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A Syntactic Correspondence between

Context-Sensitive Calculi and Abstract Machines

Ma lgorzata Biernacka and Olivier Danvy
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Department of Computer Science
University of Aarhus†
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Abstract

We present a systematic construction of environment-based abstract ma-
chines from context-sensitive calculi of explicit substitutions, and we illus-
trate it with a series of calculi and machines: Krivine’s machine with call/cc,
the λµ-calculus, delimited continuations, i/o, stack inspection, proper tail-
recursion, and lazy evaluation. Most of the machines already exist but
have been obtained independently and are only indirectly related to the
corresponding calculi. All of the calculi are new and they make it possi-
ble to directly reason about the execution of the corresponding machines.
In connection with the functional correspondence between evaluation func-
tions and abstract machines initiated by Reynolds, the present syntactic
correspondence makes it possible to construct reduction-free normalization
functions out of reduction-based ones, which was an open problem in the
area of normalization by evaluation.
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1 Introduction

1.1 Calculi and machines

Sixty-five years ago, the λ-calculus was introduced [15]. Forty-five years ago, its
expressive power was observed to be relevant for computing [60, 72]. Forty years
ago, a first abstract machine for the λ-calculus was introduced [56]. Thirty years
ago, calculi and abstract machines were formally connected [62]. Twenty years
ago, a calculus format—reduction semantics—with an explicit representation of
reduction contexts was introduced [35]. Today calculi and abstract machines are
standard tools to study programming languages. Given a calculus, it is by now
a standard activity to design a corresponding abstract machine and to prove its
correctness [37].

From calculus to machine by refocusing and transition compression:
Recently, Danvy and Nielsen have pointed out that the reduction strategy for
a calculus actually determines the structure of the corresponding machine [32].
They present an algorithm to construct an abstract machine out of a reduction
semantics satisfying the unique-decomposition property. In such a reduction se-
mantics, a non-value term is reduced by

1. decomposing it (uniquely) into a redex and its context,

2. contracting the redex, and

3. plugging the contractum into the reduction context,

yielding a new term. An evaluation function is defined using the reflexive and
transitive closure of the one-step reduction function:

◦
decompose

  B
BB

BB
BB

BB
◦

decompose

  B
BB

BB
BB

BB
◦

decompose

  B
BB

BB
BB

BB

◦
contract

// ◦

plug
>>}}}}}}}}} ◦

contract
// ◦

plug
>>}}}}}}}}} ◦

contract
//

Danvy and Nielsen have observed that the intermediate terms, in the composition
of plug and decompose, could be avoided by fusing the composition into a ‘refocus’
function:

◦
decompose

  B
BB

BB
BB

BB
◦

decompose

  B
BB

BB
BB

BB
◦

decompose

  B
BB

BB
BB

BB

//____ ◦
contract

// ◦

plug
>>}}}}}}}}}

refocus
//________ ◦

contract
// ◦

plug
>>}}}}}}}}}

refocus
//________ ◦

contract
//

The resulting ‘refocused’ evaluation function is defined as the reflexive and tran-
sitive closure of refocusing and contraction.
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Danvy and Nielsen’s algorithm yields a refocus function in the form of a state-
transition function, i.e., an abstract machine. The refocused evaluation function
therefore also takes the form of an abstract machine. Compressing its intermediate
transitions (i.e., short-circuiting them) yields abstract machines that are often
independently known: for example, for the pure λ-calculus with normal order, the
resulting abstract machine is a substitution-based version of the Krivine machine
(i.e., a push/enter machine); for the pure λ-calculus with applicative order, the
resulting abstract machine is Felleisen et al.’s CK machine (i.e., an eval/apply
machine). Refocusing has also been applied to the term language of the free
monoid, yielding a reduction-free normalization function [25], and to context-
based CPS transformations, improving them from quadratic time to operating in
one pass [32].

1.2 Calculi of explicit substitution and environment-based
machines

Twenty years ago, Curien observed that while most calculi use actual substitu-
tions, most implementations use closures and environments [22]. He then de-
veloped a calculus of closures, λρ [23], thereby launching the study of calculi of
explicit substitutions [1, 24, 45].

From calculus to machine by refocusing, transition compression, and
closure unfolding: Recently, we have applied the refocusing method to λρ̂, a
minimal extension of λρ where one can express single-step computations; we added
an unfolding step to make the machine operate not on a closure, but on a term and
its environment [8]. We have shown how λρ̂ with left-to-right applicative order
directly corresponds to the CEK machine [38], how λρ̂ with normal order directly
corresponds to the Krivine machine [20, 23], how λρ̂ with generalized reduction
directly corresponds to the original version of Krivine’s machine [53], and how
λρ̂ with right-to-left applicative order directly corresponds to the ZINC abstract
machine [58]. All of these machines are environment-based and use closures.

1.3 Calculi for computational effects and environment-based
machines

Twenty years ago, Felleisen introduced reduction semantics—a version of small-
step operational semantics with an explicit representation of reduction contexts—
in order to provide calculi for control and state [35, 38]. In these calculi, reduction
rules are not oblivious to their reduction context; on the contrary, they are context
sensitive in that the context takes part in some reduction steps, e.g., for call/cc.
Reduction semantics are in wide use today, e.g., to study the security technique
of stack inspection [16, 42, 63].

From calculus to machine by refocusing, transition compression, and
closure unfolding: In this article, we apply the refocusing method to context-
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sensitive extensions of λρ̂ accounting for a variety of computational effects. We
present a variety of calculi of closures and the corresponding environment-based
machines. What is significant here is that each machine is mechanically derived
from the corresponding calculus (instead of designed and then proved correct)
and also that each machine directly corresponds to this calculus (instead of indi-
rectly via an ‘unload’ function at the end of each run [62] or via a compilation /
decompilation scheme in the course of execution [45]).

1.4 Overview

We successively consider call by name: Krivine’s machine with call/cc (Section 3)
and the λµ-calculus (Section 4); call by value: static and dynamic delimited
continuations (Section 5), i/o (Section 6), stack inspection (Section 7), and proper
tail-recursion (Section 8); and call by need (Section 9). Towards this end, we first
present the λρ̂-calculus and the notion of context-sensitive reduction (Section 2).

