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Congruences for Contextual Graph-Rewriting

Vladimiro Sassone Paweł Sobociński

Abstract

We introduce a comprehensive operational semantic theory of graph-
rewriting. Graph-rewriting here is meant in a broad sense as we aim to
cover and extend previous work based both on Milner’s bigraphs and Ehrig
and König’s rewriting via borrowed contexts. The central idea is recast-
ing rewriting frameworks as Leifer and Milner’s reactive systems. Con-
sequently, graph-rewriting systems are associated with canonical labelled
transition systems, on which bisimulation equivalence is a congruence with
respect to arbitrary graph contexts (cospans of graphs). The central tech-
nical contribution of the paper is the construction of groupoidal relative
pushouts, introduced and developed by the authors in recent work, in input-
linear cospan (bi)categories over arbitrary adhesive categories.
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Introduction

Operational techniques, including coinductive arguments, which originated from
research on the semantics of concurrency, have recently begun to be applied in
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other areas of (computer) science (cf. e.g. [1, 5]). The main facet of these ap-
proaches is the use of labelled transition systems (lts) and the accompanying no-
tions of operational preorders and equivalences, bisimulation being chief among
these.

Leifer and Milner’s seminal [13] introduced reactive systems and initiated the
investigation of their semantics. Reactive systems are a generalisation of ground
term-rewriting systems, where a collection of ground rewrite rules is closed under
a set of “reactive” contexts to obtain the rewrite relation. Contexts are organised as
the arrows of a categoryC. Using a universal categorical construction, therelative
pushout(RPO), each reactive system can be equipped with an lts. The labels of
the lts are the ‘smallest’ contexts which allow reactions to occur – an idea due
to Sewell [18]. Such ltss are very well-behaved; in particular, bisimulation is a
congruence with respect to all contexts, provided thatC has enough RPOs.

When applied naively, RPOs have proven inadequate in some reactive sys-
tems where contexts have non-trivial algebraic structure. In some cases they do
not give the expected labels in the lts (cf. [17]), while in others, they do not ex-
ist (cf. [16]). The troublesome contexts often exhibit non-trivial automorphisms,
which naturally form a part of a 2-dimensional structure on the underlying cat-
egoryC. It is important to notice that such situations are the norm, rather than
the exception. Context isomorphisms arise naturally already in simple process
calculi, where terms are up to structural congruence. In [17], the authors pro-
posed an enhanced approach based on a 2-dimensional generalisation of RPOs,
the groupoidal relative pushout(GRPO), which has been shown in [16] to en-
compass previous approaches addressing these issues.

Several constructions of RPOs have been proposed in the literature for partic-
ular categories of models. For example, Leifer [12] constructs RPOs in a category
of action graphs, while Jensen and Milner do so in the category of bigraphs [9].
A construction of (G)RPOs in a general setting has so far been missing. In this
paper, we construct GRPOs in a general framework of abstract, uninterpreted con-
texts. Given a category of interestC, we consider a “category of contexts” where
the objects ofC can be composed with each other through interfaces: the cospan
bicategory onC. Such bicategories have the same objects asC, but the arrows are
cospans

I
ι // C J

ooo ,

which can be viewed as an objectC enriched with an “input” interfaceι and and
“output” interfaceo. Roughly,ι is the partial view ofC attainable from its “holes,”
while o is the restricted view ofC afforded to the “environment.” Composition of
cospans is performed by pushing out interfaces, which can be understood as “glue-
ing together” an agent and its context along their common interface. Due to the
nature of pushouts, composition is only associative up to a unique isomorphism.
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Figure 1: Example of a contextual system

As an example of these concepts, consider the simple model of a coffee vend-
ing machine, illustrated by the leftmost diagram of Figure 1. It has an output
interface consisting of two nodes, $ andC, which one can think of as a money
slot and the coffee out-tray. These are the parts of the coffee machine accessible
to the environment, the internal components, represented byS, are invisible. The
middle diagram represents a coffee drinker. He expects to see a money slot and a
coffee out-tray, which are his input interfaces. As the output interface of the cof-
fee machine and the input interface of the coffee drinker match, one may compose
them and obtain the system pictured in the rightmost diagram. (Input and output
interfaces of the vending machine and coffee drinker have been omitted.)

The main result of the paper is the construction of GRPOs in a class of cospan
bicategories, which in turn allows the derivation of ltss for all reactive systems
over such bicategories. Specifically, we require a linearity condition on the input
interfaces, namely, thatι is mono. Additionally, our cospans are over adhesive
categories [11], which are categories in which pushouts along monomorphisms
exist and are suitably well-behaved. As we prove in the paper, adhesive categories
have enough structure for the construction of GRPOs in our cospan bicategories.

Although technical in nature, the linearity condition does have an intuitive ac-
count. As alluded in the coffee drinker example, one can consider a cospan as
a “black box,” with an input interface and an output interface. The environment
cannot see the internals of the system and only interacts with it through the out-
put interface. The fact that the output interface need not be linear means that the
system is free to connect the output interface arbitrarily to its internal representa-
tion. For example, the coffee machine could have two extra buttons in its output
interface; the “caf´e latte” button and the “cappuccino” button. The machine inter-
nals could connect both these buttons to the same internal trigger for coffee with
milk; the point is that the system controls its output interface and is able to equate
parts of it. On the other hand, the system cannot control what is plugged into one
of its holes. Thus, an assumption of input-linearity is essentially saying that the
system does not have the right to assume that two components coming in through
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the input interface are equal.

In order to prove the relevance and usefulness of the construction, we treat
two large examples. Firstly, we apply it to derive lts fordouble-pushout(DPO)
graph-rewritingsystems. Graph rewriting is a well-established field of theoreti-
cal Computer Science [2], concerned with the extension of rewriting techniques
from terms to graph structures. DPO graph rewriting can be generalised nicely to
rewriting in arbitrary adhesive categories [11].

As DPO graph-rewriting systems can be seen as reactive systems on the bi-
category Cospan(Graph), the bicategory of cospans over the (adhesive) category
of graphs, we can derive ltss for graph rewriting directly and systematically. This
equips any arbitrary graph rewriting system with a contextual semantics and a
corresponding coinduction principle, so as to allow for the transfer of concepts
and techniques from the field of process algebra to graph-rewriting. In other
words, this yields a behavioural equivalence based uniquely on the interactions
of (concurrent) dynamic systems with their environment, while the presence of a
well-behaved lts allows the use of bisimulation to prove contextual equivalence.

When restricting cospans to purely linear (mono) maps, the lts we derive
agrees, almost on-the-nose, with Ehrig and K¨onig’s recently proposed approach,
the so-called rewriting with borrowed contexts [5]. Consequently, Ehrig and
König’s congruence theorem can be understood as a corollary of the congruence
theorem for GRPOs [17]. Without the restriction, the application of reactive sys-
tems to graph rewriting extends the borrowed-context approach by considering
graph contexts where the output interface need not be injective. In this applica-
tion, therefore, the paper contributes in two ways. Firstly, it is an extension of
the results of Ehrig and K¨onig; secondly, it provides a missing link between their
work and the work of Leifer and Milner [13].

Our second application is the construction of GRPOs for a version of Milner’s
bigraphs[9]. Bigraphs have been recently proposed as a formalism to model mo-
bility of communication channels, or links (as in theπ calculus), together with
spatial mobility of agents, or places (as in distributed calculi). We introduce the
adhesive category of place-link graphs. The cospan bicategories over place-link
graphs resemble Milner’s bigraphs, with some differences imposed by the respec-
tive linearity conditions. The general construction of GRPOs provides reactive
systems over our bigraphs with a labelled transition semantics.

