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Congruences for Contextual Graph-Rewriting

Vladimiro Sassone Pawet Soboski

Abstract

We introduce a comprehensive operational semantic theory of graph-
rewriting. Graph-rewriting here is meant in a broad sense as we aim to
cover and extend previous work based both on Milner’s bigraphs and Ehrig
and Konig's rewriting via borrowed contexts. The central idea is recast-
ing rewriting frameworks as Leifer and Milner’'s reactive systems. Con-
sequently, graph-rewriting systems are associated with canonical labelled
transition systems, on which bisimulation equivalence is a congruence with
respect to arbitrary graph contexts (cospans of graphs). The central tech-
nical contribution of the paper is the construction of groupoidal relative
pushouts, introduced and developed by the authors in recent work, in input-
linear cospan (bi)categories over arbitrary adhesive categories.
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Introduction

Operational techniques, including coinductive arguments, which originated from
research on the semantics of concurrency, have recently begun to be applied in
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other areas of (computer) science (cf. e.g. [1, 5]). The main facet of these ap-
proaches is the use of labelled transition systems (Its) and the accompanying no-
tions of operational preorders and equivalences, bisimulation being chief among
these.

Leifer and Milner’s seminal [13] introduced reactive systems and initiated the
investigation of their semantics. Reactive systems are a generalisation of ground
term-rewriting systems, where a collection of ground rewrite rules is closed under
a set of “reactive” contexts to obtain the rewrite relation. Contexts are organised as
the arrows of a category. Using a universal categorical construction, tbl@tive
pushout(RPO), each reactive system can be equipped with an Its. The labels of
the Its are the ‘smallest’ contexts which allow reactions to occur — an idea due
to Sewell [18]. Such Itss are very well-behaved; in particular, bisimulation is a
congruence with respect to all contexts, provided thhas enough RPOs.

When applied naively, RPOs have proven inadequate in some reactive sys-
tems where contexts have non-trivial algebraic structure. In some cases they do
not give the expected labels in the Its (cf. [17]), while in others, they do not ex-
ist (cf. [16]). The troublesome contexts often exhibit non-trivial automorphisms,
which naturally form a part of a 2-dimensional structure on the underlying cat-
egoryC. It is important to notice that such situations are the norm, rather than
the exception. Context isomorphisms arise naturally already in simple process
calculi, where terms are up to structural congruence. In [17], the authors pro-
posed an enhanced approach based on a 2-dimensional generalisation of RPOs,
the groupoidal relative pushoufGRPO), which has been shown in [16] to en-
compass previous approaches addressing these issues.

Several constructions of RPOs have been proposed in the literature for partic-
ular categories of models. For example, Leifer [12] constructs RPOs in a category
of action graphs, while Jensen and Milner do so in the category of bigraphs [9].
A construction of (G)RPOs in a general setting has so far been missing. In this
paper, we construct GRPOs in a general framework of abstract, uninterpreted con-
texts. Given a category of intereSf we consider a “category of contexts” where
the objects ofC can be composed with each other through interfaces: the cospan
bicategory orC. Such bicategories have the same objec(S, dmit the arrows are
cospans

| —C+«=J,

which can be viewed as an objeCtenriched with an “input” interfaceand and
“output” interfaceo. Roughlyy is the partial view ofC attainable from its “holes,”

while o is the restricted view of afforded to the “environment.” Composition of
cospans is performed by pushing out interfaces, which can be understood as “glue-
ing together” an agent and its context along their common interface. Due to the
nature of pushouts, composition is only associative up to a unique isomorphism.
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insert drink
mone coffee

(3) [c]

take pour|
mon coffep

Figure 1. Example of a contextual system

As an example of these concepts, consider the simple model dfeseceend-
ing machine, illustrated by the leftmost diagram of Figure 1. It has an output
interface consisting of two nodes, $ a@d which one can think of as a money
slot and the cfiee out-tray. These are the parts of th&ee machine accessible
to the environment, the internal components, represent& age invisible. The
middle diagram represents affee drinker. He expects to see a money slot and a
coffee out-tray, which are his input interfaces. As the output interface of the cof-
fee machine and the input interface of théfee drinker match, one may compose
them and obtain the system pictured in the rightmost diagram. (Input and output
interfaces of the vending machine andfee drinker have been omitted.)

The main result of the paper is the construction of GRPOs in a class of cospan
bicategories, which in turn allows the derivation of ltss for all reactive systems
over such bicategories. Specifically, we require a linearity condition on the input
interfaces, namely, thatis mono. Additionally, our cospans are over adhesive
categories [11], which are categories in which pushouts along monomorphisms
exist and are suitably well-behaved. As we prove in the paper, adhesive categories
have enough structure for the construction of GRPOSs in our cospan bicategories.

Although technical in nature, the linearity condition does have an intuitive ac-
count. As alluded in the dtee drinker example, one can consider a cospan as
a “black box,” with an input interface and an output interface. The environment
cannot see the internals of the system and only interacts with it through the out-
put interface. The fact that the output interface need not be linear means that the
system is free to connect the output interface arbitrarily to its internal representa-
tion. For example, the d¢tee machine could have two extra buttons in its output
interface; the “cad’latte” button and the “cappuccino” button. The machine inter-
nals could connect both these buttons to the same internal triggerffeeaaith
milk; the point is that the system controls its output interface and is able to equate
parts of it. On the other hand, the system cannot control what is plugged into one
of its holes. Thus, an assumption of input-linearity is essentially saying that the
system does not have the right to assume that two components coming in through



the input interface are equal.

In order to prove the relevance and usefulness of the construction, we treat
two large examples. Firstly, we apply it to derive Its fiwuble-pushou(DPO)
graph-rewritingsystems. Graph rewriting is a well-established field of theoreti-
cal Computer Science [2], concerned with the extension of rewriting techniques
from terms to graph structures. DPO graph rewriting can be generalised nicely to
rewriting in arbitrary adhesive categories [11].

As DPO graph-rewriting systems can be seen as reactive systems on the bi-
category Cospafraph), the bicategory of cospans over the (adhesive) category
of graphs, we can derive ltss for graph rewriting directly and systematically. This
equips any arbitrary graph rewriting system with a contextual semantics and a
corresponding coinduction principle, so as to allow for the transfer of concepts
and techniques from the field of process algebra to graph-rewriting. In other
words, this yields a behavioural equivalence based uniquely on the interactions
of (concurrent) dynamic systems with their environment, while the presence of a
well-behaved Its allows the use of bisimulation to prove contextual equivalence.