2 Preliminaries

2.1 Our base calculus of closures: λρ̂

Since Landin [56], most abstract machines implementing variants and extensions
of the λ-calculus use closures and environments, and the substitution of terms
for free variables is thus delayed until a variable is reached in the evaluation
process. This implementation technique motivated the study of calculi of explicit
substitutions [1, 23, 66] to mediate between the traditional abstract specifications
of the λ-calculus and its traditional concrete implementations [45].

To derive an abstract machine for evaluating λ-terms, a weak calculus of ex-
plicit substitutions suffices. The first (and simplest) of such calculi was Curien’s
calculus of closures λρ [23]. Although this calculus is not expressive enough to
model full normalization, it is suitable for evaluating λ-terms. Its operational
semantics is specified using multi-step reductions, but its syntax is too restrictive
to allow single-step computations, which is what we need to apply the refocusing
algorithm. For this reason, in our earlier work [8], we have proposed a minimal
extension of λρ with one-step reduction rules, the λρ̂-calculus.

The language of λρ̂ is as follows:

(terms) t ::= i | λt | t t

(closures) c ::= t[s] | c c

(substitutions) s ::= • | c · s

(For comparison, λρ does not have the c c production.)
We use de Bruijn indices for variables in a term (i ≥ 1). A closure is a term

equipped with a substitution, i.e., a list of closures to be substituted for free
variables in the term. Programs are closures of the form t[•] where t does not
contain free variables.

3



The notion of reduction in λρ̂ is given by the following rules:

(Var) i[c1 · · · cj ] →bρ ci if i ≤ j

(Beta) ((λt)[s]) c →bρ t[c · s]

(Prop) (t0 t1)[s] →bρ (t0[s]) (t1[s])

We denote by s(i) the ith element of the substitution s considered as a list. (So
[c1 · · · cj](i) = ci if 1 ≤ i ≤ j.)

Finally, the one-step reduction relation (i.e., the compatible closure of the
notion of reduction) extends the notion of reduction with the following rules:

(L-Comp)
c0 →bρ c′0

c0 c1 →bρ c′0 c1

(R-Comp)
c1 →bρ c′1

c0 c1 →bρ c0 c′1

(Sub)
ci →bρ c′i

t[c1 · · · ci · · · cj ] →bρ t[c1 · · · c′i · · · cj ]
for i ≤ j

Specific, deterministic reduction strategies can be obtained by restricting the
compatibility rules. In the following sections, we consider two such strategies: the
normal-order strategy obtained by discarding the (R-Comp) and (Sub) rules, and
the left-to-right applicative-order strategy obtained in the usual way by restricting
the (Beta) and (R-Comp) rules, and discarding the (Sub) rule.

All of the calculi presented in this article are syntactic extensions of the λρ̂-
calculus.

2.2 Notion of context-sensitive reduction

Traditional specifications of one-step reduction as the compatible closure of a
notion of reduction provide a local characterization of a computation step in the
form of a (potential) redex.1 This local characterization is not fit for non-local
reductions such as one involving a control operator capturing all its surrounding
context in one step, or a global state. For these, one needs a notion of context-
sensitive reduction, i.e., a binary relation defined both on redexes and on their
reduction context instead of only on redexes.

A one-step reduction relation for a given notion of context-sensitive reduction
is defined as follows, assuming this notion to be specified by reduction rules of
the form 〈r, C 〉 → 〈c, C ′〉, where 〈r, C 〉 denotes the decomposition of a program
into a potential redex r and its context C . A program p reduces in one step to p′

if decomposing p yields 〈r, C 〉, reducing 〈r, C 〉 yields 〈c, C ′〉, and plugging c into
C ′ yields p′.

1For example, a potential redex in the λ-calculus is the application of a value to a term. If
the value is a λ-abstraction, the potential redex is an actual one and it can be β-reduced. If no
reduction rule applies, the potential redex is not an actual one and the program is stuck [62].
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Any standard notion of reduction can be trivially transformed into context-
sensitive form. For example, here is the corresponding notion of reduction for the
λρ̂-calculus:

(Var) 〈i[c1 · · · cj], C 〉 →bρ 〈ci, C 〉 if i ≤ j

(Beta) 〈((λt)[s]) c, C 〉 →bρ 〈t[c · s], C 〉
(Prop) 〈(t0 t1)[s], C 〉 →bρ 〈(t0[s]) (t1[s]), C 〉

A context-sensitive reduction implicitly assumes a decomposition of the entire
program, and therefore it cannot be used locally. One way to recover compatibility
in the context-sensitive setting is to add explicit local control delimiters to the
language (see Section 5 for an illustration). For a language without explicit control
delimiters (as the λρ̂-calculus with call/cc), there is an implicit global control
delimiter around the program.

For each of the calculi considered in the remainder of this article, we define
a suitable notion of reduction, denoted →X , where X is a subscript identifying
a particular calculus. For each of them, we then define a one-step reduction
relation as the composition of: decomposing a non-value closure into a redex and
a reduction context, contracting a (context-sensitive) redex, and then plugging
the resulting closure into the resulting context. Finally, we define the evaluation
relation (denoted →∗

X) using the reflexive, transitive closure of one-step reduction,
i.e., we say that c evaluates to c′ if c →∗

X c′ and c′ is a value closure. We define
the convertibility relation between closures as the smallest equivalence relation
containing →∗

X . If two closures c and c′ are convertible, they behave similarly
under evaluation (i.e., either they both evaluate to the same value, or they both
diverge).

3 The λρ̂K-calculus

The Krivine machine is probably the most well-known abstract machine imple-
menting the normal-order reduction strategy in the λ-calculus [28]. In our previous
work [8], we have pointed out that Krivine’s original machine [53] does not co-
incide with the Krivine Machine As We Know It [21, 23] in that it implements
generalized instead of ordinary β-reduction: indeed Krivine’s machine reduces the
term (λλt) t1 t2 in one step whereas the Krivine machine reduces it in two steps.
Furthermore, the archival version of Krivine’s machine [54] also handles call/cc
(noted K below).

In our previous work [8], we have presented the calculus corresponding to
the original version of Krivine’s machine. This machine uses closures and an
environment and correspondingly, the calculus is one of explicit substitutions, λρ̂.

