) ⇓ c2.

where ⇓ is the usual big-step operational semantics of expressions, and c denotes the
syntactic representation of the value c.

Denotational Semantics For the meaning of ML types, we take

[[unit]]ml = 1 = {∗} [[int]]ml = Z [[bool]]ml = B [[string]]ml = V

[[term]]ml = Λ [[τ1 -> τ2]]ml = [[[τ1]]ml → [[τ2]]ml
⊥ ] [[dt]]ml = S
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Γ, x : τ ` x : τ Γ ` n : int Γ ` "v" : string Γ ` () : unit
Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int
Γ ` e1 : string Γ ` e2 : string

Γ ` e1 = e2 : bool
Γ ` e : int

Γ ` "g"^Int.toString e : string
Γ ` e : τ

Γ ` fn () => e : unit->τ
Γ, x : τ1 ` e : τ2

Γ ` fn x => e : τ1->τ2
Γ ` e1 : τ1->τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2
Γ ` e : string

Γ ` VAR(e) : term
Γ ` e1 : string Γ ` e2 : term

Γ ` LAM(e1,e2) : term
Γ ` e1 : term Γ ` e2 : term

Γ ` APP(e1,e2) : term

Γ ` e : term Γ, x1 : string ` e1 : τ
Γ, x2 : string, x′2 : term ` e2 : τ Γ, x3 : term, x′3 : term ` e3 : τ

Γ ` case e of VAR x1 => e1 | LAM(x2,x′2) => e2 | APP(x3,x′3) => e3 : τ

Γ ` e : τ i

Γ ` In i(e) : dt
Γ ` e : dt Γ, x1 : τ1 ` e1 : τ · · · Γ, xk : τk ` ek : τ
Γ ` case e of In1 x1 => e1| · · · | Ink xk => ek : τ
Γ ` e1 : bool Γ ` e2 : τ Γ ` e3 : τ

Γ ` if e1 then e2 else e3 : τ

Γ, f : τ1->τ2, x : τ1 ` e1 : τ2 Γ, f : τ1->τ2 ` e2 : τ
Γ ` let fun f (x:τ1):τ2 = e in e2 end : τ

Figure 1: Typing rules of a fragment of ML

where iS : S ∼=→ [[τ1]]ml + · · · + [[τk]]ml is a minimal-invariant solution to the evident
predomain equation. We write ini : [[τ i]]ml → [[τ1]]ml + · · · + [[τk]]ml for the injection
functions.

The meaning of ML terms is defined by induction on the typing derivation; for
conciseness we write only the terms. The semantics is structured such that if Γ ` e : τ
and for all (x : τ ′) ∈ Γ, ξ(x) ∈ [[τ ′]]ml, then [[e]]mlξ ∈ [[τ ]]ml

⊥ . The full semantics is shown
in Figure 2

For notational convenience in the following, we will assume that all function names
f in the program are distinct. We can then unambiguously use Θf to refer to the
semantic function whose fixed point f is mapped to in the environment of the let-
body, and θf = fix(Θf ).

Theorem 3 (computational adequacy for ML) For a complete ML program e,
rune(c1) = c2 iff [[e]]ml ∅ ? λf. f(c1) = bc2c.

Proof: Modulo trivial syntactic differences, and an equivalent formulation of the
semantics in terms of strict functions between pointed cpos, rather than general ones
between cpos, this is shown in, e.g., [6, Section 5]. The primary difficulty is, of course,
the definition of the logical relation at type dt, which is again achieved by exploiting
the minimal-invariant property of S. �
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[[x]]ml ξ = bξ(x)c [[n]]ml ξ = bnc [["v"]]ml ξ = bvc [[()]]ml ξ = b∗c
[[e1 + e2]]ml ξ = [[e1]]ml ξ ? λnZ

1 . [[e2]]
ml ξ ? λnZ

2 . bn1 + n2c
[[e1 = e2]]ml ξ = [[e1]]ml ξ ? λvV

1 . [[e2]]
ml ξ ? λvV

2 . bv1 = v2c
[["g"^Int.toString e]]ml ξ = [[e]]ml ξ ? λnZ. bgnc

[[fn () => e]]ml ξ = bλu.[[e]]ml ξc [[fn x => e]]ml ξ = bλa[[τ ]]ml
.[[e]]ml ξ[x 7→ a]c

[[e1 e2]]ml ξ = [[e1]]ml ξ ? λf [[[τ1]]
ml→[[τ2]]

ml
⊥ ]. [[e2]]ml ξ ? λa[[τ1]]

ml
. f a

[[VAR(e)]]ml ξ = [[e]]ml ξ ? λvV . bVAR(v)c
[[LAM(e1,e2)]]ml ξ = [[e1]]ml ξ ? λvV . [[e2]]ml ξ ? λmΛ

0 . bLAM(v,m0)c
[[APP(e1,e2)]]ml ξ = [[e1]]ml ξ ? λmΛ

1 . [[e2]]ml ξ ? λmΛ
2 . bAPP(m1,m2)c

[[case e of VAR x1 => e1 | LAM(x2,x′2) => e2 | APP(x3,x′3) => e3]]ml ξ =

[[e]]ml ξ ? λmΛ. case m of




VAR(v) → [[e1]]ml ξ[x1 7→ v]
LAM(v,m0) → [[e2]]ml ξ[x2 7→ v, x′2 7→m0]
APP(m1,m2) → [[e3]]ml ξ[x3 7→m1, x