When restricting cospans to purely linear (mono) maps, the Its we derive
agrees, almost on-the-nose, with Ehrig armhi§’s recently proposed approach,
the so-called rewriting with borrowed contexts [5]. Consequently, Ehrig and
Konig’s congruence theorem can be understood as a corollary of the congruence
theorem for GRPOs [17]. Without the restriction, the application of reactive sys-
tems to graph rewriting extends the borrowed-context approach by considering
graph contexts where the output interface need not be injective. In this applica-
tion, therefore, the paper contributes in two ways. Firstly, it is an extension of
the results of Ehrig and étiig; secondly, it provides a missing link between their
work and the work of Leifer and Milner [13].

Our second application is the construction of GRPOs for a version of Milner’s
bigraphs[9]. Bigraphs have been recently proposed as a formalism to model mo-
bility of communication channels, or links (as in thecalculus), together with
spatial mobility of agents, or places (as in distributed calculi). We introduce the
adhesive category of place-link graphs. The cospan bicategories over place-link
graphs resemble Milner’s bigraphs, with somfetences imposed by the respec-
tive linearity conditions. The general construction of GRPOs provides reactive
systems over our bigraphs with a labelled transition semantics.

The advantages of a general approach to GRPOs based on abstract “categories
of contexts” include, therefore, insights into how these are constructed and apply
across a wide range of models. Moreover, given a reactive system within the
class treated in this paper, the GRPO construction provides not only a canonical
congruent process equivalence (bisimulation on the resulting Its), but also a proof
method: the Its itself.



Structure of the paper. Inthe first of the three preliminary sections, section 1.1,
we recall the recently introduced notion of adhesive category due to Lack and the
second author [11]. Secondly, in section 1.2, we recall the notions of 2-categories
and cospan bicategories. Finally, section 1.3 recalls the definition of a reactive
system, which we generalise slightly so that we are able to consider a bicategory
as the underlying category of a reactive system. This section relies heavily on
technology previously introduced by the authors in [17] and [16]. The main result
of the paper, the construction of GRPOs for a class of reactive systems over cospan
bicategories, is stated and proved in section 2; sections 3.1 and 3.2 illustrate two
applications, respectively the derivation of Itss for DPO graph rewriting and the
construction of GRPOs for a variant of bigraphs.

1 Preliminaries

1.1 Adhesive categories

In order to construct GRPOs in cospan bicategories we shall need the notion of ad-

hesive categories [11], which we recall below. Adhesive categories have a slogan:

pushouts along monomorphisms exist and are well-behavedshall assume that

the underlying category of the cospan bicategory is adhesive and use the structure

of adhesive categories repeatedly in the proof of our main result, Theorem 2.1.
The definition of adhesive categories uses the notion of van Kampen square.

Definition 1.1 (van Kampen square).A van Kampen (VK) squaf@) is a pushout
which satisfies the following condition: given a commutative cuije{ which ()

forms the bottom face and the back faces are pullbacks, the front faces are pull-
backs if and only if the top face is a pushout.

mw _C v
A/c "B
C f ’ ’
n:/ \N g&D;n,/
A B a b
g n m/C f
D
A< g B
0>

(i) (i)

Definition 1.2 (Adhesive category).A categoryC is said to beadhesivef it has
pullbacks, pushouts along monos, and these latter are VK-squares.



Givenm: C —» Aandg: A — D, we say thaB is apushout complement
of (m,g) when there exisf : C — B andn : B — D such that the resulting
diamond () is a pushout diagram.

We shall need the following properties of adhesive categories for our construc-
tions. The proof of the following lemma can be found in [11].

Lemma 1.3. LetC be an adhesive category.

1. Monos are stable under pushoutGn In other words, in diagram (i), if m is
mono then n is mono.
2. A pushout diagram (i) if© is also a pullback diagram, if m is mono.

3. If it exists, a pushout complement(of, g), with m mono, is unique up to
a compatible isomorphism; more precisely, it C - B,n: B — D and
f’:C - B,n : B — D are pushout complements, then there exists an
iIsomorphisny : B — B’ such thaipf = f” and rig = n.

The following simple lemma has not been published previously.

Lemma 1.4. Consider the following diagram in an adhesive catedgonyif the
outer region is a pushout, the right square is a pullback, and morpRkismsand
w are mono, then the left square is a pushout.

A>—k> B% E
1L s lv

C>T>D>T>F

Proof. The exterior pushout is stable under pullback alamgD — F , as illus-
trated below.

/l\

CuIA

1 \l\
\l\ VI
\Iw/

O

Examples of adhesive categories incligi, the category of sets and func-
tions, andGraph, the category of graphs and their morphisms. Toposes, as well as
slice and coslice categories over adhesive categories are adhesive. Indeed, several
graph structures relevant to computer science form adhesive categories (cf. [11]).
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1.2 2-categories and cospan bicategories

In this section we give only a minimal introduction to 2-categories and cospan bi-
categories. For an introductory treatment, the reader should refer to [14]. Roughly,
a 2-categoryC is a category where homsets (that is the collections of arrows be-
tween any pair of objects) are categories and, correspondingly, whose composition
maps are functors. Explicitly, a 2-categd@yconsists of the following.

e A class ofobjectsdenotedX, Y, Z,. ..

e For anyX,Y € C, a categoryC(X,Y). The objectsC(X,Y) are calledl-
cells, or more oftenarrows or morphismsand denoted by : X — Y. Its
morphisms are calleB-cells are writtene: f = g: X — Y, or sometimes
simply a: f = g. Composition inC(X,Y) is denoted by. and referred
to as Vvertical composition. Identity 2-cells are denoted by:1f = f.
Isomorphic 2-cells are occasionally denotedrad = g;

e For any object, Y, Z there is a functor: C(Y,Z) x C(X,Y) — C(X, Z), the
so-called horizontal composition, which we shall often denote by mere
juxtaposition. On objects, the functor is just the ordinary composition in
the underlying “ordinary” category. On arrows, the functor provides a hori-
zontal composition of 2-cells; it is associative and admjisds identities.

A bicategorycan be thought of, intuitively, as a 2-category where associativity
and identity laws of horizontal composition hold up to isomorphisms. We shall
denote all associativity isomorphisms byas for example : h(gf) = (hg)f.

The isomorphisms are required to respect the well-known coherence axioms [15].