Here, we present the calculus corresponding to the archival version of Krivine’s
machine. This machine also uses closures and an environment. In addition to
generalized β-reduction, it also features K. Correspondingly, the calculus is one
of explicit substitutions, λρ̂K. We build on top of Krivine’s language of terms by
specifying syntactic categories of closures and substitutions as shown below. The
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calculus is tied to a particular reduction strategy. Here, like Krivine, we consider
the normal-order reduction strategy and therefore call by name [62].

3.1 The language of λρ̂K
The abstract syntax of the language is as follows:

(terms) t ::= i | λnt | t t | K t

(closures) c ::= t[s] | c c | K c | pCq
(values) v ::= (λnt)[s] | pCq
(substitutions) s ::= • | c · s
(reduction contexts) C ::= [ ] | C [[ ] c] | C [K[ ]]

A nested λ-abstraction of the form λnt is to be understood as a syntactic abbre-
viation for λλ. . . λ︸ ︷︷ ︸

n

t, where t is not a λ-abstraction.

In λρ̂K, a value is either a closure with a λ-abstraction in the term part, or the
representation of a reduction context captured by K.

3.2 Notion of context-sensitive reduction

The notion of reduction is specified by the set of rules shown below. The rules
(Var) and (Prop) are as in the λρ̂-calculus, and (Beta+) supersedes the (Beta)
rule by performing a generalized β-reduction in one step:

(Var) 〈i[c1 · · · cj ], C 〉 →K 〈ci, C 〉 if i ≤ j

(Beta+) 〈(λnt)[s], C [[...[[ ]cn]...]c1]〉 →K 〈t[c1 · · · cn · s], C 〉
(BetaC ) 〈pC ′q, C [[ ] c]〉 →K 〈c, C ′〉
(Prop) 〈(t0 t1)[s], C 〉 →K 〈(t0[s]) (t1[s]), C 〉
(PropK) 〈(K t)[s], C 〉 →K 〈K (t[s]), C 〉
(Kλ) 〈K ((λt)[s]), C 〉 →K 〈t[pCq · s], C 〉
(KC ) 〈K pC ′q, C 〉 →K 〈pC ′q pCq, C 〉

The three last rules account for call/cc: the first is an ordinary propagation rule,
and the two others describe a continuation capture. In the first case, the current
continuation is passed to a function, and in the second, it is passed to an already
captured continuation.

6



3.3 Krivine’s machine

Refocusing, compressing the intermediate transitions, and unfolding the data type
of closures mechanically yields the following environment-based machine:

〈i, s, C 〉 ⇒K 〈t′, s′, C 〉 if s(i) = (t′, s′)
〈i, s, C 〉 ⇒K 〈C , pC ′q〉 if s(i) = pC ′q

〈λnt, s, C 〉 ⇒K 〈C , (λnt, s)〉
〈t0 t1, s, C 〉 ⇒K 〈t0, s, C [[ ] (t1, s)]〉
〈K t, s, C 〉 ⇒K 〈t, s, C [K[ ]]〉

〈[ ], v〉 ⇒K v

〈C [[...[[ ]cn]...]c1], (λnt, s)〉 ⇒K 〈t, c1 · · · cn · s, C 〉
〈C [[ ] (t, s)], pC ′q〉 ⇒K 〈t, s, C ′〉
〈C [[ ] pC ′′q], pC ′q〉 ⇒K 〈C ′, pC ′′q〉

〈C [K[ ]], v〉 ⇒K 〈C [[ ] pCq], v〉
This machine coincides with the extension of Krivine’s machine with K—an ex-
tension which was designed as such [54].

3.4 Formal correspondence

Proposition 1. For any term t in the λρ̂K-calculus,

t[•] →∗
K v if and only if 〈t, •, [ ]〉 ⇒∗

K v.

The λρ̂K-calculus therefore directly corresponds to the archival version of Kriv-
ine’s machine with call/cc.

4 The λρ̂µ-calculus

In this section we present a calculus of closures that extends Parigot’s λµ-calculus
[61] and the corresponding call-by-name abstract machine obtained by refocusing.

We want to compare our derived abstract machine with an existing one de-
signed by de Groote [33] and therefore we adapt his syntax, which differs from
Parigot’s in that arbitrary terms can be abstracted by µ (not only named ones).
In addition, de Groote presents a calculus of explicit substitutions built on top of
the λµ-calculus, and uses it to prove the correctness of his machine. We show that
a λρ̂-like calculus of closures is enough to model evaluation in the λµ-calculus and
to derive the same abstract machine as de Groote.

The λµ-calculus is typed, and suitable typing rules can be given to the calculus
of closures we present below. The reduction rules we show satisfy the subject
reduction property, and in consequence, the machine we derive operates on typed
terms. For lack of space, however, we omit all the typing considerations, focusing
on the syntactic correspondence between the calculus and the machine.
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4.1 The language of λρ̂µ

We use de Bruijn indices for both the λ-bound variables and the µ-bound vari-
ables. The two kinds of variables are represented using the same set of indices,
which leads one to an abstract machine with one environment [33]. Alternatively,
we could use two separate sets of indices, which would then lead us to two envi-
ronments in the resulting machine (one for each kind of variable).

The abstract syntax of the language is specified as follows:

(terms) t ::= i | λt | t t | µt | [i]t
(closures) c ::= t[s] | c c

(values) v ::= (λt)[s]
(substitutions) s ::= • | C · s | c · s
(reduction contexts) C ::= [ ] | C [[ ] c]

We consider only closed λ-terms, and i ≥ 0. Bound variables are indexed
starting with 1, and a (free) occurrence of a variable 0 indicates a distinguished
toplevel continuation (similar to tp in Ariola et al.’s setting [6]). A substitution is
a non-empty sequence of either closures—to be substituted for λ-bound variables,
or captured reduction contexts—to be used when accessing µ-bound variables.

Programs are closures of the form t[[ ] · •], where the empty context is to be
substituted for the toplevel continuation variable 0.