The advantages of a general approach to GRPOs based on abstract “categories
of contexts” include, therefore, insights into how these are constructed and apply
across a wide range of models. Moreover, given a reactive system within the
class treated in this paper, the GRPO construction provides not only a canonical
congruent process equivalence (bisimulation on the resulting lts), but also a proof
method: the lts itself.
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Structure of the paper. In the first of the three preliminary sections, section 1.1,
we recall the recently introduced notion of adhesive category due to Lack and the
second author [11]. Secondly, in section 1.2, we recall the notions of 2-categories
and cospan bicategories. Finally, section 1.3 recalls the definition of a reactive
system, which we generalise slightly so that we are able to consider a bicategory
as the underlying category of a reactive system. This section relies heavily on
technology previously introduced by the authors in [17] and [16]. The main result
of the paper, the construction of GRPOs for a class of reactive systems over cospan
bicategories, is stated and proved in section 2; sections 3.1 and 3.2 illustrate two
applications, respectively the derivation of ltss for DPO graph rewriting and the
construction of GRPOs for a variant of bigraphs.

1 Preliminaries

1.1 Adhesive categories

In order to construct GRPOs in cospan bicategories we shall need the notion of ad-
hesive categories [11], which we recall below. Adhesive categories have a slogan:
pushouts along monomorphisms exist and are well-behaved. We shall assume that
the underlying category of the cospan bicategory is adhesive and use the structure
of adhesive categories repeatedly in the proof of our main result, Theorem 2.1.

The definition of adhesive categories uses the notion of van Kampen square.

Definition 1.1 (van Kampen square).A van Kampen (VK) square(i) is a pushout
which satisfies the following condition: given a commutative cube (ii ) of which (i)
forms the bottom face and the back faces are pullbacks, the front faces are pull-
backs if and only if the top face is a pushout.

C f
��

??
?m

����
�

A
g ��

@@
@ B

n��~~
~

D

(i)

C′m′
vvmmmmmmm f ′

!!CC
c

��

A′

a

��

g′
!!DD

B′

b

��

n′
vvmmmmmmm

D′

d
��

Cm
lll

vvlll
f
!!DD

D

A
g ""DD
D B

nvvlllllll

D
(ii )

Definition 1.2 (Adhesive category).A categoryC is said to beadhesiveif it has
pullbacks, pushouts along monos, and these latter are VK-squares.
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Givenm : C → A andg : A → D, we say thatB is a pushout complement
of (m, g) when there existf : C → B andn : B → D such that the resulting
diamond (i) is a pushout diagram.

We shall need the following properties of adhesive categories for our construc-
tions. The proof of the following lemma can be found in [11].

Lemma 1.3. LetC be an adhesive category.

1. Monos are stable under pushout inC. In other words, in diagram (i), if m is
mono then n is mono.

2. A pushout diagram (i) inC is also a pullback diagram, if m is mono.

3. If it exists, a pushout complement of(m, g), with m mono, is unique up to
a compatible isomorphism; more precisely, if f: C → B, n : B → D and
f ′ : C → B′, n′ : B′ → D are pushout complements, then there exists an
isomorphismϕ : B→ B′ such thatϕ f = f ′ and n′ϕ = n.

The following simple lemma has not been published previously.

Lemma 1.4. Consider the following diagram in an adhesive categoryC. If the
outer region is a pushout, the right square is a pullback, and morphismsk, r, u and
w are mono, then the left square is a pushout.

A
l ��

// k // B
s��

// r // E
v��

C //
u

// D //
w

// F

Proof. The exterior pushout is stable under pullback alongw : D // // F , as illus-
trated below.

A

��

k
  @

@@
@@l

��~~
~~

~

C

��

u

��
@@

@@
@ A

k
  

@@
@@

@l
~~

��~~

B

�� ��
@@

@@
@

C

u ��
@@

@@
@ D

��   
@@

@@
@ B ��

r
@@

��
@@

B��
r
��

��

s
��~~

~~
~

D   

w   @
@@

@@
D��

w
��

E

v��~~
~~

~

F
�

Examples of adhesive categories includeSet, the category of sets and func-
tions, andGraph, the category of graphs and their morphisms. Toposes, as well as
slice and coslice categories over adhesive categories are adhesive. Indeed, several
graph structures relevant to computer science form adhesive categories (cf. [11]).
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1.2 2-categories and cospan bicategories

In this section we give only a minimal introduction to 2-categories and cospan bi-
categories. For an introductory treatment, the reader should refer to [14]. Roughly,
a 2-categoryC is a category where homsets (that is the collections of arrows be-
tween any pair of objects) are categories and, correspondingly, whose composition
maps are functors. Explicitly, a 2-categoryB consists of the following.

• A class ofobjectsdenotedX,Y,Z, . . .

• For anyX,Y ∈ C, a categoryC(X,Y). The objectsC(X,Y) are called1-
cells, or more often,arrowsor morphisms, and denoted byf : X → Y. Its
morphisms are called2-cells, are writtenα : f ⇒ g: X → Y, or sometimes
simply α : f ⇒ g. Composition inC(X,Y) is denoted by• and referred
to as ‘vertical’ composition. Identity 2-cells are denoted by 1f : f ⇒ f .
Isomorphic 2-cells are occasionally denoted asα : f � g;

• For any objectsX,Y,Z there is a functor. : C(Y,Z)×C(X,Y)→ C(X,Z), the
so-called ‘horizontal’ composition, which we shall often denote by mere
juxtaposition. On objects, the functor is just the ordinary composition in
the underlying “ordinary” category. On arrows, the functor provides a hori-
zontal composition of 2-cells; it is associative and admits 1idX as identities.

A bicategorycan be thought of, intuitively, as a 2-category where associativity
and identity laws of horizontal composition hold up to isomorphisms. We shall
denote all associativity isomorphisms byζ, as for example,ζ : h(g f) ⇒ (hg) f .
The isomorphisms are required to respect the well-known coherence axioms [15].

Cospan Bicategories. We will assumeC to be a category withchosen pushouts.
That is, for arrowsm : C → A and f : C → B, there exists a unique “chosen”
objectA +C B and arrowsi1 : A → A +C B and i2 : B → A +C B such that the
resulting square is a pushout. By the universality of pushouts, given any other
objectD and arrowsg : A→ D andn : B→ D which render the resulting square
a pushout, there exists a unique isomorphismα : A +C B→ D such thatαi1 = g
andαi2 = n. We shall adopt the convention ofalwayslabelling the morphisms into
the chosen pushout byi1 andi2; when considering more than one chosen pushout
we shall use the context in order to disambiguate.

The bicategory of cospans Cospan(C) has the same objects asC, but arrows
from I1 to I2 are cospans.

I1
f

// C I2
g

oo

We will denote such cospansCg
f : I1 → I2 or Cg:I2

f :I1
, and omit f (resp.g) whenI1

(resp.I2) is an initial object. We shall refer toI1 andI2 as the input and the output
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interfaces ofCg
f . Intuitively, we can think of a cospan as a generalised context,

whereC are the internals, (the image viag of) I2 represents the public view ofC,
and (the image viaf of) I1 the view ofC afforded to the ‘holes’ in it.

A 2-cell h: Cg
f ⇒ C′g

′
f ′ : I1 → I2 is an arrowh: C→ C′ in C satisfyingh f = f ′

andhg= g′. The 2-cells that are iso (i.e. invertible) provide a canonical notion of
“structural congruence.” We shall denote the bicategory of cospans which has the
2-cells limited to isomorphisms by Cospan� C. Given cospansCg

f : I1 → I2 and

Dg′
f ′ : I2 → I3, their compositionDg′

f ′ ◦ Cg
f : I1 → I3 is the cospan (C +I2 D)i2g′

i1 f :
I1 → I3, as illustrated by the pushout diagram below.