Cospan Bicategories. We will assumeC to be a category witbhosen pushouts
That is, for arrowan : C — Aandf : C — B, there exists a unique “chosen”
objectA +¢c B and arrows; : A - A+c Bandi, : B —» A+¢ B such that the
resulting square is a pushout. By the universality of pushouts, given any other
objectD and arrowsy : A — D andn : B — D which render the resulting square
a pushout, there exists a unique isomorphismA +c B — D such thati; = g
andai, = n. We shall adopt the conventionalivayslabelling the morphisms into
the chosen pushout by andi,; when considering more than one chosen pushout
we shall use the context in order to disambiguate.

The bicategory of cospans Cosp@ahpas the same objects &s but arrows
from I, to |, are cospans.

f g
|1 —_— C — |2
We will denote such cospai@ : I — I, or Cf;?, and omitf (resp.g) whenl,
(resp.l,) is an initial object. We shall refer g andl, as the input and the output
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interfaces 01'(3?. Intuitively, we can think of a cospan as a generalised context,
whereC are the internals, (the image \gaof) I, represents the public view €,
and (the image vid of) I, the view ofC afforded to the ‘holes’ in it.

A2-cellh: C? = C¥: 1, — Iis an arrowh: C — C’ in C satisfyinghf = f’
andhg = g'. The 2-cells that are iso (i.e. invertible) provide a canonical notion of
“structural congruence.” We shall denote the bicategory of cospans which has the
2-cells limited to isomorphisms by Cospgat. Given cospané:? -1, — I, and
DY, : I, — I3, their compositiorDY, o C? : I — I3 is the cospanG +, D)?Y :
I; — I3, asillustrated by the pushout diagram below.

iy C+,D j,
|1L>C<L|2L>Dg|3
Note that in the resulting compositioh, is “forgotten.” Compaosition is associa-
tive up to a unique isomorphism. It is easy to check that the associativity isomor-
phisms satisfy the coherence axioms, and thus yield a bicategory

In the construction of 2 we shall need certain linearity restrictions. In particu-
lar, the notion of input-linear cospan.

Definition 1.5 (Linearity). A cospanCy, is said to benput-linearwhenmis a
mono. A cospait), is said to bdinear when bothm andn are mono.

When working over an adhesive category, a simple corollary of the first part
of Lemma 1.3 is that the composition of two input-linear cospans yields an input-
linear cospan. Similarly, composition preserves linearity.

Definition 1.6 (Linear Cospans).Assuming thaC is adhesive, let ILCT) be the
bicategory consisting of input-linear cospans and 2-isomorphisms. Similarly, let
LC(C) be the bicategory of linear cospans and 2-isomorphisms.

1.3 Reactive systems and GRPOs

Here we shall briefly recall an extension of Leifer and Milner’s notion of re-
active system to two dimensional categories as introduced by the authors previ-
ously [17]. In this paper we shall consider cospan bicategories with isomorphic
2-cells, and therefore, we shall be concerned with reactive systems over such bi-
categories.

The intuition behind the 2-dimensional structure is that, while arrows of the
underlying category are viewed as contexts, the (isomorphic) 2-cells are thought
of as “proofs of structural congruence” between contexts (recall that a 2-cell
a= a : A— Bisanisomorphism when it is an isomorphisnG(A, B), that is,



there exists a 2-ce§y : @ = asuch thaty.¢p = 1, andg .y = 15). Recall that
in the particular case of the bicategory Cosyi@raph), the 2-cells are precisely
graph isomorphisms which respect the input and output interfaces.

Definition 1.7 (Reactive System)A reactive systert consists of

1. a bicategonB;

2. a collectionD of arrows ofB called thereactive contextsit is required to
be closed under isomorphic 2-cells and composition-reflecting (see below);

3. adistinguished object © B;

4. a set ofreaction rulesR, it consists of pairs of arrowd, r) with domain 0.
The members r of any given paikl, r) € R have the same codomain.

The reactive contexts are those inside which evaluation may occur. To reflect
composition means thdd € D impliesd andd’ € D, while the closure property
means that gived € D and an isomorphism: d = d’ in B impliesd’ € D.

The reaction relatior—> is defined by takingg.—> dr if there is{l, r) € R,

d e D anda: dl = a. This represents that, up to structural congruenceis the
left-hand sidé of a reduction rule in a reaction contexkt

Leifer and Milner [13] developed the derivation of a canonical Its associated
to any given reactive system. The derivation uses a universal construction, dubbed
relative-pushout (RPO), which is a pushoutin a slice category. Bisimulation on the
resulting Its is a congruence, provided that the underlying category of the reactive
system has enough RPOs.

For category theorists, a groupoidal-relative-pushout (GRPO) can be described
concisely as a bipushout in a pseudo-slice category. We refer the reader to [17]
for a more accessible definition and fundamental properties. Note that although
GRPOs are introduced there in the setting of G-categories (2-categories with iso 2-
cells), the development is easily transferred to bicategories with iso 2-cells. Here
we give a brief sketch. Given a 2-celt ca = db: I; — 14, as illustrated ini{
below, a candidate is a tupe= (Is, e, f, 9,3, v, 0), as illustrated ini() below, so
that the 2-cells paste together

/\ /y.';\

2—e—> 5<—f— 3
RN
1
(') (it)

(taking into account the associativity isomorphisms) to givit is a GRPO if it is
the smallest such candidate, in the following sense: given another such candidate

9



C’ there exists a mediating morphiam Is — 1. and appropriate 2-cells which
make the two candidates compatible. Such a mediating morphism is required to be
essentially uniquaneaning that given any other mediating morphigmls — 17,

there exists a unique isomorphic 2-c¢llu = u which makes the two mediating
morphisms compatible.

Definition 1.8 (GIPO). Diagram () is said to be a G-idem-pushout (GIPO) if
(I4,¢,d,id, a, 1., 14) is its GRPO.

Definition 1.9 (LTS). For C a reactive system angl its underlying bicategory,
define GLTSC) as follows:

¢ the states GLT%{) are iso-classes of arrows with domain the chosen object
0 (two arrowsa, & : 0 — I, are in the same iso-class when there exists
an isomorphic 2-celp : a = a&). We shall denote the iso-class afas
[@a:0 — Iy

e there is a transitiond] "1» [dr] if there exists a 2-celt, a rule(l,r) € R,
andd € D, such that the diagram below is a GIPO.

l4
PN

I, o«
N
0

B (1)

Definition 1.10. A reactive systenC is said to haveedex-GRPOsvhen every
redex-square (1), with, f arbitrary,d a reactive context anida part of a reaction
rulel,r) € R, has a GRPO.