4.2 Notion of context-sensitive reduction

The notion of reduction extends that of the λρ̂ with two rules: (Mu), which
captures the entire reduction context and stores it in the substitution, and (Rho),
which reinstates a captured context when a continuation variable is applied:

(Beta) 〈(λt)[s], C [[ ] c]〉 →µ 〈t[c · s], C 〉
(Var) 〈i[s], C 〉 →µ 〈c, C 〉 if s(i) = c

(Prop) 〈(t0 t1)[s], C 〉 →µ 〈(t0[s]) (t1[s]), C 〉
(Mu) 〈(µt)[s], C 〉 →µ 〈t[C · s], [ ]〉
(Rho) 〈([i]t)[s], [ ]〉 →µ 〈t[s], C 〉 if s(i) = C

8



4.3 An eval/apply abstract machine

Refocusing, compressing the intermediate transitions, and unfolding the data type
of closures mechanically yields the following environment-based machine:

〈λt, s, C 〉 ⇒µ 〈C , (λt, s)〉
〈i, s, C 〉 ⇒µ 〈t′, s′, C 〉 if s(i) = (t′, s′)

〈t0 t1, s, C 〉 ⇒µ 〈t0, s, C [[ ] (t1, s)]〉
〈µt, s, C 〉 ⇒µ 〈t, C · s, [ ]〉
〈[i]t, s, [ ]〉 ⇒µ 〈t, s, C 〉 if s(i) = C

〈[ ], v〉 ⇒µ v

〈C [[ ] c], (λt, s)〉 ⇒µ 〈t, c · s, C 〉
This machine coincides with de Groote’s final abstract machine [33, p. 24], except
that instead of traversing the environment as a list, we directly fetch the right
substitutee for a given index i.

4.4 Formal correspondence

Proposition 2. For any term t in the λρ̂µ-calculus,

t[[ ] · •] →∗
µ v if and only if 〈t, [ ] · •, [ ]〉 ⇒∗

µ v.

The λρ̂µ-calculus therefore directly corresponds to de Groote’s abstract machine
for the λµ-calculus.

5 Delimited continuations

Continuations have been discovered multiple times [64], but they acquired their
name for describing jumps [73], using what is now known as continuation-passing
style (CPS) [71]. A full-fledged control operator, J [55, 75], however, existed before
CPS, providing first-class continuations in direct style. Continuations therefore
existed before CPS, and so one could say that it was really CPS that was discov-
ered multiple times.

Conversely, delimited continuations, in the form of the traditional success and
failure continuations [67], have been regularly used in artificial-intelligence pro-
gramming [14, 48, 74] for generators and backtracking. They also occur in the
study of reflective towers [70], where the notions of meta-continuation [78] and
of “jumpy” vs. “pushy” continuations [30] arose. A full-fledged delimited control
operator, # (pronounced “prompt”), however, was introduced independently of
CPS and of reflective towers, to support operational equivalence in λ-calculi with
first-class control [36, 39]. Only subsequently were control delimiters connected
to success and failure continuations [29].

The goal of this section is to provide a uniform account of delimited continua-
tions. Three data points are in presence: a calculus and an abstract machine, both
invented by Felleisen [36], and CPS, as discovered by Danvy and Filinski [29].
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Calculus: As we show below, an explicit-substitutions version of Felleisen’s cal-
culus of dynamic delimited continuations can be refocused into his extension
of the CEK machine, which uses closures and an environment.

Abstract machine: As we have shown elsewhere [11], Felleisen’s extension of
the CEK machine is not in defunctionalized form (at least for the usual
notion of defunctionalization [31, 65]); it needs some adjustment to be so,
which leads one to a dynamic form of CPS that threads a state-like trail of
delimited contexts.

CPS: Defunctionalizing Danvy and Filinski’s continuation-based evaluator yields
an environment-based machine [7], and we present below the corresponding
calculus of static delimited continuations.

The syntactic correspondence makes it possible to directly compare (1) the
calculi of dynamic and of static delimited continuations, (2) the extended CEK
machine and the machine corresponding to the calculus of static delimited contin-
uations and to the continuation-based evaluator, and (3) the evaluator correspond-
ing to the extended CEK machine and the continuation-based evaluator. In other
words, rather than having to relate heterogeneous artifacts such as a calculus with
actual substitutions, an environment-based machine, and a continuation-based
evaluator, we are now in position to directly compare two calculi, two abstract
machines, and two continuation-based evaluators.

We address static delimited continuations in Section 5.1 and dynamic delim-
ited continuations in Section 5.2. In both cases, we consider the left-to-right
applicative-order reduction strategy and therefore left-to-right call by value.

5.1 The λρ̂S-calculus

The standard λ-calculus is extended with the control operator shift (noted S) that
captures the current delimited continuation and with the control delimiter reset
(noted 〈〈〈·〉〉〉) that initializes the current delimited continuation.

5.1.1 The language of λρ̂S
The abstract syntax of the language is as follows:

(terms) t ::= i | λt | t t | S t | 〈〈〈t〉〉〉
(closures) c ::= t[s] | c c | S c | 〈〈〈c〉〉〉 | pCq
(values) v ::= (λt)[s] | pCq
(substitutions) s ::= • | c · s
(contexts) C1 ::= [ ] | C1[v [ ]] | C1[c [ ]] | C1[S[ ]]
(meta-contexts) C2 ::= • | C1 · C2

For readability, we write C1 · C2 rather than C2[〈〈〈C1[ ]〉〉〉].
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The control operator S captures the current delimited context and replaces it
with the empty context. The control delimiter 〈〈〈·〉〉〉 initializes the current delim-
ited context, saving the then-current one onto the meta-context. When a captured
delimited context is resumed, the current delimited context is saved onto the meta-
context. When the current delimited context completes, the previously saved one,
if there is any, is resumed; otherwise, the computation terminates. This informal
description paraphrases the definitional interpreter for shift and reset, which has
two layers of control—a current delimited continuation (akin to a success continu-
ation) and a meta-continuation (akin to a failure continuation), as arises naturally
when one CPS-transforms a direct-style evaluator twice [29]. Elsewhere [7], we
have defunctionalized this interpreter into an environment-based machine, which
we present next.