′
3 7→m2]

[[In i(e)]]ml ξ = [[e]]ml ξ ? λa[[τ i]]ml
. bi−1

S (ini(a))c
[[case e of In1 x1 => e1| · · · | Ink xk => ek]]ml ξ =

[[e]]ml ξ ? λsS . case iS(s) of



in1(a1) → [[e1]]ml ξ[x1 7→ a1]

...
ink(ak) → [[ek]]ml ξ[xk 7→ ak]

[[if e1 then e2 else e3]]ml ξ = [[e1]]ml ξ ? λbB. case b of
{

tt → [[e2]]ml ξ
ff → [[e3]]ml ξ

[[let fun f (x:τ1):τ2 = e1 in e2 end]]ml ξ =
[[e2]]ml ξ[f 7→ fix(λθ[[[τ1]]

ml→[[τ2]]
ml
⊥ ].λa[[τ1]]

ml
.[[e1]]ml ξ[f 7→ θ, x 7→ a])]

Figure 2: Denotational semantics of a fragment of ML

4.2 The Normalization Algorithm

The concrete representation of the normalization algorithm, with many of the aux-
iliary definitions inlined, is shown in Figure 3. We have instantiated dt as the type
sem, with two constructors In1 = TM and In2 = FUN. It is easy to check that the
top-level expression, NORM : term -> term, is a well-typed complete program in
our sense.

Since ML is a call-by-value language, we must simulate the implicit call-by-name
nature of the residualizing semantics using thunking. We have defined sem so that
[[sem]]ml

⊥ ∼= Dr; then semantic functions with codomain Dr can be represented directly
as ML functions into sem, while functions with domainDr are represented with source
type unit -> sem. As a further optimization, the strict function ↓ : Dr → Λ̂ is
represented as simply a function from sem.
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datatype term = VAR of string | LAM of string*term | APP of term*term

datatype sem = TM of int -> term | FUN of (unit -> sem) -> sem;

let fun down (s:sem):int->term = fn n =>

(case s of

TM l => l n

| FUN f => LAM("g"^Int.toString n,

down (f (fn () => TM(fn n’ => VAR("g"^Int.toString n)))) (n+1)))

in let fun eval (m:term):(string->sem)->sem = fn p =>

(case m of

VAR x => p x

| LAM(x,m0) => FUN(fn d => eval m0

(fn x’ => if x = x’ then d () else p x’))

| APP(m1,m2) => (case (eval m1 p) of

TM l => TM(fn n => APP(l n,down (eval m2 p) n))

| FUN f => f (fn () => eval m2 p)))

in let fun norm (m:term):term =

down (eval m (fn x => TM(fn n => VAR(x)))) 0

in norm end end end

Figure 3: The normalization algorithm, NORM , in a fragment of ML

Examples The following examples illustrate how the algorithm works. Let Ω ≡
APP(LAM("x",VAR("x")),LAM("x",VAR("x"))).

a. runNORM (Ω) diverges.

b. runNORM (APP(LAM("x",LAM("x",VAR("x"))),Ω))
= LAM("g0",VAR("g0"))

c. runNORM (LAM("y",LAM("g4",VAR("z"))))
= LAM("g0",LAM("g1",VAR("z")))

Let us now properly relate the abstract and concrete constructions. To get a
perfect isomorphism between term families and their implementation, we choose N =
Z, with gen(n) = "gn", e.g., gen(13) = "g13". Let iD denote the isomorphism
i : Dr

∼=→ ([Z → Λ⊥] + [Dr → Dr])⊥ from before. We now also have iS : S ∼=→
[Z→ Λ⊥] + [[1→ S⊥]→ S⊥].

Lemma 12 There exists an isomorphism iDS : Dr
∼=→ S⊥, satisfying

a. For all l ∈ Λ̂, iDS (i−1
D (bin1(l)c)) = bi−1

S (in1(l))c.
b. For all f ∈ [Dr → Dr],

iDS (i−1
D (bin2(f)c)) = bi−1

S (in2(λt1→S⊥ . iDS (f(i−1
DS (t ∗)))))c.

c. iDS (i−1
D (⊥Dr )) = ⊥S⊥

Proof: See Appendix B. �

We can also state three lemmas, relating the central domain-theoretic functions
to the denotations of their syntactic counterparts:
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Lemma 13 For all d ∈ Dr and n ∈ Z, ↓ dn = iDS (d) ? λsS . θdown s ? λl
bΛ. l n.