The following is an extension of a theorem for 2-categories which can be found
in [17], the proof requires only slight modifications for the extension in generality.

Theorem 1.11.LetC be a reactive system with redex-GRPOs. Then bisimulation
on GLTS(C) is a congruence with respect to all the context€of

Theorem 1.11 is quite robust with respect to the equivalence under consider-
ation. For example, trace and failures equivalences on GLY&(e also congru-
ences. Therefore, the derived Its may be considered as very well-behaved.

2 Constructing GRPOs for input linear cospans

In this section we present a general construction of GRPOs for a class of reactive
systems over cospan bicategories. We shall conclude with several examples of
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GRPOs in the bicategory ILGraph), the bicategory of input-linear cospans in
the category of directed graphs.

Formally, letC be an adhesive category. We shall prove that {L)d{as GR-
POs. This implies that any reactive system over IClas redex-GRPOs and
therefore can be given a canonical labelled transition system semantics.

Theorem 2.1.ILC(C) has GRPOs.

We shall first outline an algorithm for the construction of the desired minimal
candidate. A redex square in ILC), as illustrated in diagram)(below, amounts
to a commutative diagranii) in C, with @ an isomorphism. We shall adopt the
convention of~ representing the isomorphisms @fwhich correspond to the
2-cells of ILC(C).

Oc Op
I4 C+—Ils——D

C D lc . . D
in i
7 /A},2 CcC *-B +l|3rD\
N e e o
1 A —=li——B
(i) (it)
Recall that given an object, a subobjecty : Y — X] is an equivalence class
of monomorphisms intX, where the equivalence relation is generated from the
canonical preorder on monomorphisms idtou < y’ if there existk : Y — Y’
such that’k = u. We shall abuse notation by confusing the subobject (equiva-
lence classes of monos) with its representatiyene mono).
In the following, we letX = B +,, D andY = AU B, a subobject oX. We
obtainu : Y — X, e, : A— Y ande, : B — Y satisfyingue; = ai; andue, = ij.

I3

Algorithm 2.2 (GRPO Construction in ILC(C)). The construction of the com-
ponents of the minimal candidate is outlined below. They are illustrated in dia-
grams {ii ) and {v). We obtain the components by constructing:

1. G as the pullback o#&i,: C —» X andi,: D — X;
2. E as the pullback ofi : Y — X andai, : C — X;
3. F asthe pullback of: : Y —» X andi, : D — X;

4. |5 as the pullback op,: F — D andn,: G — D; Notice that due to the
properties of pullbacks, we obtain a morphieg: Is — E such that all the
faces of {v) are pullbacks.

Proof. We give an outline of the proof in two parts. Firstly, we show that the
components constructed in Algorithm 2.2 are a candidate, secondly, we show that
the candidate is universal.

11



Construction of candidate.
5
Iy E@
C

ANy h ]
[, —E= |5 <F— F N
N Y%

;1

(|||) (|)\(/)

Construct the cubea\), by taking pullbacks as explained in Algorithm 2.2. The
exterior rectangles of diagramg) @nd i) are pushouts (diaiif), and therefore,
commutative.

[y —e— Er—r1— C | 35— Fr—p2— D
oal ol () leia 0] o2l @ [k
A>T> Y>T> X B>T> Y>T> X
V) (vi)

Using the pullback property, we obtaiga : I, — E satisfyingoitg = 1,04 and

pie = tc. Similarly, we obtaing : I3 — F which satisfies analogous equations.
We can now use Lemma 1.4 to conclude that the left hand squares of diagjams (
and (i) are pushouts, which in turn implies thaf) @nd ¢) are pushouts, using
ordinary pushout pasting.

Since all the side faces ol/j are pullbacks and the bottom face is a pushout,
we can conclude by adhesiveness that the top face is a pushout. Similarly, the front
left face being a pushout implies that the back right face is a pushout. Using the
fact thatG was defined as a pullback, we obtain a unique morplusmi, —» G
such thatr,06 = oc andn,0c = op. We summarise the parts of the candidate
constructed so far in diagranaii), below.

Let E +,, G denote the chosen pushoutafand.; and lety : C - E +,, G
be the unique induced isomorphism. Similarly, we obtain a unique isomorphism
6 . F +,G — D. Referring back to diagramévf and {), we haveA +,, E =

12



Y=B+,F. Letg: A+, E —» B+, F denote the unique compatible isomor-
phism. The isomorphisms are illustrated in diagrasin X as arrows ofC, and as
2-cells of ILC(C) in diagram {ii). It is straightforward but tedious to check that
6B«GB«yA = ainILC(C).

Cy>E+|SGeG—>F+|5G5>D 4
et 0 irel 0 Tw CALRD
I, —te— E <0e— |5 —0r— F <Rs— |5 /y’q 5'\

on N 1 1o I, -E5 lg <F- I3
A—>A+|2EME\A>B+|3F<—B \ﬁ /
(viii) (IX)

Universality. Suppose that there is another candidate, as illustrated in diagram
(ix). Lettingr) = vy, : G - Candny =i, : G — D and using the fact that
G is a pullback object, we get an arrow. G’ — G such thaimid =77 : G —» C
andmA = m, . G — C. Consider diagramxj below, wherel denotesB +,, F'.
We have an isomorphismB¢,6)¢ : T+,,G — X, Letp: T — Xandd: G — X
denote the corresponding morphisms derived by precomposing,vetidi,.

E' piz i

‘7\/\ /\

OA\‘ / \ /OB J\ /
ABii 1B
() (XI)

Lety’ : Y — T be the arrow induced k¥/i; andi; in diagram &). One can verify
thatnu' = u.

In diagram &ii) below, we letp; denotey’~'i;, while in diagram Xiii) let
p, = ¢'i1. Consider diagramx(i) again, and note that regions) @nd ) + (&)
are pushouts. Hencej)(is a pushout and, using the second part of Lemma 1.3,
a pullback. Thus there exists a morphism: E — E’ such thaf’v, = p; and
B'iovy = p'oq. A similar chain of reasoning involving diagramii{) allows us to
derive the existence o4 : F — F’ which satisfiep’,v, = p, andi,v, = (/0.