C +I2 D

I1
f
// C

i1 99

I2
g

oo
f ′

// D

i2ee

I3
g′
oo

Note that in the resulting composition,I2 is “forgotten.” Composition is associa-
tive up to a unique isomorphism. It is easy to check that the associativity isomor-
phisms satisfy the coherence axioms, and thus yield a bicategory

In the construction of 2 we shall need certain linearity restrictions. In particu-
lar, the notion of input-linear cospan.

Definition 1.5 (Linearity). A cospanCg
m is said to beinput-linear whenm is a

mono. A cospanCn
m is said to belinear when bothm andn are mono.

When working over an adhesive category, a simple corollary of the first part
of Lemma 1.3 is that the composition of two input-linear cospans yields an input-
linear cospan. Similarly, composition preserves linearity.

Definition 1.6 (Linear Cospans).Assuming thatC is adhesive, let ILC(C) be the
bicategory consisting of input-linear cospans and 2-isomorphisms. Similarly, let
LC(C) be the bicategory of linear cospans and 2-isomorphisms.

1.3 Reactive systems and GRPOs

Here we shall briefly recall an extension of Leifer and Milner’s notion of re-
active system to two dimensional categories as introduced by the authors previ-
ously [17]. In this paper we shall consider cospan bicategories with isomorphic
2-cells, and therefore, we shall be concerned with reactive systems over such bi-
categories.

The intuition behind the 2-dimensional structure is that, while arrows of the
underlying category are viewed as contexts, the (isomorphic) 2-cells are thought
of as “proofs of structural congruence” between contexts (recall that a 2-cellϕ :
a⇒ a′ : A→ B is an isomorphism when it is an isomorphism inC(A, B), that is,
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there exists a 2-cellψ : a′ ⇒ a such thatψ •ϕ = 1a andϕ •ψ = 1a′). Recall that
in the particular case of the bicategory Cospan�(Graph), the 2-cells are precisely
graph isomorphisms which respect the input and output interfaces.

Definition 1.7 (Reactive System).A reactive systemC consists of

1. a bicategoryB;

2. a collectionD of arrows ofB called thereactive contexts; it is required to
be closed under isomorphic 2-cells and composition-reflecting (see below);

3. a distinguished object 0∈ B;

4. a set ofreaction rulesR, it consists of pairs of arrows〈l, r〉 with domain 0.
The membersl, r of any given pair〈l, r〉 ∈ R have the same codomain.

The reactive contexts are those inside which evaluation may occur. To reflect
composition means thatdd′ ∈ D impliesd andd′ ∈ D, while the closure property
means that givend ∈ D and an isomorphismρ : d⇒ d′ in B impliesd′ ∈ D.

The reaction relation B is defined by takinga B dr if there is〈l, r〉 ∈ R,
d ∈ D andα : dl⇒ a. This represents that, up to structural congruenceα, a is the
left-hand sidel of a reduction rule in a reaction contextd.

Leifer and Milner [13] developed the derivation of a canonical lts associated
to any given reactive system. The derivation uses a universal construction, dubbed
relative-pushout (RPO), which is a pushout in a slice category. Bisimulation on the
resulting lts is a congruence, provided that the underlying category of the reactive
system has enough RPOs.

For category theorists, a groupoidal-relative-pushout (GRPO) can be described
concisely as a bipushout in a pseudo-slice category. We refer the reader to [17]
for a more accessible definition and fundamental properties. Note that although
GRPOs are introduced there in the setting of G-categories (2-categories with iso 2-
cells), the development is easily transferred to bicategories with iso 2-cells. Here
we give a brief sketch. Given a 2-cellα : ca⇒ db: I1 → I4, as illustrated in (i)
below, a candidate is a tupleC = 〈I5, e, f , g, β, γ, δ〉, as illustrated in (ii ) below, so
that the 2-cells paste together

I4

I2 α

c
=={{{{{{

I3

d
aaCCCCCC

I1

b

=={{{{{{a

aaCCCCCC

(i)

I4

I2 e //

c
=={{{{{{
I5

γ δ

β

g
OO

I3foo

d
aaCCCCCC

I1

b

=={{{{{{a

aaCCCCCC

(ii )

(taking into account the associativity isomorphisms) to giveα. It is a GRPO if it is
the smallest such candidate, in the following sense: given another such candidate
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C′ there exists a mediating morphismu : I5 → I ′5 and appropriate 2-cells which
make the two candidates compatible. Such a mediating morphism is required to be
essentially unique, meaning that given any other mediating morphismu′ : I5 → I ′5,
there exists a unique isomorphic 2-cellξ : u⇒ u′ which makes the two mediating
morphisms compatible.

Definition 1.8 (GIPO). Diagram (i) is said to be a G-idem-pushout (GIPO) if
〈I4, c, d, id, α, 1c, 1d〉 is its GRPO.

Definition 1.9 (LTS). For C a reactive system andB its underlying bicategory,
define GLTS(C) as follows:

• the states GLTS(C) are iso-classes of arrows with domain the chosen object
0 (two arrowsa, a′ : 0 → I1 are in the same iso-class when there exists
an isomorphic 2-cellϕ : a ⇒ a′). We shall denote the iso-class ofa as
[a] : 0→ I1;

• there is a transition [a] [ f ] I [dr] if there exists a 2-cellα, a rule〈l, r〉 ∈ R,
andd ∈ D, such that the diagram below is a GIPO.

I4

I2

f @@���
α I3

d^^>>>

0
a
__???

l

??���

(1)

Definition 1.10. A reactive systemC is said to haveredex-GRPOswhen every
redex-square (1), witha, f arbitrary,d a reactive context andl a part of a reaction
rule 〈l, r〉 ∈ R, has a GRPO.

The following is an extension of a theorem for 2-categories which can be found
in [17], the proof requires only slight modifications for the extension in generality.

Theorem 1.11.LetC be a reactive system with redex-GRPOs. Then bisimulation
on GLTS(C) is a congruence with respect to all the contexts ofC.

Theorem 1.11 is quite robust with respect to the equivalence under consider-
ation. For example, trace and failures equivalences on GLTS(C) are also congru-
ences. Therefore, the derived lts may be considered as very well-behaved.

2 Constructing GRPOs for input linear cospans

In this section we present a general construction of GRPOs for a class of reactive
systems over cospan bicategories. We shall conclude with several examples of
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GRPOs in the bicategory ILC(Graph), the bicategory of input-linear cospans in
the category of directed graphs.

Formally, letC be an adhesive category. We shall prove that ILC(C) has GR-
POs. This implies that any reactive system over ILC(C) has redex-GRPOs and
therefore can be given a canonical labelled transition system semantics.

Theorem 2.1. ILC(C) has GRPOs.

We shall first outline an algorithm for the construction of the desired minimal
candidate. A redex square in ILC(C), as illustrated in diagram (i) below, amounts
to a commutative diagram (ii ) in C, with α an isomorphism. We shall adopt the
convention of ///o/o representing the isomorphisms ofC which correspond to the
2-cells of ILC(C).