Proof: By fixed-point induction on Φ × Θdown (where Φ is as in the proof of
Lemma 8), using the predicate R ⊆ [Dr → Λ̂]× [S→ Λ̂⊥] defined by

R = {(ϕ, θ) | ∀d ∈ Dr, n ∈ Z. ϕ d n = iDS (d) ? λsS .θ s ? λl
bΛ.l n}

We aim to establish that (fix(Φ), fix(Θdown)) ∈ R. It is straightforward to verify
that R is pointed and inclusive. Assume that (ϕ, θ) ∈ R; we then must show that
(Φ(ϕ),Θdown(θ)) ∈ R. Accordingly, let arbitrary d and n be given, and consider d:

Case d = i−1
D (⊥): By Lemma 12(c), iDS (d) = ⊥S⊥ , and so

iDS (d) ? λsS .Θdown(θ) s ? λl
bΛ.l n = ⊥Λ⊥

Similarly, Φ(ϕ) d n = ⊥bΛ n = ⊥Λ⊥ .

Case d = i−1
D (bin1(l)c): Let ξ = ∅[down 7→ θ, s 7→ i−1

S (in1(l))]; we calculate:

iDS (d) ? λsS .Θdown(θ) s ? λlbΛ.l n
= iDS (i−1

D (bin1(l)c)) ? λsS .Θdown(θ) s ? λl
bΛ.l n

= bi−1
S (in1(l))c ? λsS .Θdown(θ) s ? λlbΛ.l n (by Lemma 12(a))

= [[fn n => (case s of TM l => l n | ...)]]ml ξ ? λl
bΛ.l n

= [[l n]]ml ξ[n 7→ n, l 7→ l]
= l n

Similarly, Φ(ϕ) d n = Φ(ϕ)(i−1
D (bin1(l)c)) n = l n.

Case d = i−1
D (bin2(f)c): Let ξ = ∅[down 7→ θ, s 7→ i−1

S (in2(λt. iDS (f(i−1
DS (t ∗)))))]

and let ξ′ = ξ[n 7→ n, f 7→ (λt. iDS (f(i−1
DS (t ∗))))]; again,

iDS (d) ? λsS .Θdown(θ) s ? λlbΛ.l n
= iD(i−1

D (bin2(f)c)) ? λsS .Θdown(θ) s ? λl
bΛ.l n

= bi−1
S (in2(λt. iDS (f(i−1

DS (t ∗)))))c ? λsS .Θdown(θ) s ? λlbΛ.l n
(by Lemma 12(b))

= [[fn n => (case s of ...| FUN f => LAM ...)]]ml ξ ? λl
bΛ.l n

= [[LAM("g"^Int.toString(n), down (f (fn ...)) (n+1))]]ml ξ′

= [[down (f (fn () => ...)) (n+1)]]ml ξ′ ? λmΛ.bLAM(gn,m)c
= [[f (fn () => ...)]]ml ξ′ ? λsS .θ s ? λl

bΛ.l(n+ 1) ? λmΛ.bLAM(gn,m)c
Now,

[[f (fn () => TM(fn n’ => VAR("g"^Int.toString(n))))]]ml ξ′

= b(λt. iDS (f(i−1
DS (t ∗))))c ? λg.bλu.[[TM(fn ...)]]ml ξ′c ? λa.g a

= iDS (f(i−1
DS (bi−1

S (in1(λn′Z.bVAR(gn)c))c)))
= iDS (f(i−1

D (bin1(λn′Z.bVAR(gn)c)c))) (by Lemma 12(a))
= iDS (f(↑ V̂AR(gn))) (by Def. of V̂AR and ↑ )

By the fixed point assumption on ϕ and θ, ∀d′, n′. ϕ d′ n′ = iDS (d′) ? λsS .θ s ?

λl
bΛ.l n′. Using the case d′ = f(↑ V̂AR(gn)) and n′ = n+ 1, we continue:
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[[f (fn () => ...)]]ml ξ′ ? λsS .θ s ? λl
bΛ.l(n+ 1) ? λmΛ.bLAM(gn,m)c

= iDS (f(↑ V̂AR(gn))) ? λsS .θ s ? λl
bΛ.l(n+ 1) ? λmΛ.bLAM(gn,m)c

= ϕ(f(↑ V̂AR(gn))) (n+ 1) ? λmΛ.bLAM(gn,m)c
Similarly,

Φ(ϕ) d n
= Φ(ϕ)(i−1

D (bin2(f)c)) n
= L̂AM(λxV . ϕ(f(↑ V̂AR(x)))) n
= ϕ(f(↑ V̂AR(gn))) (n+ 1) ? λmΛ. bLAM(gn,m)c (by Def. of L̂AM)

�

Lemma 14 For all m ∈ Λ, ρ ∈ [V → Dr], and ζ ∈ [V → S⊥], such that ∀x ∈
FV (m). iDS (ρ(x)) = ζ(x), iDS ([[m]]r ρ) = θevalm ? λg. g ζ.