One can now deduce that the leftmost squares in the two diagrams are pull-
backs, and therefore, that andv, are both mono, since they are pullbacks of
monoy’ along, respectivel\y’i, andi,.

|6>i> G |6>L> G
el 0 Im ol |7
Er E'—ri— C Fr3 F’—r>— D
o1 il (@) Jei2 o2| 2] Jiz
Y>—> Tr—X Y>—> Tr—X
(xu) (xm)

13



In diagram kiv), H and morphisms;, «, andy are chosen so that the two rear
faces are pullbacks. One could do this, e.g., by first taking the pullbackarid
p5 and obtaining from the pullback property of the front left face.

K1 K2
=N / T

alz X
(XIV)

One may consideH as the mediating morphism froig to Is. Indeed, in dia-
grams kv), (xvi) and we use adhesiveness in order to deduce that the top faces are
pushouts.

En o H w ,,| AF
RN
E'f F’/
L L I
1/5LG ) Z/SOF
L e
9/1\‘(:% ﬂz)\”‘D%L
(Xv) (xvi)

Because the top face of diagramij is a pullback, we obtain a unique mor-
phismoy : Is — H such thak;04 = O and,04 = Of.
We shall show that diagram

|6>—/>G' K1 H Vv
@ w| o |w E'/TAU
o H——U . Seel
OHl l/l ’i/KZNF@ D U
H— G / Yu _F
E’>—/C\ / T xD
N\
T X nxx/
(xvii (xviii) (Xix)

is a pushout. First notice that it is commutative, we haygoy = pjki0y =
pP10p = Mg = mie and similarlymoy0y = pLk0y = PL0F = Moy = Ml

14



which implies thajoy = A, Using the fact that the bottom face of diagraav)
is a pullback.

We shall now construct diagram\jii). We start by taking the pushout)(
Now since region {) of diagram kii) is a pushout, there exists a unique mor-
phismu; : U — C such thatyw = 77 anduyv = pik;. Similarly, using the fact
that the corresponding region of diagraxii{ is a pushout, there exists a unique
morphismu, : U — D such thatu,w = 7, andu,v = pik,. Using the stan-
dard decomposition property of pushouts, the two newly constructed regions are
pushouts. The two lower regions of diagraxwi{i) are the pushouts which appear
as the two front faces of diagramiy). The left face of the cube is the top face
of (xiv) which is a pullback. Spinning the cube around into diagraix) (ve use
the fact that the bottom and top faces are pushouts, and the back faces pullbacks
to deduce that the front right face is a pullback.

Since also the bottom face of diagrarivj is a pullback, we obtain a unique
isomorphisny : G — U such thatu,/ = m; anduyl = . As we have assumed
that () is a pushout, to prove that diagramv(j) is a pushout it remains to show
that{d =wandly = v.

Indeedu;{d = mA = 7] = Lww andudd = mod = 7, = UpW which implies
that{d = w. Also uily = myy = pik1 = v anduxly = may = pHkz = UV Which
implies thatty = v.

Leto :E' - E+,H,¢y:F+,H— F andr:H+,G — G be the unique
induced isomorphisms. It can be verified th&teG'pey =7y, 8 e GYetF =6
andyBeHB« A =B in ILC(C).

Essential uniqueness &f : Is — lg can be shown by using the third part of
Lemma 1.3, applied to diagram\ii), we omit the details here. |

Notice that we can give a simplified presentation of the construction of the
minimal candidate if we assume that all the cospans are linear.

Algorithm 2.3 (GRPO Construction in LC(C)). When all the morphisms in di-
agram (i) are mono, constructing the pullback amounts to computing the inter-
section of subobjects . Indeed, we let:

1. G=CnD;
2. E=YNC;
3. F=YnD;

4. Is=FNG=FNE=ENG.

In the simple examples below, meant to illustrate the application of Algo-
rithm 2.2, we shall consider IL@raph) as our category of contexts. In the ac-
companying Figures 2—4, we label the nodes of the graphs in order to clarify the
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Figure 3: GRPO in ILGCGraph)

r

dayp az) azp

Figure 4: GRPO in ILGGraph)
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action of various graph morphisms, which we leave unlabelled. We also do not
draw the 2-cells as the labelling on the nodes makes these clear. We shall make
reference to the directed graphs below.

d c
.

Z‘)C XZZ’?/‘C X3: r\
- a

X1 =

V> T
T<cov->0

Example 2.4. GraphX; can be decomposed as illustrated by the exterior of Fig-
ure 2. Here, all the graph morphisms are injective. The reader may wish to go
through the steps of Algorithm 2.2 to construct the GRPO is this particular case,
it is illustrated in the interior of Figure 2.

Example 2.5. GraphX, can be broken up as illustrated by the exterior of Figure 3.
Notice thato, is not injective. The GRPO is illustrated in the interior of Figure 3.

Example 2.6. We illustrate a GRPO for a partition & in Figure 4. Notice that
here botho, andog are not injective.

3 Applications

In this section we shall introduce two immediate applications of our construction
of GRPOs in input linear cospan bicategories.

First, after a brief review of the theory of double-pushout graph rewriting, we
shall show that we may use the construction to derive congruences for graphs
enriched with an output interface. Graph contexts here are input-linear cospans of
graphs. The labelled transition system derived using our technology admits labels
which are the smallest contexts which allow a double-pushout rewrite. The results
in this section are closely related to rewriting via borrowed contexts due to Ehrig
and Konig [5]. In particular, in Theorem 3.10 we show that the labelled transition
systems are essentially the same, thedénce being that the nodes and labels of
our transition system are quotiented by isomorphism.

Our results both shed light and extend rewriting via borrowed contexts. Firstly,
because borrowed contexts correspond to GIPOs, they satisfy a universal property.
Secondly, we show that borrowed contexts fall within the framework of reactive
systems [13, 17, 16] and therefore the various congruence properties and con-
structions carry over. In particular, Ehrig anebiig’s congruence theorem can
be seen as an application of the congruence theorem for reactive systems (The-
orem 1.11). Finally, due to the generality of Theorem 2.1, we relax some of the
technical conditions imposed by Ehrig andm{g and introduce the notion of ex-
tended borrowed contexts (Definition 3.12).