5.1.2 The eval/apply/meta-apply abstract machine

The environment-based machine is in “eval/apply/meta-apply” form (to build
on Peyton Jones’s terminology [59]) because the continuation is defunctionalized
into a context and the corresponding apply transition function, and the meta-
continuation is defunctionalized into a meta-context (here a list of contexts) and
the corresponding meta-apply transition function:

〈i, s, C1, C2〉 ⇒S 〈t′, s′, C1, C2〉 if s(i) = (t′, s′)
〈λt, s, C1, C2〉 ⇒S 〈C1, (λt, s), C2〉

〈t0 t1, s, C1, C2〉 ⇒S 〈t0, s, C1[[ ] (t1, s)], C2〉
〈S t, s, C1, C2〉 ⇒S 〈t, s, C1[S[ ]], C2〉
〈〈〈〈t〉〉〉, s, C1, C2〉 ⇒S 〈t, s, [ ], C1 · C2〉

〈[ ], v, C2〉 ⇒S 〈C2, v〉
〈C1[[ ] (t, s)], v, C2〉 ⇒S 〈t, s, C1[v [ ]], C2〉
〈C1[(λt, s) [ ]], v, C2〉 ⇒S 〈t, v · s, C1, C2〉
〈C1[pC ′

1q [ ]], v, C2〉 ⇒S 〈C ′
1, v, C1 · C2〉

〈C1[S[ ]], (λt, s), C2〉 ⇒S 〈t, pC1q · s, [ ], C2〉
〈C1[S[ ]], pC ′

1q, C2〉 ⇒S 〈C ′
1, pC1q, [ ] · C2〉

〈•, v〉 ⇒S v

〈C1 · C2, v〉 ⇒S 〈C1, v, C2〉
We have observed that this machine is in the range of refocusing, transition com-
pression, and closure unfolding for the following calculus λρ̂S.

5.1.3 Notion of context-sensitive reduction

The λρ̂S-calculus uses two layers of contexts: C1 and C2. A non-value closure is
decomposed into a redex, a context C1, and a meta-context C2, and the notion of
reduction is specified by the following rules:
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(Var) 〈i[c1 · · · cj ], C1, C2〉 →S 〈ci, C1, C2〉 if i ≤ j

(Beta) 〈((λt)[s]) v, C1, C2〉 →S 〈t[v · s], C1, C2〉
(BetaC ) 〈pC ′

1qv , C1, C2〉 →S 〈〈〈〈C ′
1[v]〉〉〉, C1, C2〉

(Prop) 〈(t0 t1)[s], C1, C2〉 →S 〈(t0[s]) (t1[s]), C1, C2〉
(PropS) 〈(S t)[s], C1, C2〉 →S 〈S (t[s]), C1, C2〉
(Prop〈〈〈·〉〉〉) 〈〈〈〈t〉〉〉[s], C1, C2〉 →S 〈〈〈〈t[s]〉〉〉, C1, C2〉
(Sλ) 〈S ((λt)[s]), C1, C2〉 →S 〈t[pC1q · s], [ ], C2〉
(SC ) 〈S pC ′

1q, C1, C2〉 →S 〈pC ′
1q pC1q, [ ], C2〉

(Reset) 〈〈〈〈v〉〉〉, C1, C2〉 →S 〈v, C1, C2〉
Since none of the contractions depends on the meta-context, it is evident that the
notion of reduction →S is compatible with meta-contexts, but it is not compat-
ible with contexts, due to Sλ and SC . The 〈〈〈·〉〉〉 construct therefore delimits the
parts of non-value closures in which context-sensitive reductions may occur, and
partially restores the compatibility of reductions. In particular, 〈〈〈〈t[s]〉〉〉, C1, C2〉
is decomposed into 〈t[s], [ ], C1 · C2〉 in the course of decomposition towards a
context-sensitive redex.

5.1.4 Formal correspondence

Proposition 3. For any term t in the λρ̂S-calculus,

t[•] →∗
S v if and only if 〈t, •, [ ], •〉 ⇒∗

S v.

The λρ̂S-calculus therefore directly corresponds to the abstract machine for shift
and reset.

5.1.5 The CPS hierarchy

Iterating the CPS transformation on a direct-style evaluator for the λ-calculus
gives rise to a family of CPS evaluators. At each iteration, one can add shift and
reset to the new inner layer. The result forms a CPS hierarchy of static delim-
ited continuations [29] which Filinski has shown to be able to represent layered
monads [41]. Recently, Kameyama has proposed an axiomatization of the CPS
hierarchy [50]. Elsewhere [7], we have studied its defunctionalized counterpart
and the corresponding hierarchy of calculi.

5.2 The λρ̂F-calculus

The standard λ-calculus is extended with the control operator F that captures a
segment of the current context and with the control delimiter prompt (noted #)
that initializes a new segment in the current context.

12



5.2.1 The language of λρ̂F
The abstract syntax of the language is as follows:

(terms) t ::= i | λt | t t | F t | #t

(closures) c ::= t[s] | c c | F c | # c | pCq
(values) v ::= (λt)[s] | pCq
(substitutions) s ::= • | c · s
(reduction contexts) C ::= [ ] | C [[ ] c] | C [v [ ]] | C [F [ ]] | C [#[ ]]

5.2.2 Notion of context-sensitive reduction

The control operator F captures a segment of the current context up to a mark.
The control delimiter # sets a mark on the current context. When a captured
segment is resumed, it is composed with the current context. For the rest, the
notion of reduction is as usual:2

(Var) 〈i[c1 · · · cj ], C 〉 →F 〈ci, C 〉 if i ≤ j

(Beta) 〈((λt)[s]) v, C 〉 →F 〈t[v · s], C 〉
(BetaC ) 〈pC ′qv , C 〉 →F 〈C ′[v], C 〉
(Prop) 〈(t0 t1)[s], C 〉 →F 〈(t0[s]) (t1[s]), C 〉
(PropF) 〈(F t)[s], C 〉 →F 〈F (t[s]), C 〉
(Prop#) 〈(#t)[s], C 〉 →F 〈# (t[s]), C 〉
(Fλ) 〈F ((λt)[s]), C [# C ′]〉 →F 〈t[pC ′q · s], C 〉

if C ′ contains no mark

(FC ) 〈F pC ′′q, C [# C ′]〉 →F 〈pC ′′q pC ′q, C 〉
if C ′ contains no mark

(Prompt) 〈# v, C 〉 →F 〈v, C 〉
Alternatively, we could specify the reduction rules using two layers of contexts,

similarly to the λρ̂S-calculus [7, 10, 11]. The difference between the two calculi
would then be only in the rule (BetaC ):

(BetaC ) 〈pC ′
1qv , C1, C2〉 →F 〈C ′

1[v], C1, C2〉

where there is no delimiter around C ′[v]. As in the previous case of the λρ̂S-
calculus, such two-layered decomposition makes it evident that the contraction
rules are compatible with the meta-context, since it is isolated by the use of a
control delimiter.