Proof: By structural induction on m. Let m, ρ and ζ be given such that ∀x ∈
FV (m).iDS (ρ(x)) = ζ(x). Let ξ = ∅[down 7→ θdown]. By the fixed-point equation, since
θeval = fix(Θeval),

θeval m ? λg.g ζ
= Θeval(θeval) m ? λg.g ζ
= [[fn p => (case m of ...)]]ml ξ[eval 7→ θeval, m 7→m] ? λg.g ζ
= [[case m of ...]]ml ξ[eval 7→ θeval, m 7→m, p 7→ ζ]
Let ξ′ = ξ[eval 7→ θeval, m 7→ m, p 7→ ζ]. Consider m:

Case m = VAR(x): Then,

θeval m ? λg.g ζ
= [[case m of VAR x => p x | ...]]ml ξ′

= [[p x]]ml ξ′[x 7→ x]
= ζ(x)

Since clearly x ∈ FV (m), we have iDS (ρ(x)) = ζ(x) by assumption on ρ and ζ.
Thus similarly,

iDS ([[m]]r ρ)
= iDS ([[VAR(x)]]r ρ)
= iDS (ρ(x))
= ζ(x)

Case m = LAM(x,m0): Let ξ′′ = ξ′[x 7→ x, m0 7→ m0]. Then,
θeval m ? λg.g ζ
= [[case m of ... | LAM(x,m0) => FUN(...) | ...]]ml ξ′

= [[FUN(fn d => eval m0 (...))]]ml ξ′′

= bi−1
S (in2(λt1→S⊥ .[[eval m0 (fn x’ => if ...)]]ml ξ′′[d 7→ t]))c

= bi−1
S (in2(λt.θeval m0 ? λg.g (λx′V .[[if ...]]ml ξ′′[d 7→ t, x’ 7→ x′])))c

Similarly,
iDS ([[m]]r ρ)
= iDS ([[LAM(x,m0)]]r ρ)
= iDS (φr(λdDr .[[m0]]r ρ[x 7→ d]))
= iDS (i−1

D (bin2(λdDr .[[m0]]r ρ[x 7→ d])c))
= bi−1

S (in2(λt.iDS ((λdDr .[[m0]]r ρ[x 7→ d]) (i−1
DS (t ∗)))))c (by Lemma 12(b))

= bi−1
S (in2(λt.iDS ([[m0]]r ρ[x 7→ i−1

DS (t ∗)])))c
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We will now prove the two embedded functions equal (in the mathematical sense).
Let any t′ : 1 → S⊥ be given.

Let ρ0 = ρ[x 7→ i−1
DS (t′ ∗)] and ζ0 = (λx′V .[[if ...]]ml ξ′′[d 7→ t′, x’ 7→x′]). First we

verify that ρ0 and ζ0 satisfy the requirements of the IH for m0, namely that for
all x′ ∈ FV (m0) ⊆ {x} ∪ FV (m), iDS (ρ0(x′)) = ζ0(x′). This is straightforward;
first for x′ = x:

ζ0(x)
= [[if x=x’ then d () else p x’]]ml ξ′′[d 7→ t′, x’ 7→ x]
= t′ ∗
= iDS (i−1

DS (t′ ∗))
= iDS (ρ0(x))

Then for any x′′ ∈ FV (m0) \ {x}:
ζ0(x′′)
= [[if x=x’ then d () else p x’]]ml ξ′′[d 7→ t′, x’ 7→ x′′]
= ζ(x′′)
= iDS (ρ(x′′)) (by assumption on ρ and ζ)
= iDS (ρ0(x′′))

Thus by IH on m0, iDS ([[m0]]r ρ0) = θeval m0 ? λg.g ζ0. Since t′ was arbitrary, we
thus have

θeval m ? λg.g ζ
= bi−1

S (in2(λt.θeval m0 ? λg.g (λx′V .[[if ...]]ml ξ′′[d 7→ t, x’ 7→ x′])))c
= bi−1

S (in2(λt′.θeval m0 ? λg.g ζ0))c
= bi−1

S (in2(λt′.iDS ([[m0]]r ρ0)))c
= bi−1

S (in2(λt.iDS ([[m0]]r ρ[x 7→ i−1
DS (t ∗)])))c

= iDS ([[m]]r ρ)

Case m = APP(m1,m2): Let ξ′′ = ξ′[m1 7→ m1, m2 7→ m2]. Then,
θeval m ? λg.g ζ
= [[case m of ... | APP(m1,m2) => (case ...)]]ml ξ′

= [[case (eval m1 p) of ...]]ml ξ′′

Now,
[[eval m1 p]]ml ξ′′

= θeval m1 ? λg.g ζ
= iDS ([[m1]]r ρ) (by IH on m1)

Consider [[m1]]r ρ:

Case [[m1]]r ρ = i−1
D (⊥): Then by Lemma 12(c) also iDS ([[m1]]r ρ) = ⊥, and so

θeval m ? λg.g ζ = ⊥S⊥ .
Similarly,

iDS ([[m]]r ρ)
= iDS ([[APP(m1,m2)]]r ρ)
= iDS (ψr(i−1

D (⊥))([[m2]]r ρ))
= iDS (⊥[Dr→Dr ] ([[m2]]r ρ))
= iDS (⊥Dr )
= ⊥S⊥
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Case [[m1]]r ρ = i−1
D (bin1(l)c): Then,