17



Our second application concerns Milner’s theory of bigraphs [9]. We show
how bigraphs can be represented by a cospan bicategory over an adhesive cate-
gory. As a consequence, we derive labelled transition systems for reactive sys-
tems over an input-linear variant of bigraphs. Such variant is incomparable to
Milner’s, as our formalism allows bigraphs not allowed in Milner’s approach, and
vice-versa. It appears that a closer correspondence to Milner’s theory would be
achieved by considering an output-linear variant. It is, therefore, an interesting
line of future work whether one could derive a general construction of GRPOs for
an interesting and general class of output-linear cospan bicategories.

Another consequence of representing bigraphs by cospans is that because of
the close correspondence between double-pushout rewriting systems and reac-
tive systems over cospan bicategories demonstrated by Lemma 3.5, one can view
bigraphical reactive systems as certain double-pushout rewriting systems. In par-
ticular, this could mean that some of the theory and technology developed for the
latter can perhaps be applied successfully to the former.

3.1 Double-pushout rewriting and borrowed contexts

Double-pushout (DPO) graph rewriting is a well known, widely studied topic [2].
Introduced in [6], it has recently been generalised in [3, 11, 4]. We shall describe
a variant of DPO-graph rewriting, working at the level of an arbitrary adhesive
categoryC. The reader may of course, safely substitute the adhesive category
Graph of graphs and graph homomorphisms far We start by relating DPO
rewriting and reactive systems.

Definition 3.1 (Rewrite Rule). A rewrite rulepis a span

LEKEBR (2)
in C. Observe that wdo notassume that eithéor r are mono.

HereL andR represent respectively the left and right-hand side of the rule,
while K is the context, which remains ufiected by the rewrite. A redex in an
objectC is identified by matching a rule’s left-hand side, which is done via a
morphismf : L — C.

Definition 3.2 (Adhesive Grammar). An adhesive grammda is a pair(C, P)
whereC is an adhesive category aRds a set of arbitrary rewrite rules.

Definition 3.3 (Rewrite Rule Application). ObjectC rewrites toD with rule p,
in symbolsC —,; D, if there exist an objedE and morphisms so that the two
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squares in the following diagram are pushouts.

L K—>R
il [} In 3)

We shall writeC —» D if there existp € Pandf : L — C such thaC —
D.

Proposition 3.4. An adhesive grammar can be seen as a reactive system on the
category Cospanj). Let 0 denote the empty graph, and the®®ebntain for each
rewrite rulep as in (2), a pair

<O—>L<I—K,O—>R<r— K).

We choose all arrows of Cospdr)(be reactive. Let—> denote the resulting
reaction relation.

It is useful to point out that the process described in Proposition 3.4 can be re-
versed. Starting with a reactive system over a cospan categorZavigh chosen
object the initial object & C, one can obtain a double-pushout rewriting system

by adding a rewrite ruleL <- K - R for every< 0—L<K, 0—R& K> €R.

It turns out that these “encodings” are actually very well behaved. In this section
we shall present Lemma 3.5 which shows that the DPO rewrite relation is exactly
the reactive system reaction relation when it makes sense to compare them. The
main result of this section, Theorem 3.10 makes the correspondence even stronger
by relating the operational theories developed for the two approaches. Indeed, we
shall show that it is equivalent to consider GIPOs in reactive systems over cospans
on the one hand and Ehrig an@iig’s borrowed contexts on the other.

The following lemma is similar to a previously published result (cf. [7]) and
can be considered folklore. As well as being simple to prove, itis arelatively little-
known result; it is therefore worthwhile to state and prove it here. It is crucial for
us because it serves as a foundation for relating the theory of DPO rewriting and
the theory of reactive systems.

We use the shorthar@@—-:> D to mean thaC andD are cospans with empty
input and output contexts.

Lemma 3.5.C —» Diff C—= D.

Proof. If C —+ D thenC = Ejo L' andD = E4 0 R, which is equivalent to
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requiring that the two squares below are pushouts.

0
VJ’!W
C+~—E—D
T8 Thy
0= L K+R—0

This meansC —» D, since the middle part of the diagram is a DPO rewrite as
in (3). Note that the output interface GfandD is actually arbitrary, as long as it
factors througtk. |

The equivalence exhibited by Lemma 3.5 between the rewrite relation in a
DPO rewriting system and the reaction relation of a reactive system over a cospan
bicategory is a bridge which relates the two theories.

This may be compared with an easy lemma about term rewriting. In a ground
term rewriting system over a signatteone usually defines the rewrite relation
as follows: a ternct rewrites tod, writtenc — d, if one can find as a subterm
of ¢, and replace it witlh. On the other hand, one may recast such a term rewriting
system as a reactive system over the free linear Lawvere titgofy/7]. In Cs,
the objects are natural numbers, while arraws- n aren-tuples of terms built
up from X which contain exactly one occurrence eachnmobrdered variables.
Composition in this category is substitution of terms, done in the obvious way.
The reaction rule® consist of pairgl, r), wherel,r : 0 — 1 are respectively the
left and the right hand sides of a rewrite rule. One then defines the rewrite relation
as follows:c —+ difc=c ol,d = ¢ or and{l,r) € R. In other words, the
reaction rules are closed under all linear contexts. It is easy to show-thaé d
if and only ifc —= d.

Indeed, Lemma 3.5 implies that the reactive systems on CaSpanth all
cospans reactive include all DPO rewriting systems aver

Lts Semantics for DPO Rewriting Systems. In order to apply Theorem 2.1, we
restrict to graph rewriting systems corresponding to bicategories of input-linear
cospans.

The following notion, which we shall refer to as input-linear rewrite rule ap-
plication is sometimes referred to in graph rewriting literature as rewriting with
injective matching

Definition 3.6 (Input-Linear Rewrite Application). ObjectC rewrites toD with
rule p input-linearly, in symbol€ —»Lf D, if C—» ¢ D and in additionf, g
andh of (3) are mono.
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Definition 3.7. ForG = (C, P) an adhesive grammar with an input-linear rewrite
relation—, we construct a reactive syste@over the bicategory of input-
linear cospans ILQY) using the translation of Proposition 3.4.

Lemma 3.5 clearly specialises to double-pushout rewriting systems and reac-
tive systems over input-linear cospan bicategories.

Proposition 3.8. Suppose that is adhesive and consider an arbitrary adhesive
grammarG, and letC be the corresponding reactive system oveimgut-linear
cospan bicategory. Let—> denote the reaction relation @ Then

C—»; DiffC—>D.

We are now ready to examine the operational theory derived using GRPOs.
Let LTS(G) be GLTSC) (cf. Definition 1.9). Using the congruence theorem
(Theorem 1.11) for bisimulation on labelled transition systems generated by GlI-
POs [17], we obtain the following.