2The original version of F does not reduce its argument first, but its followers do. We do
likewise here, for a more direct comparison with S.
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5.2.3 The eval/apply abstract machine

Refocusing, compressing the intermediate transitions, and unfolding the data type
of closures mechanically yields the following environment-based machine:

〈i, s, C 〉 ⇒F 〈t′, s′, C 〉 if s(i) = (t′, s′)
〈λt, s, C 〉 ⇒F 〈C , (λt, s)〉

〈t0 t1, s, C 〉 ⇒F 〈t0, s, C [[ ] (t1, s)]〉
〈F t, s, C 〉 ⇒F 〈t, s, C [F [ ]]〉
〈#t, s, C 〉 ⇒F 〈t, s, C [#[ ]]〉

〈C [[ ] (t, s)], v〉 ⇒F 〈t, s, C [v [ ]]〉
〈C [(λt, s) [ ]], v〉 ⇒F 〈t, v · s, C 〉
〈C [pC ′q [ ]], v〉 ⇒F 〈C ′ ◦ C , v〉

〈C [#C ′[F [ ]]], (λt, s)〉 ⇒F 〈t, pC ′q · s, C 〉
where C ′ contains no mark

〈C [#C ′[F [ ]]], pC ′′q〉 ⇒F 〈C ′′ ◦ C , pC ′q〉
where C ′ contains no mark

〈C [#[ ]], v〉 ⇒F 〈C , v〉
This environment-based machine coincides with Felleisen’s extension of the CEK
machine—an extension which was designed as such [36, Section 3].

5.2.4 Formal correspondence

Proposition 4. For any term t in the λρ̂F-calculus,

t[•] →∗
F v if and only if 〈t, •, [ ]〉 ⇒∗

F v.

This proposition parallels Felleisen’s second correspondence theorem [36, p. 186].
The λρ̂F -calculus therefore directly corresponds to Felleisen’s extension of the
CEK machine.

5.2.5 A hierarchy of control delimiters

As described by Sitaram and Felleisen [69], one could have not one but several
marks in the context and have control operators capture segments of the current
context up to a particular mark. For these marks not to interfere in programming
practice, they need to be organized hierarchically, forming a hierarchy of control
delimiters [69, Section 7]. Alternatively, one could iterate Biernacki et al.’s dy-
namic CPS transformation [11] to give rise to a hierarchy of dynamic delimited
continuations with a functional (CPS) counterpart. Except for the work of Gunter
et al. [44] and more recently of Dybvig et al. [34], this area is little explored.
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5.3 Conclusion

The syntactic correspondence has made it possible to exhibit the calculus corre-
sponding to static delimited continuations as embodied in the functional idiom of
success and failure continuations and more generally in the CPS hierarchy, and to
show that (the explicit-substitutions version of) Felleisen’s calculus of dynamic de-
limited continuations corresponds to his extension of the CEK machine [36]. Else-
where, we present the abstract machine [7] and the evaluator [29] corresponding
to static delimited continuations and an evaluator [11] corresponding to dynamic
delimited continuations. We are now in position to compare them pointwise.

From a calculus point of view, it seems to us that one is better off with lay-
ered contexts because it is immediately obvious whether a notion of reduction is
compatible with them (see Section 5.1.3); a context containing marks is less easy
to deal with. Otherwise, the difference between static and dynamic delimited
continuations is tiny (see Section 5.2.2), and located in the rule (BetaC ).

From a machine point of view, separating between the current delimited con-
text and the other ones is also simpler, as it avoids linear searches, copies, and
concatenations (in this respect, efficient implementations, e.g., with a display, in
effect separate between the current delimited context and the other ones).

From the point of view of CPS, the abstract machine for dynamic delimited
continuations is not in defunctionalized form whereas the abstract machine for
static delimited continuations is (and corresponds to a evaluator in CPS). Con-
versely, defunctionalizing a CPS evaluator provides design guidelines, whereas
without CPS, one is on one’s own, and locally plausible choices may have unfore-
seen global consequences which are then taken as the norm. Two cases in point:
(1) in Lisp, it was locally plausible to push both formal and actual parameters
at function-call time, and to pop them at return time, but this led to dynamic
scope since variable lookup then follows the dynamic link; and (2) here, it was
locally plausible to concatenate a control-stack segment to the current control
stack (“From this, we learn that an empty context adds no information.” [40,
p. 58]), but this led to dynamic delimited continuations since capturing a seg-
ment of a concatenated context then gives access to beyond the concatenation
point. Granted, a degree of dynamism makes it possible to write compact pro-
grams (e.g., a breadth-first traversal without a data-queue accumulator and in
direct style [12]), but it is very difficult to reason about them and they are not
necessarily more efficient.

From the point of view of expressiveness, for example, in Lisp, one can sim-
ulate the static scope of Scheme by making each lambda-abstraction a “funarg”
and in Scheme, one can simulate the dynamic scope of Lisp by threading an
environment of fluid variables in a state-monad fashion. Similarly, static delim-
ited continuations can be simulated using dynamic ones by delimiting the extent
of each captured continuation [10], and dynamic delimited continuations can be
simulated using static ones by threading a trail of contexts in a state-monad fash-
ion [11, 34, 52, 68]. As to which should be used by default, the question then
reduces to which behavior is the norm and which should be simulated if it is
needed.
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In summary, the calculi, the abstract machines, and the evaluators all dif-
fer. In one approach, continuations are composed by dynamically concatenat-
ing their representations [40] and in the other, continuations are statically com-
posed through a meta-continuation. These differences result from distinct designs:
Felleisen and his colleagues started from a calculus and wanted to go “beyond
continuations” [39] and therefore beyond CPS whereas Danvy and Filinski were
aiming at a CPS account of delimited control, one that has turned out to be not
without practical, semantical, and logical content.

6 A calculus of closures with input/output (λρ̂i/o)

In this and the two subsequent sections we show calculi enriched with features
whose implementations via abstract machines usually introduce a state, i.e., a
global component of a machine configuration that can be accessed and updated
at any time by a currently evaluated subclosure. We show the corresponding
calculi of closures extended with a suitable syntactic entity to model state.

First, we present a simple calculus with primitives for modelling finite input
and output, where closures are equipped with two additional components: an
input channel (a finite list I), and an output channel (a finite list O). Since we
provide explicit syntactic characterization of input and output, it is possible to
give the calculus a standard reduction semantics instead of a labeled transition
system with read and write actions expressed as annotations on transitions. Such
a specification allows us to apply the refocusing technique and mechanically derive
an abstract machine for this calculus.