θeval m ? λg.g ζ
= [[case (eval m1 p) of TM l => TM(fn n ...) | ...]]ml ξ′′

= [[TM(fn n => APP (...))]]ml ξ′′[l 7→ l]
= bi−1

S (in1(λnZ.[[APP(l n, down (eval m2 p) n)]]ml ξ′′[l 7→ l, n 7→ n]))c
Similarly,

iDS ([[m]]r ρ)
= iDS ([[APP(m1,m2)]]r ρ)
= iDS (ψr (i−1

D (bin1(l)c)) ([[m2]]r ρ))
= iDS (↑ ÂPP(l, ↓ ([[m2]]r ρ)))
= iDS (bin1(ÂPP(l, ↓ ([[m2]]r ρ)))c) (by Def. of ↑ )
= bi−1

S (in1(ÂPP(l, ↓ ([[m2]]r ρ))))c (by Lemma 12(a))
= bi−1

S (in1(λnZ.l n ? λm′
1.↓ ([[m2]]r ρ) n ? λm′

2.bAPP(m′
1,m

′
2)c))c

Again, we will prove the two embedded functions equal. Let any n′ ∈ Z

be given, and let ξ′′′ = ξ′′[l 7→ l, n 7→ n′]. Note also that by IH on m2,
[[eval m2 p]]ml ξ′′′ = iDS ([[m2]]r ρ). We calculate:

[[APP(l n, down (eval m2 p) n)]]ml ξ′′′

= l n′ ? λm′
1.[[down (eval m2 p)]]ml ξ′′′ ? λl′.l′ n′ ? λm′

2.bAPP(m′
1,m

′
2)c

= l n′ ? λm′
1.iDS ([[m2]]r ρ) ? λs.θdown s ? λl′.l′ n′ ? λm′

2.bAPP(m′
1,m

′
2)c

= l n′ ? λm′
1.↓ ([[m2]]r ρ) n′ ? λm′

2.bAPP(m′
1,m

′
2)c (by Lemma 13)

Since n′ was arbitrary,
θeval m ? λg.g ζ
= bi−1

S (in1(λnZ.[[APP(l n, down (eval m2 p) n)]]ml ξ′′[l 7→ l, n 7→ n]))c
= bi−1

S (in1(λn′Z.[[APP(l n, down (eval m2 p) n)]]ml ξ′′′))c
= bi−1

S (in1(λn′Z.l n′ ? λm′
1.↓ ([[m2]]r ρ) n′ ? λm′

2.bAPP(m′
1,m

′
2)c))c

= iDS ([[m]]r ρ)

Case [[m1]]r ρ = i−1
D (bin2(f)c): Then by Lemma 12(b), we have iDS ([[m1]]r ρ) =

bi−1
S (in2(λt1→S⊥ . iDS (f(i−1

DS (t ∗)))))c. Thus,

θeval m ? λg.g ζ
= [[case (eval m1 p) of ... | FUN f => f (fn ...)]]ml ξ′′

= [[f (fn () => eval m2 p)]]ml ξ′′[f 7→ (λt.iDS (f(i−1
DS (t ∗))))])

= (λt.iDS (f(i−1
DS (t ∗)))) (λu.iDS ([[m2]]r ρ))

= iDS (f ([[m2]]r ρ))
Similarly,

iDS ([[m]]r ρ)
= iDS ([[APP(m1,m2)]]r ρ)
= iDS (ψr(i−1

D (bin2(f)c))([[m2]]r ρ))
= iDS (f ([[m2]]r ρ)) �

Lemma 15 For all m ∈ Λ, norm(m) = θnorm m.

Proof: Let m be given, and let ξ = ∅[down 7→ θdown, eval 7→ θeval, norm 7→ θnorm, m 7→
m]. Let further bζc = [[fn x => TM(fn n => VAR(x))]]ml ξ and ρ = (λxV .↑ V̂AR(x)).

We first verify that ζ and ρ satisfy the requirements of Lemma 14, namely that
for all x′ ∈ V ⊃ FV (m),
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ζ(x′)
= [[fn x => TM(fn n => VAR(x))]]ml ξ ? λf.f(x′)
= [[TM(fn n => VAR(x))]]ml ξ[x 7→ x′]
= bi−1

S (in1(λnZ.bVAR(x′)c))c
= bi−1

S (in1(V̂AR(x′)))c (by Def. of V̂AR)
= iDS (↑ V̂AR(x′)) (by Lemma 12(a) and Def. of ↑)
= iDS (ρ(x′))

Hence, by a single unrolling of the fixed-point equation θnorm = Θnorm(θnorm),

θnorm m
= [[down (eval m (fn x => TM(fn n => VAR(x)))) 0]]ml ξ
= [[eval m (fn x => TM(fn n => VAR(x)))]]ml ξ ? λs.θdown s ? λl.l 0
= θeval m ? λg.g ζ ? λs.θdown s ? λl.l 0
= iDS ([[m]]r ρ) ? λs.θdown s ? λl.l 0 (by Lemma 14)
= ↓ ([[m]]r ρ) 0 (by Lemma 13)
= norm(m) (by Def. of norm)

�
Theorem 4 (implementation correctness) The program NORM satisfies that
runNORM (m) = m′ ⇔ norm(m) = bm′c. That is, NORM computes the normal-
ization function for all λ-terms without free occurrences of gn-variables (including, in
particular, all closed terms).