I4

I2 α

C @@���
I3

D^^>>>

I1
A

^^>>>
B

@@���

(i)

C
i2��

I4
oCoo

oD // D
i2 ��

I2
::

ιC
::uuuuuu

oA $$I
IIIII A+I2 C α ///o/o/o/o B+I3 D I3

oBzzuuuuuu
dd

ιD
ddIIIIII

A
OO
i1
OO

I1
//
ιB

//oo
ιA

oo

(ii )
B
OO

i1
OO

Recall that given an objectX, a subobject [µ : Y → X] is an equivalence class
of monomorphisms intoX, where the equivalence relation is generated from the
canonical preorder on monomorphisms intoX: µ ≤ µ′ if there existsk : Y → Y′

such thatµ′k = µ. We shall abuse notation by confusing the subobject (equiva-
lence classes of monos) with its representativeµ (one mono).

In the following, we letX = B +I3 D andY = A ∪ B, a subobject ofX. We
obtainµ : Y→ X, ε1 : A→ Y andε2 : B→ Y satisfyingµε1 = αi1 andµε2 = i1.

Algorithm 2.2 (GRPO Construction in ILC(C)). The construction of the com-
ponents of the minimal candidate is outlined below. They are illustrated in dia-
grams (iii ) and (iv). We obtain the components by constructing:

1. G as the pullback ofαi2 : C→ X andi2 : D→ X;

2. E as the pullback ofµ : Y→ X andαi2 : C→ X;

3. F as the pullback ofµ : Y→ X andi2 : D→ X;

4. I5 as the pullback ofρ2 : F → D andπ2 : G → D; Notice that due to the
properties of pullbacks, we obtain a morphismoE : I5 → E such that all the
faces of (iv) are pullbacks.

Proof. We give an outline of the proof in two parts. Firstly, we show that the
components constructed in Algorithm 2.2 are a candidate, secondly, we show that
the candidate is universal.
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Construction of candidate.

I4

I2

C
=={{{{{{

E // I5

γ δ

β

G
OO

I3Foo

D
aaCCCCCC

I1

A

aaCCCCCC B

=={{{{{{

(iii )

I5oE

wwoooooo �� ιG
��

??oF

��

E

σ1

��

�� ρ1
��

?? G

π2

��

π1wwnnnnnn

C
αi2

��

Fσ2 oo
wwoooo

  ρ2
  

AA

Y ��

µ
��

@@ D
i2wwnnnnnn

X
(iv)

Construct the cube (iv), by taking pullbacks as explained in Algorithm 2.2. The
exterior rectangles of diagrams (v) and (vi) are pushouts (dia. (ii )), and therefore,
commutative.

I2
99

ιC
%%

// ιE //

oA ��

E
(†)σ1 ��

// ρ1 // C
αi2��

A //
ε1

// Y //
µ

//

(v)

X

I3
99

ιD
%%

// ιF //

oB ��

F
(‡)σ2 ��

// ρ2 // D
i2��

B //
ε2

// Y //
µ

//

(vi)

X

Using the pullback property, we obtainιE : I2 → E satisfyingσ1ιE = i1oA and
ρ1ιE = ιC. Similarly, we obtainιF : I3 → F which satisfies analogous equations.
We can now use Lemma 1.4 to conclude that the left hand squares of diagrams (v)
and (vi) are pushouts, which in turn implies that (†) and (‡) are pushouts, using
ordinary pushout pasting.

Since all the side faces of (iv) are pullbacks and the bottom face is a pushout,
we can conclude by adhesiveness that the top face is a pushout. Similarly, the front
left face being a pushout implies that the back right face is a pushout. Using the
fact thatG was defined as a pullback, we obtain a unique morphismoG : I4 → G
such thatπ1oG = oC andπ2oG = oD. We summarise the parts of the candidate
constructed so far in diagram (vii), below.

I4oC

��
oG��

oD

��

C G
π1oo

π2 // D

I2
//
ιE
//

HH

ιC 66

E
OO

ρ1
OO

I5

(vii)
oE

oo
oF

//
OO ιG
OO

F
OO
ρ2
OO

I3
oo

ιF
oo

VV

ιDii

Let E +I5 G denote the chosen pushout ofoE andιG and letγ : C → E +I5 G
be the unique induced isomorphism. Similarly, we obtain a unique isomorphism
δ : F +I5 G → D. Referring back to diagrams (iv) and (v), we haveA +I2 E �
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Y � B +I3 F. Let β : A +I2 E → B +I3 F denote the unique compatible isomor-
phism. The isomorphisms are illustrated in diagram (viii ) as arrows ofC, and as
2-cells of ILC(C) in diagram (iii ). It is straightforward but tedious to check that
δB •Gβ • γA = α in ILC(C).

C
γ
// E +I5 G G //oo F +I5 G δ // D

I2

ιC
OO

oA ��

ιE // E

OO

��

I5

ιG
OO

oEoo oF // F

OO

��

I3

ιD
OO

oB��

ιR3oo

A // A+I2 E
β

///o/o/o/o

(viii )

B+I3 F Boo

I4

I2

C
??�����

E′ // I6

γ′ δ′

β′

G′
OO

I3F′oo

D
__>>>>>

I1

A

__>>>>> B

??�����

(ix)

Universality. Suppose that there is another candidate, as illustrated in diagram
(ix). Lettingπ′1 = γ

′−1i2 : G′ → C andπ2
′ = δ′i2 : G′ → D and using the fact that

G is a pullback object, we get an arrowλ : G′ → G such thatπ1λ = π
′
1 : G′ → C

andπ2λ = π
′
2 : G′ → C. Consider diagram (x) below, whereT denotesB+I3 F′.

We have an isomorphism (B+I3δ
′)ζ : T+I6G

′ → X, Letη : T → X andθ : G′ → X
denote the corresponding morphisms derived by precomposing withi1 andi2.