6.1 The language of λρ̂i/o

The abstract syntax of the language is specified as follows:

(terms) t ::= ` | i | λt | t t | in t | out t | t; t
(closures) c ::= t[s] | c c | in c | out c | c; c
(values) v ::= (λt)[s]
(substitutions) s ::= • | c · s
(reduction contexts) C ::= [ ] | C [[ ] c] | C [v0 [ ]] |

C [[ ]; c] | C [in [ ]] | C [out [ ]]
(input) I ::= • | ` :: I

(output) O ::= • | ` :: O

(i/o closures) c̃ ::= c[I, O]
(i/o values) ṽ ::= v[I, O]

(i/o contexts) C̃ ::= C [I, O]

The set of terms is extended with three constructs: in for reading in a literal,
out for writing out a literal, and a binary operator ·; · to sequentialize computation.
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The new i/o closures are built on top of the usual closures (terms with explicit
substitutions, and their compositions) equipped with two lists of literals: an input
channel denoted I, and an output channel denoted O.

6.2 Notion of context-sensitive reduction

Input/output channels are global for the entire computation (contrary to substi-
tutions, propagated locally to each subterm), which is obtained by ensuring that
at each step only one subclosure can access and modify these channels (hence
the restricted forms of closures). The reduction rules are performed only on i/o
closures, making the calculus deterministic.

(Beta) 〈((λt)[s]) v, C̃ 〉 →i/o 〈t[v · s], C̃ 〉
(Access) 〈i[c1 · · · cj], C̃ 〉 →i/o 〈s(i), C̃ 〉
(Prop) 〈(t0 t1)[s], C̃ 〉 →i/o 〈t0[s] t1[s], C̃ 〉
(Propseq) 〈(t0; t1)[s], C̃ 〉 →i/o 〈t0[s]; t1[s], C̃ 〉
(Propin) 〈(in t)[s], C̃ 〉 →i/o 〈(in t[s]), C̃ 〉
(Propout) 〈(out t)[s], C̃ 〉 →i/o 〈(out t[s]), C̃ 〉
(Seq) 〈v; c, C̃ 〉 →i/o 〈c, C̃ 〉
(In) 〈(in (λt)[s]), C [` :: I, O]〉 →i/o 〈t[`[•] · s], C [I, O]〉
(Out) 〈(out `[s]), C [I, O]〉 →i/o 〈`[s], C [I, ` :: O]〉

The need for context-sensitive reductions arises in the last two reductions that
manipulate global input and output channels, respectively. The rule (In) reads a
literal from an input channel and stores it in the substitution, and the (Out) rule
prints a literal to the output channel. Note that the reduction rules are compatible
with contexts C , and therefore they facilitate local reasoning about programs in
the following sense:

Proposition 5. For all closures c1, c2 such that c1[I, O] =i/o c2[I, O], and for
every context C ,

(C [c1])[I, O] =i/o (C [c2])[I, O].

It is possible to reformulate the calculus in the usual context-insensitive form,
by propagating the input/output channels down to each closure—similarly to
the way a substitution is propagated. The final abstract machine obtained by
refocusing is the same as the one presented below.
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6.3 An eval/apply abstract machine

Refocusing, compressing the intermediate transitions, and unfolding the data type
of closures mechanically yields the following store-based machine:

〈`, s, C , I, O〉 ⇒i/o 〈C , (`, s), I, O〉
〈λt, s, C , I, O〉 ⇒i/o 〈C , (λt, s), I, O〉
〈i, s, C , I, O〉 ⇒i/o 〈t, s′, C , I, O〉 if s(i) = (t, s′)

〈t0 t1, s, C , I, O〉 ⇒i/o 〈t0, s, C [[ ] (t1, s)], I, O〉
〈t0; t1, s, C , I, O〉 ⇒i/o 〈t0, s, C [[ ]; (t1, s)], I, O〉
〈in t, s, C , I, O〉 ⇒i/o 〈t, s, C [in [ ]], I, O〉
〈out t, s, C , I, O〉 ⇒i/o 〈t, s, C [out [ ]], I, O〉

〈[ ], v, I, O〉 ⇒i/o (v, I, O)
〈C [[ ] (t, s)], v, I, O〉 ⇒i/o 〈t, s, C [v [ ]], I, O〉
〈C [(λt, s) [ ]], v, I, O〉 ⇒i/o 〈t, v · s, C , I, O〉
〈C [[ ]; (t, s)], v, I, O〉 ⇒i/o 〈t, s, C , I, O〉

〈C [in [ ]], (λt, s), ` :: I, O〉 ⇒i/o 〈C , t, `[•] · s, I, O〉
〈C [out [ ]], (`, s), I, O〉 ⇒i/o 〈C , (`, s), I, ` :: O〉

6.4 Formal correspondence

Proposition 6. For any term t in the λρ̂i/o-calculus,

t[•][I, •] →∗
i/o v if and only if 〈t, •, [ ], I, •〉 ⇒∗

i/o v.

7 Stack inspection

This section addresses Fournet and Gordon’s λsec-calculus, which formalizes secu-
rity enforcement by stack inspection [42]. We first present a calculus of closures
built on top of the λsec-calculus, and we construct the corresponding environment-
based machine. This machine is a storeless version of the fg machine presented by
Clements and Felleisen [16, Figure 1]. (We consider the issue of store-based ma-
chines in Section 8.) This machine is not properly tail-recursive, and so Clements
and Felleisen presented another machine—the cm machine—which does imple-
ment stack inspection in a properly tail-recursive manner [16, Figure 2]. The cm
machine builds on Clinger’s formalization of proper tail-recursion (see Section 8)
and it is therefore store-based; we considered its storeless version here, and we
present the corresponding calculus of closures. We show that the tail-optimization
of the cm machine is reflected by a non-standard plug function. Finally, we turn
to the unzipped version of the cm machine [4] and we present the corresponding
state-based calculus of closures.
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7.1 The λρ̂sec-calculus

7.1.1 The language of λρ̂sec

(terms) t ::= i | λt | t t | grantR in t | testR then t else t |
R[t] | fail

(closures) c ::= t[s] | c c | grantR in c | testR then c else c |
R[c]

(values) v ::= (λt)[s] | fail

(substitutions) s ::= • | c · s
(reduction contexts) C ::= [ ] | C [[ ] c] | C [v [ ]] |

C [grantR in [ ]] | C [R[[ ]]]
(permissions) R ⊆ P
The set of terms consists of λ-terms and four constructs for handling different
levels of security specified in a set P : grantR in t grants the permissions R to t;
testR then t0 else t1 proceeds to evaluate t0 if permissions R are available, and
otherwise t1; a frame R[t] restricts the permissions of t to R; and finally, fail

aborts the computation.