Proof: A direct consequence of Lemma 15 and Theorem 3. �

5 Conclusions and Perspectives

We have presented a domain-theoretic analysis of a normalization-by-evaluation con-
struction for untyped λ-terms. Compared to the typed case, the main difference is
a change from induction on types to general recursion, both for function definitions
and for the domains and relations on them. That the correctness proof has a gener-
alized computational-adequacy result at its core, further strengthens the connection
between normalization and evaluation. Moreover, the algorithmic content of the con-
struction corresponds very directly to a simple functional program, enabling a precise
verification of the normalizer as actually implemented.

There are several possible directions in which to extend the present work. Some
were already mentioned in Section 1.5, such as generalizations of the algorithm to
Böhm trees. It should also be possible to extend the language and notion of normal-
ization with interpreted constants in a suitable sense. But already the current results
indicate that the fundamental ideas of NBE are not incompatible with general recur-
sive types. Thus, reduction-free normalization may provide a complementary view of
other equational systems that are currently analyzed using exclusively reduction-based
methods. It might even be possible to find unified formulations of rewriting-theoretic
and model-theoretic normalization results about particular such systems.

Acknowledgment The authors wish to thank Olivier Danvy and the FOSSACS’04
reviewers for their insightful comments.
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A Existence of Invariant Relations

For completeness, we review Pitts’s technique. For conciseness, let us fix our attention
to the recursive domain equation

X ∼= (A+ [X → X ])⊥

where A is a cpo.
A solution to this equation is a pointed cpo D and an isomorphism i : D ∼=→

(A+ [D → D])⊥. Define the continuous function δ : [D → D] → [D → D] as

δ(e)(d) = case i(d) of



bin1(a)c → i−1(bin1(a)c)
bin2(f)c → i−1(bin2(e ◦ f ◦ e)c)

⊥ → ⊥D

A solution is called a minimal invariant if fix(δ) = idD.
The following is well-known and can be found in in e.g. Pitts [6]:

Theorem 5 For any cpo A, there exists a minimal invariant to the recursive domain
equation X ∼= (A+ [X → X ])⊥.

This section establishes the following result, which is an abstract version of the
construction used by Pitts to show computational adequacy for untyped PCF [5]:

Theorem 1 Let A be a cpo, and let i : D ∼=→ (A+ [D→D])⊥ be a minimal-invariant
solution of the domain equation X ∼= (A+[X→X ])⊥. Let T be a set, and let predicates
P1 ⊆ A×T , P2 ⊆ T , and P3 ⊆ T ×T ×T be given, such that {a | P1(a, t)} is inclusive
for every t ∈ T . Then there exists a relation, C ⊆ D × T , with {d | d C t} inclusive
for every t ∈ T , and such that, for all d ∈ D and t ∈ T :

d C t iff i(d) = ⊥
or ∃a. i(d) = bin1(a)c ∧ P1(a, t)
or ∃f. i(d) = bin2(f)c ∧ P2(t) ∧

∀d′ ∈ D, t′, t′′ ∈ T. P3(t, t′, t′′) ∧ d′ C t′ ⇒ f(d′) C t′′.

To show the theorem, let A, (D, i), and T be given. Define a set Rel of relations
on D × T by

R ∈ Rel iff for all t ∈ T , {d | (d, t) ∈ R} is a pointed, inclusive subset of D

Then (Rel ,⊆) is a partial order, where ⊆ is ordinary set inclusion. Since Rel is
closed under arbitrary intersection, (Rel ,⊆) is in fact a complete lattice. (Note,
however, that joins in this lattice are not in general set-theoretic unions, since the
union of an arbitrary family of inclusive relations need not itself be inclusive. Rather,⊔{Ri | i ∈ I} =

⋂{R ∈ Rel | ∀i ∈ I. Ri ⊆ R}, i.e., the smallest inclusive relation
containing all of the Ri.) In particular, Relop, i.e., Rel ordered by ⊇, is also a complete
lattice, and so is Relop × Rel .
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Now, let predicates P1 ⊆ A×T , P2 ⊆ T ,and P3 ⊆ T ×T ×T be given, with P1(·, t)
inclusive for all t ∈ T . Define R : Relop × Rel → Rel by

R(R−, R+) =
{(d, t) | i(d) = ⊥

or ∃a. i(d) = bin1(a)c ∧ P1(a, t)
or ∃f. i(d) = bin2(f)c ∧ P2(t) ∧

∀d′ ∈ D; t′, t′′ ∈ T. P3(t, t′, t′′) ∧ (d′, t′) ∈ R− ⇒ (f(d′), t′′) ∈ R+}

It is straightforward to verify that R is well-defined (by P1(·, t) being inclusive)
and monotonic. To prove Theorem 1, we thus only need to show that there exists
a relation C ∈ Rel such that C = R(C,C). We first establish a seemingly weaker
result:

Lemma 16 There exist relations C−,C+ ∈ Rel, satisfying:

a. C− = R(C+,C−) and C+ = R(C−,C+).

b. For all R−, R+ ∈ Rel, if R− ⊆ R(R+, R−) and R(R−, R+) ⊆ R+, then R− ⊆
C− and C+ ⊆ R+.