Corollary 3.9. Bisimulation onLTS(G) is a congruence.

Arewrite rule (2) is calledinear when botH andr are mono. If we restrict our
view to DPO-rewriting systems with linear rewrite rules and input-linear rewrites
then we are in a position to compare the resulting Its with recent work due to Ehrig
and Konig, called rewriting with borrowed contexts [5]. Remarkably, we derive
the same labelled transition systems, modulo quotienting the transitions obtained
in the borrowed-contexts approach by isomorphism, as we explain below.

Precisely, given an adhesive gramn@e (C, P), whereP consists of linear
rewrite rules, let RBGE) be the Its derived via rewriting with borrowed contexts.
(We refer to reader to [5] for the details of such construction, which cannot be
spelt out here.)

Fls
Theorem 3.10.There is a transitiofiG%:'2] e '2]> [Hs] in LTS(G) if and only
of:lg

if there is a transition @2 “£2p. Ho'ls jn RBC(G).
Proof. (1) From GIPOs to Borrowed Contexts:

Suppose thatG] L» [H*] in LTS(G). thenF{ must be a part of an
GIPO diagram. Since every GIPO can be constructed as a GRPO, we have a

redex diagram
P \

l, —F~ I5<—c
N\ L
0
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as the outside of the diagram, with®-, R®) being a reaction rule, corresponding
via the translation of Lemma 3.5 to the rewrite rule

oL Or
L+— I3 —R

The candidatéls, F,C, G, 8, y, 6) illustrated above is the GRPO obtained via the
construction of Algorithm 2.2.

We also haveH = Ci"cC o R%®, which means that the diagram) below is a
pushout

ORr
|3HR

ic Iel
C T> H
2

()
with o4 : Is — H equal tod, o oc.
Recall that from the construction, we have that

l 161 Oc J/O'l Oel J/O'l OL\L lO' 2
L——Y CwY G—Y L—Y

(it) (i) (v) v)
diagram {i) is a pushout, diagramii() is a pullback, diagramsy) and {) are
pushouts.

Notice that in diagramsi) to (v) we have indicated which morphisms are
assumed to be mono in the construction of Algorithm 2.2. While Ehrig asdd<”
assume that all morphisms are mono, it shall be useful for us here to indicate only
the necessary ones as we shall use the extra generality to extend the notion of
borrowed context in Definition 3.12.

We can construct the following diagram from the five diagrams above:

’
€ oL

GolL L I3 R
’ T LT 0
? T 1

G—a—Y<+o=C—t~> H
J
OGT |1 TOC
This is exactly the definition oF" constituting a borrowed context f@%, ie.
OF
G% L= » Ho in RBC(G).
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(2) From Borrowed Contexts to GIPMsthis section of the proof we shall use the
notation from [5]. We shall also follovoc. cit. in assuming that all morphisms
are mono. Given a borrowed context diagraum below,

D—— L«
|

— R
l (€Y % @) ‘f @) lel
G—a+» Gt +o—C -~ H

OGT 4) C;lrl 5) Oc
J T> F T K
(vi)

we shall show that one may construct a GIPO. First recall that a commutative
diagram yi) is a borrowed context diagram when squaBs @), (3) and @) are
pushouts, while squar&)(is a pullback.

Indeed, consider the redex diagrawi

J a I _C .,
re\ / @% &C
N Kz
y G*
(vit) (viii)

and assume without loss of generality that, C = G*. Leta : F +; G —» G*

be the unique isomorphism such thét= 0, : F - G* andai, = ¢ : G — G*.

Note that the isomorphism exists because squgrm diagram Vi) is a pushout.
Since squarell of diagram Vi) is a pushout of monos and we are in an adhe-

sive category, it is also a pullback. This implies thatG = G*, because in adhe-

sive categories one forms unions of subobjects by forming the pushout of their in-

tersection. The central cube diagram from the construction of GRPOs is illustrated

in (viii); in the construction we use only the fact that squ&)eof diagram i)

is a pullback. Thus, the GRPO of the redex squaig {s (K, F,C,id,id, id, a),

meaning that it is a GIPO. O

We say that two grapha®! and A°‘! with the same output interface are
equivalent when there exists an isomorphism A — A’ such thatpo, = 0.
Similarly, we say that two transitions frod~!' to B%, with IabeIsCf’CCjIJ and
C’f’cc,’flj, respectively, are equivalent when there exists an isomorphis@ — C’
with yic = 1 andyoc = O¢.

23



Let RBC.(G) be the Its whose nodes are equivalence classes of the nodes of
RBC(G) and whose transitions are equivalence classes of transitions ofG3BC(
The following corollary is a straightforward consequence of Theorem 3.10.

Corollary 3.11. RBC.(G) = LTS(G).

The results of this section can be seen from twifedent perspectives. From
the point of view of reactive systems, the borrowed context conditions of Ehrig
and Konig, once extended by allowing the appropriate morphisms to be non-
mono, can be seen as being an elegant and simple characterisation of GIPOs in
a input-linear cospan bicategory. On the other hand, the results of this section
show that borrowed contexts satisfy a universal property. This means that the
congruence theorem for bisimilarity of Ehrig an@hig can actually be seen as a
special case of Theorem 1.11. Similarly, other results and technology developed
for reactive systems transfers to the setting of borrowed contexts, this includes
the congruence theorems for equivalences other than bisimilarity as well as the
elegant technique for deriving “weak” transition systems (in the sense of weak
bisimilarity) developed by Jensen in his upcoming PhD thesis [8].

We end this section with an extension of borrowed contexts suggested by the
linearity conditions imposed in the construction of Algorithm 2.2.

Definition 3.12 (Extended Borrowed Contexts).Given an adhesive grammar
= (C, P) with anarbitrary set of rules?, we shall construct a labelled transition
system with:

1. Nodes: Graphs with output interface]sﬁ G whereqg is arbitrary;

2. Transitions: Cospans of grapﬂlsi F&K wherets is mono andk is
arbitrary.

OF
We derive a transition3%] el [Ho] if there exists a commutative diagram
as illustrated below, where

| r

D | R
I (€Y @) l 601
Gr—ea-~ G+ 02— C —6> H
J
OGT 4) |1 TOC
J>T> F T K

(D), (2), (3) and @) are pushouts, while squarg) (s a pullback. The indicated
morphisms are assumed to be mono, the others are arbitrary.
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As a corollary of the translation between borrowed contexts and GIPOs of
Theorem 3.10 and the congruence Theorem 1.11, we have the following.