E′ β′i2
  

@@@
@ F′i2

~~~~~
~

I2

>>

ιE′ >>~~~~

oA   
AA

AA
T I3

``

ι′F``AAAA

oB~~}}
}}

A
>>
β′i1

>>~~~~

(x)
B
``

i1

``@@@@

I6oT

����
�   ιG′

  
AAA

A

T ��

η ��
??

? G′

θ~~|||
|

X
(xi)

Let µ′ : Y→ T be the arrow induced byβ′i1 andi1 in diagram (x). One can verify
thatηµ′ = µ.

In diagram (xii) below, we letρ′1 denoteγ′−1i1, while in diagram (xiii ) let
ρ′2 = δ′i1. Consider diagram (xii) again, and note that regions (†) and (†) + (‡)
are pushouts. Hence, (‡) is a pushout and, using the second part of Lemma 1.3,
a pullback. Thus there exists a morphismν1 : E → E′ such thatρ′1ν1 = ρ1 and
β′i2ν1 = µ

′σ1. A similar chain of reasoning involving diagram (xiii ) allows us to
derive the existence ofν2 : F → F′ which satisfiesρ′2ν2 = ρ2 andi2ν2 = µ

′σ2.
One can now deduce that the leftmost squares in the two diagrams are pull-

backs, and therefore, thatν1 andν2 are both mono, since they are pullbacks of
monoµ′ along, respectively,β′i2 andi2.

I6
(†)oE′ ��

//
ιG′ // G′

π′1��

E
σ1 ��

//
ν1 // E′
β′i2 �� (‡)

// ρ′1 // C
αi2��

Y //

µ′
// T //

η
// X

(xii)

I6
oF′ ��

//
ιG′ // G′

π′2��

F
σ2 ��

//
ν2 // F′

i2 ��

// ρ′2 // D
i2��

Y //

µ′
// T //

η
// X

(xiii )

13



In diagram (xiv), H and morphismsκ1, κ2 andχ are chosen so that the two rear
faces are pullbacks. One could do this, e.g., by first taking the pullback ofπ2 and
ρ′2 and obtainingκ1 from the pullback property of the front left face.

Hκ1

vvnnnnnn κ2
!!CC��

χ

��

E′��

ρ′1

��

β′i2
  B

B F′��

ρ′2

��

i2vvnnnnnn

T��
η

��

G
π1 nnn
wwnnn

π2
!!C

C

C
αi2

  B
B D

i2vvnnnnnn

X
(xiv)

One may considerH as the mediating morphism fromI5 to I6. Indeed, in dia-
grams (xv), (xvi) and we use adhesiveness in order to deduce that the top faces are
pushouts.

I5oE

wwnnnnnnn �� ιH
��

@@��

��

E��

��

  ν1
  B

B H��

χ

��

κ1
vvnnnnnn

E′��
ρ′1

��

I5
oE nnn
wwnnn

��
ιG

��
??

E   

ρ1
  B

B G
π1vvnnnnnn

C
(xv)

I5vvιH
vvnnnnnnn oF

��
??��

��

H��

χ

��

κ2
!!CC

F��

��

vvν2
vvnnnnnn

F′��
ρ′2

��

I5vv
ιG nnn
vvnnn

oF

��
>>

G
π2

!!C
C Fvv

ρ2vvnnnnnn

D
(xvi)

Because the top face of diagram (xiv) is a pullback, we obtain a unique mor-
phismoH : I6 → H such thatκ1oH = oE′ andκ2oH = oF′ .

We shall show that diagram

I6

oH
��

//
ιG′ // G′

λ
��

H //
χ

// G

(xvii)

I6

(∗)oH
��

//
ιG′ // G′

w
��

H
κ1

��







κ2 !!CC

//
v

// U u2
!!C

C

u1����
��
��

F′





��




// // D

��









E′
!!C

C
// // C

""DD
D

T //
η

// X

(xviii)

Hκ1

vvnnnnnn !! v
!!C

C��
κ2

��

E′��

��

  
  

BB
U��

u2

��

u1
vvmmmmmmm

C��

��

F′nnn
vvnnn

!!
!!C

C

T !!

η !!B
B D

vvmmmmmmm

X
(xix)

is a pushout. First notice that it is commutative, we haveπ1χoH = ρ′1κ1oH =

ρ′1oE′ = π′1ιG′ = π1λιG′ and similarlyπ2χoH = ρ′2κ2oH = ρ′2oF′ = π′2ι
′
G = π2λιG′

14



which implies thatχoH = λιG′ , using the fact that the bottom face of diagram (xiv)
is a pullback.

We shall now construct diagram (xviii). We start by taking the pushout (∗).
Now since region (†) of diagram (xii) is a pushout, there exists a unique mor-
phismu1 : U → C such thatu1w = π′1 andu1v = ρ′1κ1. Similarly, using the fact
that the corresponding region of diagram (xiii ) is a pushout, there exists a unique
morphismu2 : U → D such thatu2w = π′2 andu2v = ρ′2κ2. Using the stan-
dard decomposition property of pushouts, the two newly constructed regions are
pushouts. The two lower regions of diagram (xviii) are the pushouts which appear
as the two front faces of diagram (xiv). The left face of the cube is the top face
of (xiv) which is a pullback. Spinning the cube around into diagram (xix) we use
the fact that the bottom and top faces are pushouts, and the back faces pullbacks
to deduce that the front right face is a pullback.

Since also the bottom face of diagram (xiv) is a pullback, we obtain a unique
isomorphismζ : G → U such thatu1ζ = π1 andu2ζ = π2. As we have assumed
that (∗) is a pushout, to prove that diagram (xvii) is a pushout it remains to show
thatζλ = w andζχ = v.

Indeedu1ζλ = π1λ = π′1 = u1w andu2ζλ = π2λ = π′2 = u2w which implies
thatζλ = w. Also u1ζχ = π1χ = ρ

′
1κ1 = u1v andu2ζχ = π2χ = ρ

′
2κ2 = u2v which

implies thatζχ = v.
Let ϕ : E′ → E +I5 H, ψ : F +I5 H → F′ andτ : H +I6 G′ → G be the unique

induced isomorphisms. It can be verified thatτE •G′ϕ • γ′ = γ, δ′ •G′ψ • τF = δ
andψB •Hβ •ϕA = β′ in ILC(C).

Essential uniqueness ofH : I5 → I6 can be shown by using the third part of
Lemma 1.3, applied to diagram (xvii), we omit the details here. �

Notice that we can give a simplified presentation of the construction of the
minimal candidate if we assume that all the cospans are linear.

Algorithm 2.3 (GRPO Construction in LC(C)). When all the morphisms in di-
agram (ii ) are mono, constructing the pullback amounts to computing the inter-
section of subobjects ofX. Indeed, we let:

1. G = C ∩ D;

2. E = Y∩C;

3. F = Y∩ D;

4. I5 = F ∩G = F ∩ E = E ∩G.

In the simple examples below, meant to illustrate the application of Algo-
rithm 2.2, we shall consider ILC(Graph) as our category of contexts. In the ac-
companying Figures 2–4, we label the nodes of the graphs in order to clarify the
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p

a

b // c

a
OO

c

a
??��

a b c a c

d

b

AA��
c
OO

a
@@��

d

b

AA��
// c

OO

a
OO

d

d

b

AA��
c
OO

a

a b c

b c

a
@@��

b // c

a
OO

ιA ιB

oA oB

ιC ιD

oC oD

oG

ιG

oE

ιE ιF

oF

c

Figure 2: GRPO in LC(Graph)

p

∅

a
c

a
??��

a1 a2 a

b c

a1

OO

a2

OO b

a
OO

b

b

a1

OO

a2

a1 a2

c

a1 a2

OO a

ιA ιB

oA oB

ιC ιD

oC oD

oG

ιG

oE

ιE ιF

oF

c

Figure 3: GRPO in ILC(Graph)

p

∅

a
��

b

d

a
OO

a1 a2 a1 a2

c d

a1

OO

a2

OO

c

a1

OO

a2
��

b

∅

c

a1,1

OO

a1,2 a2,1 a2,2

a1,1 a1,2 a2,1 a2,2

d

a1 a2

OO
a1 a2

��

b

ιA ιB

oA oB

ιC ιD

oC oD
oG

ιG

oE

ιE ιF

oF

c

Figure 4: GRPO in ILC(Graph)
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action of various graph morphisms, which we leave unlabelled. We also do not
draw the 2-cells as the labelling on the nodes makes these clear. We shall make
reference to the directed graphs below.

X1 =

d

b //

=={{{
c
OO

a
<<yyy

OO
X2 =

b c

a

OO @@���� X3 =

c d

a
bbEEE OO

��

b

Example 2.4. GraphX1 can be decomposed as illustrated by the exterior of Fig-
ure 2. Here, all the graph morphisms are injective. The reader may wish to go
through the steps of Algorithm 2.2 to construct the GRPO is this particular case,
it is illustrated in the interior of Figure 2.

Example 2.5.GraphX2 can be broken up as illustrated by the exterior of Figure 3.
Notice thatoA is not injective. The GRPO is illustrated in the interior of Figure 3.

Example 2.6.We illustrate a GRPO for a partition ofX3 in Figure 4. Notice that
here bothoA andoB are not injective.

3 Applications

In this section we shall introduce two immediate applications of our construction
of GRPOs in input linear cospan bicategories.

First, after a brief review of the theory of double-pushout graph rewriting, we
shall show that we may use the construction to derive congruences for graphs
enriched with an output interface. Graph contexts here are input-linear cospans of
graphs. The labelled transition system derived using our technology admits labels
which are the smallest contexts which allow a double-pushout rewrite. The results
in this section are closely related to rewriting via borrowed contexts due to Ehrig
and König [5]. In particular, in Theorem 3.10 we show that the labelled transition