Proof: Define the symmetric extension of R, R̂ : Relop × Rel → Relop × Rel , by

R̂(R−, R+) = (R(R+, R−),R(R−, R+))

Now R̂ is a monotonic operator on a complete lattice, so by the Knaster-Tarski
fixed-point theorem, R̂ has a fixed point (C−,C+) that is also the least prefixed point
of R̂. That is, we have (a) (C−,C+) = R̂(C−,C+), and (b) if R̂(R−, R+) vRelop×Rel

(R−, R+) then (C−,C+) vRelop×Rel (R−, R+). And these are precisely the properties
claimed in the statement of the lemma. �

For relations R,S ∈ Rel, we now define a predicate on e ∈ [D→D] by:

e : R ⊂ S iff ∀d ∈ D, t ∈ T.(d, t) ∈ R⇒ (e(d), t) ∈ S

Since this predicate is defined as an intersection of inverse images of the inclusive S,
it is itself inclusive.

Lemma 17 If e : R ⊂ S then δ(e) : R(S,R) ⊂ R(R,S).

Proof: Assume e : R ⊂ S, and let (d, t) ∈ R(S,R) be given; we must show that
(δ(e)(d), t) ∈ R(R,S). Consider i(d). The cases i(d) = ⊥ and i(d) = bin1(l)c do
not depend on R and S and are thus immediate. Assume now i(d) = bin2(f)c where
by assumption, P2(t) and ∀d′, t′, t′′.P3(t, t′, t′′) ∧ (d′, t′) ∈ S ⇒ (f(d′), t′′) ∈ R. Then
i(δ(e)(d)) = bin2(e ◦ f ◦ e)c. P2(t) holds by case. Let d′, t′, t′′ be given, such that
P3(t, t′, t′′) ∧ (d′, t′) ∈ R; we must show (e ◦ f ◦ e)(d′), t′′) ∈ S. We calculate: by
e : R ⊂ S, (e(d′), t′) ∈ S; by case, (f(e(d′)), t′′) ∈ R; and by e : R ⊂ S again,
(e(f(e(d′))), t′′) ∈ S, as required. �

Theorem 6 The relations C− and C+ are equal.
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Proof: We show that each relation is included in the other. First, take R− = C+

and R+ = C−. By Lemma 16(a) we then get that R+ = R(R−, R+) and R− =
R(R+, R−). Hence, by Lemma 16(b) (either half), C+ ⊆ C−.

Conversely, we have by Lemma 16(a) and Lemma 17 that if e : C− ⊂ C+ then
δ(e) : C− ⊂ C+. Since (⊥, t) ∈ C+ for any t, we also have ⊥[D→D] : C− ⊂ C+. Thus,
by fixed-point induction, fix(δ) : C− ⊂ C+. And since (D, i) is a minimal invariant,
fix(δ) = idD, and so idD : C− ⊂ C+, i.e. C− ⊆ C+. �

Taking C = C+ = C−, and using Lemma 16(a) (either half), we have thus estab-
lished Theorem 1.

B Existence of Isomorphisms

Let us consider the recursive predomain equation

X ∼= A+ [[1 → X⊥] → X⊥]

where A is a cpo.
A solution to this equation is a (bottomless) cpo S and an isomorphism j : S ∼=→

A+ [[1 → S⊥] → S⊥]. Define the continuous function γ : [S → S⊥] → [S → S⊥] by

γ(e)(s) = case j(s) of
{
in1(a) → bj−1(in1(a))c
in2(f) → bj−1(in2(λt1→S⊥ .f(λu.(t ∗) ? e) ? e))c

A solution is called a minimal invariant if fix(γ) = λs.bsc.
Re-expressing the standard inverse-limit construction in the setting of predomains

and total continuous functions gives the following result:

Theorem 7 For any cpo A, there exists a minimal invariant to the recursive predo-
main equation X ∼= A+ [[1 → X⊥] → X⊥].

We will also need the following simple property about fixed points.

Lemma 18 Let A and B be pointed cpos, and let f : A → A and g : B → B
be continuous functions. If c : A → B is a strict continuous function such that
c ◦ f = g ◦ c then c(fix(f)) = fix(g).

Proof: By fixed point induction. Define the admissible predicate P (a, b) ⇔ c(a) = b
as an inverse image of the identity predicate. Since c is strict, we have P (⊥A,⊥B)
and so P is also pointed. Let now a and b be given such that P (a, b), i.e., c(a) = b.
By assumption on f and g, also c(f(a)) = g(c(a)) = g(b), namely P (f(a), g(b)). Thus
by the continuity of f and g, P (fix(f), fix(g)) or simply c(fix(f)) = fix(g). �

We are now in a position to establish the existence of isomorphisms between
domains and predomains from minimal invariants for the above equations.