Corollary 3.13. Bisimulation on the labelled transition system resulting from
Definition 3.12 is a congruence with respect to arbitrary input-linear graph con-
texts, that is cospans

IS FE&EK

wherets is mono andk is arbitrary.

3.2 Bigraphs as cospans

Bigraphs were introduced by Milner to model dynamic systems with independent
locality and connectivity structures (cf. [9] for a comprehensive exposition), and
have been used by Jensen and Milner [10] to model and derive an Its for the
asynchronous-calculus.

In this section, we recast the notion of bigraph in our approach, and obtain
structures very similar to Milner’s. Although we briefly discuss thedences
between our product and Milner’s bigraphs, we remark that a perfect match is not
our objective. Rather, we aim at demonstrating that algebraic constructs relevant
to the semantics of mobility and communication fall naturally within the realm
of cospan bicategories over adhesive categories. To that end, we introduce the
adhesive category of place-link graphs, which can be considered “bigraphs with-
out interfaces.” Interfaces will then be added when we consider the bicategory of
cospans over the category of place-link graphs. We do not develop the notions of
width, inactive sites, nor parametric reaction rules, which do not seem to have an
effect on the actual construction of GRPOs for bigraphs. The construction shall
be given by Algorithm 2.2.

We define gplace-graphto be a directed graph with nodes labelled over an
alphabet. Additionally, there is an arity functioar : ¥ — N (the natural num-
bers), and place-graph morphisms are directed graph morphisms which preserve
node labelling. The intuition is that the elementsXoére (names of) controls,
each equipped with an ordered set of ports. The connectivity of each control is
determined by the number of its ports. For a place-gfaplth node-seV and la-
belling functionl : V — X, we denote théh port ofv by v, where O< i < ar(l(V)).

One can construct the totsét of ports of Gy taking the disjoint union:

P= Z{vi | 0<i<ar((v)}.
veV
Definition 3.14 (Place-Link Graphs). A place-link (pl) graph is a place-grajh
over a set of controls together with a sed and a link map : P — S, whereP is
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Figure 5: Typical place-link graph

the set of ports o6s. A place-link morphism{ fo, fy, f;) : G — G’ is a place-graph
morphisnx fy, f1) together with a functiorf, : S — S’ such that’ f, = f,l, where
fo : P — P’ is the morphism sending to fo(v);. Let PLGraphy be the category
of pl-graphs and pl-graph morphisms over a set of conols

The intuition is thatS is the set of equivalence classes of port&inWhen
two ports are in the same equivalence class (that is they map to the same element
of S), we say that they are connected. Figure 5 illustrates a typical place-link
graph with two kind of controls A andB, respectively with three and two ports —
where directed arcs represent the place structure, and the undirected ones are the
elements of.

It is easy to construct for eacha categoryXs so thatPLGraphy = Set™, in
other wordsPLGraphy is a presheaf category and, as such, adhesive.

Definition 3.15 (PL-Graphs with Interfaces). We refer to Cospai{PLGraph)
as the bicategory of pl-graphs with interfaces. Restricting to input-linear cospans,
we obtain the bicategory IL&LGraphy).

Corollary 3.16. ILC(PLGraphy) has GRPOs, calculated using Algorithm 2.2.

There are two aspects of our bicategory of pl-graphs with interfaces which
generalise the theory of bigraphs. Firstly, the theory of bigraphs one tradition-
ally considers only “discrete” interfaces, i.e., discrete place-graphs (which can be
seen as strings over the alphabgtogether withname setg¢cf. Definition 3.17).
Secondly, place graphs are usually forests of trees, and their input (resp. output)
interfaces reach only leaves (resp. roots). Fortunately, we can apply the necessary
restrictions and still be able to perform the construction of Algorithm 2.2.

Definition 3.17 (Discrete PL-Graph). A discrete pl-grapim, X), wherem s a
finite ordinal labelled oveE andX is a finiteset of namess a pl-graph withmas
its set of nodes and no edges. Its link map is the injeddcp P + X, for P the
set of ports omn.

Let TPLGraph y be the full subcategory ¢fLGraph . consisting of pl-graphs
with forests of trees as place-graphs.
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Definition 3.18 (Bicategory of Bigraphs). The bicategory of bigrapBigraphy,
over a set of controls has:

e Objects: Discrete pl-grapis, X);

e Arrows: Input-linear cospangm, X)— G« (n,Y) with G € TPLGraphy;
additionally, the left interface must reach only the leaves while the right
interface must reach only the roots®f

e 2-cells: isomorphisms between cospans.
Theorem 3.19. Bigraph has GRPOs.

Proof. It suffices to verify that Algorithm 2.2 preserves the conditions on cospans,
and thatls is a discrete bigraph. |

Interestingly, a main diierence between bigraphs as defined here and Mil-
ner’s [9] is the &ect of input-linearity on aliasing of names. Milner’s formalism
allows a bigraph which equates names from its input interface, which is disal-
lowed by our input-linearity condition. Conversely, our formalism allows a bi-
graph which equates names within its output interface, an operation not allowed
in Milner’'s. Observe that since (G)RPOs-derived contexts only exercise output
interfaces, expressive power may be lost in some applications by not being able to
equate ports in the input interface. Although this appears to be often compensated
for by equating ports in output interfaces, we are currently investigating a gener-
alised notion of relative pushout which acts at the same time on both interfaces.

In particular, in the link-graphs illustrated below,

SN
X Yy X Yy
N

the left one is not input-linear (as input nameandy are mapped to the same
element), and therefore not allowed by our formalism. On the other hand, the
right one, which is input-linear but not output-linear (as output naxesdy are
coalesced), is allowed in our formalism but not in Milner’s.

It appears that an output-linear version of Definition 3.18 would capture the
existing bigraphs almost exactly. We leave a general construction of GIPOs for
output-linear cospan bicategories as future work.

4 Conclusion

We have constructed groupoidal relative pushouts in a general framework of gen-
eralised contexts and interfaces, represented by cospan bicategories over adhesive
categories. This allows us to systematically derive a compositional semantics for
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each reactive system in the framework. We have focused on two notable, compre-
hensive examples (‘metamodels’), the theories of double-pushout graph rewriting
and of bigraphs.
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