systems are essentially the same, the difference being that the nodes and labels of
our transition system are quotiented by isomorphism.

Our results both shed light and extend rewriting via borrowed contexts. Firstly,
because borrowed contexts correspond to GIPOs, they satisfy a universal property.
Secondly, we show that borrowed contexts fall within the framework of reactive
systems [13, 17, 16] and therefore the various congruence properties and con-
structions carry over. In particular, Ehrig and K¨onig’s congruence theorem can
be seen as an application of the congruence theorem for reactive systems (The-
orem 1.11). Finally, due to the generality of Theorem 2.1, we relax some of the
technical conditions imposed by Ehrig and K¨onig and introduce the notion of ex-
tended borrowed contexts (Definition 3.12).
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Our second application concerns Milner’s theory of bigraphs [9]. We show
how bigraphs can be represented by a cospan bicategory over an adhesive cate-
gory. As a consequence, we derive labelled transition systems for reactive sys-
tems over an input-linear variant of bigraphs. Such variant is incomparable to
Milner’s, as our formalism allows bigraphs not allowed in Milner’s approach, and
vice-versa. It appears that a closer correspondence to Milner’s theory would be
achieved by considering an output-linear variant. It is, therefore, an interesting
line of future work whether one could derive a general construction of GRPOs for
an interesting and general class of output-linear cospan bicategories.

Another consequence of representing bigraphs by cospans is that because of
the close correspondence between double-pushout rewriting systems and reac-
tive systems over cospan bicategories demonstrated by Lemma 3.5, one can view
bigraphical reactive systems as certain double-pushout rewriting systems. In par-
ticular, this could mean that some of the theory and technology developed for the
latter can perhaps be applied successfully to the former.

3.1 Double-pushout rewriting and borrowed contexts

Double-pushout (DPO) graph rewriting is a well known, widely studied topic [2].
Introduced in [6], it has recently been generalised in [3, 11, 4]. We shall describe
a variant of DPO-graph rewriting, working at the level of an arbitrary adhesive
categoryC. The reader may of course, safely substitute the adhesive category
Graph of graphs and graph homomorphisms forC. We start by relating DPO
rewriting and reactive systems.

Definition 3.1 (Rewrite Rule). A rewrite rulep is a span

L K
loo r // R (2)

in C. Observe that wedo notassume that eitherl or r are mono.

HereL andR represent respectively the left and right-hand side of the rule,
while K is the context, which remains unaffected by the rewrite. A redex in an
object C is identified by matching a rule’s left-hand side, which is done via a
morphismf : L→ C.

Definition 3.2 (Adhesive Grammar). An adhesive grammarG is a pair〈C,P〉
whereC is an adhesive category andP is a set of arbitrary rewrite rules.

Definition 3.3 (Rewrite Rule Application). ObjectC rewrites toD with rule p,
in symbolsC Ip, f D, if there exist an objectE and morphisms so that the two
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squares in the following diagram are pushouts.

L
f
��

K
g
��

loo r // R
h��

C Ev
oo

w
// D

(3)

We shall writeC I D if there existp ∈ P and f : L → C such thatC Ip, f

D.

Proposition 3.4. An adhesive grammar can be seen as a reactive system on the
category Cospan(C). Let 0 denote the empty graph, and the setR contain for each
rewrite rulep as in (2), a pair

〈
0→ L

l←− K, 0→ R
r←− K
〉
.

We choose all arrows of Cospan(C) be reactive. Let B denote the resulting
reaction relation.

It is useful to point out that the process described in Proposition 3.4 can be re-
versed. Starting with a reactive system over a cospan category overC with chosen
object the initial object 0∈ C, one can obtain a double-pushout rewriting system

by adding a rewrite ruleL K
loo r // R for every

〈
0 // L K

loo , 0 // R K
roo
〉
∈ R.

It turns out that these “encodings” are actually very well behaved. In this section
we shall present Lemma 3.5 which shows that the DPO rewrite relation is exactly
the reactive system reaction relation when it makes sense to compare them. The
main result of this section, Theorem 3.10 makes the correspondence even stronger
by relating the operational theories developed for the two approaches. Indeed, we
shall show that it is equivalent to consider GIPOs in reactive systems over cospans
on the one hand and Ehrig and K¨onig’s borrowed contexts on the other.

The following lemma is similar to a previously published result (cf. [7]) and
can be considered folklore. As well as being simple to prove, it is a relatively little-
known result; it is therefore worthwhile to state and prove it here. It is crucial for
us because it serves as a foundation for relating the theory of DPO rewriting and
the theory of reactive systems.

We use the shorthandC B D to mean thatC andD are cospans with empty
input and output contexts.

Lemma 3.5. C I D iff C B D.

Proof. If C B D thenC � Eg ◦ Ll andD � Eg ◦ Rr , which is equivalent to
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requiring that the two squares below are pushouts.

0
!��

C E
voo w // D

0
! // L

f
OO

K
g
OO

l
oo

r
// R

h
OO

0
!oo

This meansC I D, since the middle part of the diagram is a DPO rewrite as
in (3). Note that the output interface ofC andD is actually arbitrary, as long as it
factors throughE. �

The equivalence exhibited by Lemma 3.5 between the rewrite relation in a
DPO rewriting system and the reaction relation of a reactive system over a cospan
bicategory is a bridge which relates the two theories.

This may be compared with an easy lemma about term rewriting. In a ground
term rewriting system over a signatureΣ, one usually defines the rewrite relation
as follows: a termc rewrites tod, writtenc I d, if one can findl as a subterm
of c, and replace it withr. On the other hand, one may recast such a term rewriting
system as a reactive system over the free linear Lawvere theoryCΣ [17]. In CΣ,
the objects are natural numbers, while arrowsm→ n aren-tuples of terms built
up from Σ which contain exactly one occurrence each ofm ordered variables.
Composition in this category is substitution of terms, done in the obvious way.
The reaction rulesR consist of pairs〈l, r〉, wherel, r : 0→ 1 are respectively the
left and the right hand sides of a rewrite rule. One then defines the rewrite relation
as follows:c B d if c = c′ ◦ l, d = c′ ◦ r and〈l, r〉 ∈ R. In other words, the
reaction rules are closed under all linear contexts. It is easy to show thatc I d
if and only if c B d.

Indeed, Lemma 3.5 implies that the reactive systems on Cospan(C) with all
cospans reactive include all DPO rewriting systems overC.

Lts Semantics for DPO Rewriting Systems. In order to apply Theorem 2.1, we
restrict to graph rewriting systems corresponding to bicategories of input-linear
cospans.

The following notion, which we shall refer to as input-linear rewrite rule ap-
plication is sometimes referred to in graph rewriting literature as rewriting with
injective matching.

Definition 3.6 (Input-Linear Rewrite Application). ObjectC rewrites toD with
rule p input-linearly, in symbolsC Iil

p, f D, if C Ip, f D and in additionf , g
andh of (3) are mono.
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Definition 3.7. ForG = 〈C,P〉 an adhesive grammar with an input-linear rewrite