Lemma 19 Let A be a cpo, let (D, i) be a minimal invariant for the recursive domain
equation X ∼= (A+[X → X ])⊥, and let (S, j) be a minimal invariant for the recursive
predomain equation X ∼= A + [[1 → X⊥] → X⊥]. Then there exists an isomorphism
iDS : D ∼=→ S⊥, satisfying
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a. For all a ∈ A, iDS(i−1(bin1(a)c)) = bj−1(in1(a))c.
b. For all f ∈ [D → D],

iDS(i−1(bin2(f)c)) = bj−1(in2(λt1→S⊥ . iDS(f(i−1
DS(t ∗)))))c.

c. iDS(i−1(⊥)) = ⊥S⊥

Proof: By direct construction. For any strict functions h : D → S⊥ and k : S⊥ → D,
define the strict H(h, k) : D → S⊥ and K(h, k) : S⊥ → D by

H(h, k) = λd.case i(d) of



bin1(a)c → bj−1(in1(a))c
bin2(f)c → bj−1(in2(λt1→S⊥ . h(f(k(t ∗)))))c

⊥ → ⊥S⊥

K(h, k) = λs′.s′ ? λs. case j(s) of
{
in1(a) → i−1(bin1(a)c)
in2(f) → i−1(bin2(λd. k(f(λu.h d)))c)

Then define (iDS , i
−1
DS) = fix(λ(h, k)[D→S⊥]×[S⊥→D].(H(h, k),K(h, k))).

We need to show that iDS and i−1
DS are in fact two-sided inverses. Let c be the

strict function λ(h, k).k ◦ h : [D→ S⊥]× [S⊥→D]→ [D→D]. Now,

c ◦ λ(h, k).(H(h, k),K(h, k))
= λ(h, k).K(h, k) ◦H(h, k)

= λ(h, k).λd.case i(d) of



in1(a) → K(h, k)(bj−1(in1(a))c)
in2(f) → K(h, k)(bj−1(in2(λt. h(f(k(t ∗)))))c)
⊥ → K(h, k)(⊥S⊥)

= λ(h, k).λd.case i(d) of



in1(a) → i−1(bin1(a)c)
in2(f) → i−1(bin2(λd.k(

(
λt. h(f(k(t ∗)))) (λu.h d)))c)

⊥ → ⊥D

= λ(h, k).λd.case i(d) of



in1(a) → i−1(bin1(a)c)
in2(f) → i−1(bin2(k ◦ h ◦ f ◦ k ◦ h)c)
⊥ → ⊥D

= (λe.λd.case i(d) of



in1(a) → i−1(bin1(a)c)
in2(f) → i−1(bin2(e ◦ f ◦ e)c)
⊥ → ⊥D


) ◦ c

= δ ◦ c
By Lemma 18 and the minimal invariant property of (D, i),

i−1
DS ◦ iDS = c(fix(λ(h, k).(H(h, k),K(h, k)))) = fix(δ) = idD

For the other direction, let c′ be the strict function λ(h, k).h ◦ k ◦ (λs.bsc) :
[D→ S⊥]× [S⊥→D]→ [S→ S⊥]. We proceed similarly,
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c′ ◦ λ(h, k).(H(h, k),K(h, k))
= λ(h, k).H(h, k) ◦K(h, k) ◦ (λs.bsc)
= λ(h, k).λs.case j(s) of

{
in1(a) → H(h, k)(i−1(bin1(a)c))
in2(f) → H(h, k)(i−1(bin2(λd.k(f(λu.h d)))c))

= λ(h, k).λs.case j(s) of
{
in1(a) → bj−1(in1(a))c
in2(f) → bj−1(in2(λt.h(

(
λd.k(f(λu.h d))

)
(k(t ∗)))))c

= λ(h, k).λs.case j(s) of
{
in1(a) → bj−1(in1(a))c
in2(f) → bj−1(in2(λt.h(k(f(λu.h(k(t ∗)))))))c

= λ(h, k).λs.case j(s) of



in1(a) → bj−1(in1(a))c
in2(f) → bj−1(in2(λt.

(f(λu.(t ∗) ? λs. h(k(bsc))) ?
λs. h(k(bsc))

)
))c

(by strictness of h and k)

= (λe.λs.case j(s) of
{
in1(a) → bj−1(in1(a))c
in2(f) → bj−1(in2(λt.f(λu.(t ∗) ? e) ? e))c

}
) ◦ c′

= γ ◦ c′
By Lemma 18 and the minimal invariant property of (S, j),

iDS ◦ i−1
DS ◦ (λs.bsc) = c′(fix(λ(h, k).(H(h, k),K(h, k)))) = fix(γ) = λs.bsc

Thus, iDS : D ∼=→ S⊥ is indeed an isomorphism.
The fixed point equation iDS = H(iDS , i

−1
DS) immediately yields part (a),

iDS(i−1(bin1(a)c))
= H(iDS , i

−1
DS)(i−1(bin1(a)c))

= bj−1(in1(a))c ,
part (b),

iDS(i−1(bin2(f)c))
= H(iDS , i

−1
DS)(i−1(bin2(f)c))

= bj−1(in2(λt1→S⊥ . iDS(f(i−1
DS(t ∗)))))c

and part (c),
iDS(i−1(⊥))
= H(iDS , i

−1
DS)(i−1(⊥))

= ⊥S⊥
�

Lemma 19 in particular establishes Lemma 12.
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