relation Iil , we construct a reactive systemC over the bicategory of input-
linear cospans ILC(C) using the translation of Proposition 3.4.

Lemma 3.5 clearly specialises to double-pushout rewriting systems and reac-
tive systems over input-linear cospan bicategories.

Proposition 3.8. Suppose thatC is adhesive and consider an arbitrary adhesive
grammarG, and letC be the corresponding reactive system over aninput-linear
cospan bicategory. Let B denote the reaction relation inC. Then

C Iil
p, f D iff C B D.

We are now ready to examine the operational theory derived using GRPOs.
Let LTS(G) be GLTS(C) (cf. Definition 1.9). Using the congruence theorem
(Theorem 1.11) for bisimulation on labelled transition systems generated by GI-
POs [17], we obtain the following.

Corollary 3.9. Bisimulation onLTS(G) is a congruence.

A rewrite rule (2) is calledlinear when bothl andr are mono. If we restrict our
view to DPO-rewriting systems with linear rewrite rules and input-linear rewrites
then we are in a position to compare the resulting lts with recent work due to Ehrig
and König, called rewriting with borrowed contexts [5]. Remarkably, we derive
the same labelled transition systems, modulo quotienting the transitions obtained
in the borrowed-contexts approach by isomorphism, as we explain below.

Precisely, given an adhesive grammarG = 〈C,P〉, whereP consists of linear
rewrite rules, let RBC(G) be the lts derived via rewriting with borrowed contexts.
(We refer to reader to [5] for the details of such construction, which cannot be
spelt out here.)

Theorem 3.10.There is a transition[GoG:I2]
[F

oF :I5
ιF :I2

]
I [HoH :I5] in LTS(G) if and only

if there is a transition GoG:I2
F

oF :I5
ιF :I2I HoH :I5 in RBC(G).

Proof. (1) From GIPOs to Borrowed Contexts:

Suppose that [GoG]
[F

oF
ιF

]
I [HoH ] in LTS(G). thenFoF

ιF must be a part of an
GIPO diagram. Since every GIPO can be constructed as a GRPO, we have a
redex diagram

I4

I2

F′
=={{{{{{

F // I5

γ δ

β

G
OO

I3Coo

C′
aaCCCCCC

0
G

aaCCCCCC L

=={{{{{{
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as the outside of the diagram, with〈LoL ,RoR〉 being a reaction rule, corresponding
via the translation of Lemma 3.5 to the rewrite rule

L I3
oLoo

oR // R.

The candidate〈I5, F,C,G, β, γ, δ〉 illustrated above is the GRPO obtained via the
construction of Algorithm 2.2.

We also haveHoH � CoC
iC
◦ RoR, which means that the diagram (i) below is a

pushout

I3
oR //

��

iC
��

R��
θ1
��

C
θ2

// H

(i)

with oH : I5 → H equal toθ2 ◦ oC.
Recall that from the construction, we have that

G∩ L // //

��

G��
ε1
��

L //
ε2

// Y

(ii )

I5
oF //

oC
��

F
σ1
��

C σ2
// Y

(iii )

I2

oG
��

//
iF // F

σ1
��

G //
ε1

// Y

(iv)

I3

oL
��

//
iC // C

σ2
��

L //
ε2

// Y

(v)

diagram (ii ) is a pushout, diagram (iii ) is a pullback, diagrams (iv) and (v) are
pushouts.

Notice that in diagrams (i) to (v) we have indicated which morphisms are
assumed to be mono in the construction of Algorithm 2.2. While Ehrig and K¨onig
assume that all morphisms are mono, it shall be useful for us here to indicate only
the necessary ones as we shall use the extra generality to extend the notion of
borrowed context in Definition 3.12.

We can construct the following diagram from the five diagrams above:

G∩ L��

ε′2
��

//
ε′1 // L��

ε2
��

I3��
ιC
��

oLoo
oR // R��

θ1
��

G // ε1 // Y Cσ2oo θ2 // H

I2

oG

OO

//
ιF

// F

σ1

OO

I5

oC

OO

oF
oo

This is exactly the definition ofFoF
ιF constituting a borrowed context forGoG, ie.

GoG
F

oF
ιF I HoH in RBC(G).
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(2) From Borrowed Contexts to GIPOsIn this section of the proof we shall use the
notation from [5]. We shall also followloc. cit. in assuming that all morphisms
are mono. Given a borrowed context diagram (vi) below,

D
(1)

��

// L
(2)ε2

��

I
(3)ιC

��

loo r // R
θ1
��

G
(4)

ε1 // G+

(5)

Cσ2oo θ2 // H

J

oG

OO

ιF
// F

σ1

OO

K

oC

OO

oF
oo

(vi)

we shall show that one may construct a GIPO. First recall that a commutative
diagram (vi) is a borrowed context diagram when squares (1), (2), (3) and (4) are
pushouts, while square (5) is a pullback.

Indeed, consider the redex diagram (vii)

K

J α

F
==zzzzzz

I

C
aaCCCCCC

0
G

aaCCCCCC L

=={{{{{{

(vii)

KoF

uullllllll
  AAoC

��

F

σ1

��

##G
GG K

oC

��

oFvvmmmmmmm

F
σ1

��

Cll
uullll

σ2
  

@@

G+
##FF

C
σ2vvnnnnnn

G+

(viii )

and assume without loss of generality thatL +I C = G+. Let α : F +J G → G+

be the unique isomorphism such thatαi i = σ1 : F → G+ andαi2 = ε1 : G→ G+.
Note that the isomorphism exists because square (4) in diagram (vi) is a pushout.

Since square (1) of diagram (vi) is a pushout of monos and we are in an adhe-
sive category, it is also a pullback. This implies thatL∪G = G+, because in adhe-
sive categories one forms unions of subobjects by forming the pushout of their in-
tersection. The central cube diagram from the construction of GRPOs is illustrated
in (viii ); in the construction we use only the fact that square (5) of diagram (vi)
is a pullback. Thus, the GRPO of the redex square (vii) is 〈K, F,C, id, id, id, α〉,
meaning that it is a GIPO. �

We say that two graphsAoA:I and A′oA′ :I with the same output interface are
equivalent when there exists an isomorphismϕ : A → A′ such thatϕoA = oA′.
Similarly, we say that two transitions fromAoA:I to BoB:J, with labelsCoC:J

ιC:I and

C′oC′ :J
ιC′ :I , respectively, are equivalent when there exists an isomorphismψ : C→ C′

with ψιC = ιC′ andψoC = oC′ .
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Let RBC�(G) be the lts whose nodes are equivalence classes of the nodes of
RBC(G) and whose transitions are equivalence classes of transitions of RBC(G).
The following corollary is a straightforward consequence of Theorem 3.10.

Corollary 3.11. RBC�(G) = LTS(G).

The results of this section can be seen from two different perspectives. From
the point of view of reactive systems, the borrowed context conditions of Ehrig
and König, once extended by allowing the appropriate morphisms to be non-
mono, can be seen as being an elegant and simple characterisation of GIPOs in
a input-linear cospan bicategory. On the other hand, the results of this section
show that borrowed contexts satisfy a universal property. This means that the
congruence theorem for bisimilarity of Ehrig and K¨onig can actually be seen as a
special case of Theorem 1.11. Similarly, other results and technology developed
for reactive systems transfers to the setting of borrowed contexts, this includes
the congruence theorems for equivalences other than bisimilarity as well as the
elegant technique for deriving “weak” transition systems (in the sense of weak
bisimilarity) developed by Jensen in his upcoming PhD thesis [8].

We end this section with an extension of borrowed contexts suggested by the
linearity conditions imposed in the construction of Algorithm 2.2.

Definition 3.12 (Extended Borrowed Contexts).Given an adhesive grammar
G = 〈C,P〉 with anarbitrary set of rulesP, we shall construct a labelled transition
system with:

1. Nodes: Graphs with output interfaces,J
oG−→ G whereoG is arbitrary;

2. Transitions: Cospans of graphsJ
ιF−→ F

oF←− K whereιF is mono andoF is
arbitrary.

We derive a transition [GoG]
[F

oF
ιF

]
I [HoH ] if there exists a commutative diagram

as illustrated below, where

D
(1)

��

��

// // L
(2)

��

ε2
��

I
(3)

��

ιC
��

loo r // R��
θ1
��

G
(4)

// ε1 // G+

(5)

Cσ2oo θ2 // H

J

oG

OO

//
ιF

// F

σ1

OO

K

oC

OO

oF
oo

(1), (2), (3) and (4) are pushouts, while square (5) is a pullback. The indicated
morphisms are assumed to be mono, the others are arbitrary.
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As a corollary of the translation between borrowed contexts and GIPOs of
Theorem 3.10 and the congruence Theorem 1.11, we have the following.

Corollary 3.13. Bisimulation on the labelled transition system resulting from
Definition 3.12 is a congruence with respect to arbitrary input-linear graph con-
texts, that is cospans

J
ιF−→ F

oF←− K

whereιF is mono andoF is arbitrary.

3.2 Bigraphs as cospans

Bigraphs were introduced by Milner to model dynamic systems with independent
locality and connectivity structures (cf. [9] for a comprehensive exposition), and
have been used by Jensen and Milner [10] to model and derive an lts for the
asynchronousπ-calculus.

In this section, we recast the notion of bigraph in our approach, and obtain
structures very similar to Milner’s. Although we briefly discuss the differences
between our product and Milner’s bigraphs, we remark that a perfect match is not
our objective. Rather, we aim at demonstrating that algebraic constructs relevant
to the semantics of mobility and communication fall naturally within the realm
of cospan bicategories over adhesive categories. To that end, we introduce the
adhesive category of place-link graphs, which can be considered “bigraphs with-
out interfaces.” Interfaces will then be added when we consider the bicategory of
cospans over the category of place-link graphs. We do not develop the notions of
width, inactive sites, nor parametric reaction rules, which do not seem to have an
effect on the actual construction of GRPOs for bigraphs. The construction shall
be given by Algorithm 2.2.

We define aplace-graphto be a directed graph with nodes labelled over an
alphabetΣ. Additionally, there is an arity functionar : Σ → N (the natural num-
bers), and place-graph morphisms are directed graph morphisms which preserve
node labelling. The intuition is that the elements ofΣ are (names of) controls,
each equipped with an ordered set of ports. The connectivity of each control is
determined by the number of its ports. For a place-graphG with node-setV and la-
belling functionl : V → Σ, we denote theith port ofvbyvi, where 0≤ i < ar(l(v)).
One can construct the totalset of ports of Gby taking the disjoint union:

P =
∑
v∈V
{ vi | 0 ≤ i < ar(l(v)) }.

Definition 3.14 (Place-Link Graphs). A place-link (pl) graph is a place-graphG
over a set of controlsΣ together with a setS and a link mapl : P→ S, whereP is
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Figure 5: Typical place-link graph

the set of ports ofG. A place-link morphism〈 f0, f1, f2〉 : G→ G′ is a place-graph
morphism〈 f0, f1〉 together with a functionf2 : S→ S′ such thatl′ fp = f2l, where
fp : P→ P′ is the morphism sendingvi to f0(v)i . Let PLGraphΣ be the category
of pl-graphs and pl-graph morphisms over a set of controlsΣ.

The intuition is thatS is the set of equivalence classes of ports inG. When
two ports are in the same equivalence class (that is they map to the same element
of S), we say that they are connected. Figure 5 illustrates a typical place-link
graph with two kind of controls –A andB, respectively with three and two ports –
where directed arcs represent the place structure, and the undirected ones are the
elements ofS.

It is easy to construct for eachΣ a categoryXΣ so thatPLGraphΣ � SetXΣ, in
other words,PLGraphΣ is a presheaf category and, as such, adhesive.

Definition 3.15 (PL-Graphs with Interfaces). We refer to Cospan�(PLGraphΣ)
as the bicategory of pl-graphs with interfaces. Restricting to input-linear cospans,
we obtain the bicategory ILC(PLGraphΣ).

Corollary 3.16. ILC(PLGraphΣ) has GRPOs, calculated using Algorithm 2.2.

There are two aspects of our bicategory of pl-graphs with interfaces which
generalise the theory of bigraphs. Firstly, the theory of bigraphs one tradition-
ally considers only “discrete” interfaces, i.e., discrete place-graphs (which can be
seen as strings over the alphabetΣ) together withname sets(cf. Definition 3.17).
Secondly, place graphs are usually forests of trees, and their input (resp. output)
interfaces reach only leaves (resp. roots). Fortunately, we can apply the necessary
restrictions and still be able to perform the construction of Algorithm 2.2.

Definition 3.17 (Discrete PL-Graph). A discrete pl-graph〈m,X〉, wherem is a
finite ordinal labelled overΣ andX is a finiteset of names, is a pl-graph withmas
its set of nodes and no edges. Its link map is the injectionP→ P + X, for P the
set of ports ofm.

Let TPLGraph Σ be the full subcategory ofPLGraphΣ consisting of pl-graphs
with forests of trees as place-graphs.
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Definition 3.18 (Bicategory of Bigraphs).The bicategory of bigraphsBigraphΣ
over a set of controlsΣ has:

• Objects: Discrete pl-graphs〈m,X〉;
• Arrows: Input-linear cospans〈m,X〉 // // G 〈n,Y〉oo with G ∈ TPLGraph Σ;

additionally, the left interface must reach only the leaves ofG while the right
interface must reach only the roots ofG;

• 2-cells: isomorphisms between cospans.

Theorem 3.19. BigraphΣ has GRPOs.

Proof. It suffices to verify that Algorithm 2.2 preserves the conditions on cospans,
and thatI5 is a discrete bigraph. �

Interestingly, a main difference between bigraphs as defined here and Mil-
ner’s [9] is the effect of input-linearity on aliasing of names. Milner’s formalism
allows a bigraph which equates names from its input interface, which is disal-
lowed by our input-linearity condition. Conversely, our formalism allows a bi-
graph which equates names within its output interface, an operation not allowed
in Milner’s. Observe that since (G)RPOs-derived contexts only exercise output
interfaces, expressive power may be lost in some applications by not being able to
equate ports in the input interface. Although this appears to be often compensated
for by equating ports in output interfaces, we are currently investigating a gener-
alised notion of relative pushout which acts at the same time on both interfaces.

In particular, in the link-graphs illustrated below,

x y

〈0, {x, y}〉 → 〈0, ∅〉
x y

〈0, ∅〉 → 〈0, {x, y}〉
the left one is not input-linear (as input namesx andy are mapped to the same
element), and therefore not allowed by our formalism. On the other hand, the
right one, which is input-linear but not output-linear (as output namesx andy are
coalesced), is allowed in our formalism but not in Milner’s.

It appears that an output-linear version of Definition 3.18 would capture the
existing bigraphs almost exactly. We leave a general construction of GIPOs for
output-linear cospan bicategories as future work.

4 Conclusion

We have constructed groupoidal relative pushouts in a general framework of gen-
eralised contexts and interfaces, represented by cospan bicategories over adhesive
categories. This allows us to systematically derive a compositional semantics for
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each reactive system in the framework. We have focused on two notable, compre-
hensive examples (‘metamodels’), the theories of double-pushout graph rewriting
and of bigraphs.

Acknowledgements.The authors would like to thank Vincent Danos and the anonymous
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