7.1.2 Notion of context-sensitive reduction

Given the predicateOKsec(R,C ) checking whether the permissions R are available
within the context C ,

OKsec(∅,C ) OKsec(R, [ ])

OKsec(R,C )
OKsec(R,C [[ ] c])

OKsec(R,C )
OKsec(R,C [v [ ]])

R ⊂ R′ OKsec(R,C )
OKsec(R,C [R′[[ ]]])

OKsec(R \R′,C )
OKsec(R,C [grantR′ in [ ]])
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the notion of reduction is given by the following set of rules:

(Var) 〈i[c1 · · · cj ], C 〉 →sec 〈ci, C 〉 if i ≤ j

(Beta) 〈((λt)[s]) v, C 〉 →sec 〈t[v · s], C 〉
(Prop) 〈(t0 t1)[s], C 〉 →sec 〈(t0[s]) (t1[s]), C 〉
(PropG) 〈(grantR in t)[s], C 〉 →sec 〈grantR in t[s], C 〉
(PropF ) 〈(R[t])[s], C 〉 →sec 〈R[t[s]], C 〉
(PropT ) 〈(testR then t0 else t1)[s], C 〉 →sec 〈testR then t0[s] else t1[s], C 〉
(Frame) 〈R[v], C 〉 →sec 〈v, C 〉
(Grant) 〈grantR in v, C 〉 →sec 〈v, C 〉
(Test1) 〈testR then c1 else c2, C 〉 →sec 〈c1, C 〉 if OKsec(R,C )

(Test2) 〈testR then c1 else c2, C 〉 →sec 〈c2, C 〉 otherwise

(Fail) 〈fail[s], C 〉 →sec 〈fail, [ ]〉

The only context-sensitive rules are (Test1) and (Test2), which perform a re-
duction step after inspecting the entire context C , and (Fail) which aborts the
computation.

7.1.3 An eval/apply abstract machine

Refocusing, compressing the intermediate transitions, and unfolding the data type
of closures mechanically yields the following environment-based machine:

〈i, s, C 〉 ⇒sec 〈C , s(i)〉
〈λt, s, C 〉 ⇒sec 〈C , (λt, s)〉

〈t0 t1, s, C 〉 ⇒sec 〈t0, s, C [[ ] (t1, s)]〉
〈grantR in t, s, C 〉 ⇒sec 〈t, s, C [grantR in [ ]]〉

〈testR then t0 else t1, s, C 〉 ⇒sec 〈t0, s, C 〉 if OKsec(R,C )
〈testR then t0 else t1, s, C 〉 ⇒sec 〈t1, s, C 〉 otherwise

〈fail, s, C 〉 ⇒sec fail

〈R[t], s, C 〉 ⇒sec 〈t, s, C [R[[ ]]]〉
〈[ ], v〉 ⇒sec v

〈C [[ ] (t, s)], v〉 ⇒sec 〈t, s, C [v [ ]]〉
〈C [(λt, s) [ ]], v〉 ⇒sec 〈t, v · s, C 〉

〈C [grantR in [ ]], v〉 ⇒sec 〈C , v〉
〈C [R[[ ]]], v〉 ⇒sec 〈C , v〉

This machine is a storeless version of Clements and Felleisen’s fg machine [16,
Figure 1].
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7.1.4 Formal correspondence

Proposition 7. For any term t in the λρ̂sec-calculus,

t[•] →∗
sec v if and only if 〈t, •, [ ]〉 ⇒∗

sec v.

The λρ̂sec-calculus therefore directly corresponds to the storeless version of the fg
machine.

7.2 Properly tail-recursive stack inspection

On the ground that the fg machine is not properly tail-recursive, Clements and
Felleisen presented a new, properly tail-recursive, machine—the cm machine [16,
Figure 2]—thereby debunking the folklore that stack inspection is incompatible
with proper tail recursion. Below, we consider the storeless version of the cm
machine and we present the underlying calculus of closures.

7.2.1 The storeless cm machine

The cm machine operates on a λsec-term, an environment, and an evaluation
context enriched with updatable permission tables (noted m below):

(stack frames) C ::= m[ ] | C [[ ](c,m)] | C [(v,m)[ ]]

A permission table is a partial function with a finite domain from a set of permis-
sions P to the set {⊥ = not granted,> = granted}. A permission table with the
empty domain is denoted ε.

Given the predicate OKcm
sec(R,C ),

OKcm
sec(∅,C )

R ∩m−1(⊥) = ∅
OKcm

sec(R,m[ ])

R ∩m−1(⊥) = ∅ OKcm
sec(R \m−1(>),C )

OKcm
sec(R,C [[ ](c,m)])

R ∩m−1(⊥) = ∅ OKcm
sec(R \m−1(>),C )

OKcm
sec(R,C [(v,m)[ ]])
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the transitions of the storeless cm machine read as follows:

〈i, s, C 〉 ⇒cm
sec 〈C , s(i)〉

〈λt, s, C 〉 ⇒cm
sec 〈C , (λt, s)〉

〈t0 t1, s, C 〉 ⇒cm
sec 〈t0, s, C [[ ]((t1, s), ε)]〉

〈grantR in t, s, C 〉 ⇒cm
sec 〈t, s, C [R 7→ >]〉

〈testR then t0 else t1, s, C 〉 ⇒cm
sec 〈t0, s, C 〉 if OKcm

sec(R,C )
〈testR then t0 else t1, s, C 〉 ⇒cm

sec 〈t1, s, C 〉 otherwise
〈fail, s, C 〉 ⇒cm

sec fail

〈R[t], s, C 〉 ⇒cm
sec 〈t, s, C [R 7→ ⊥]〉

〈m[ ], v〉 ⇒cm
sec v

〈C [[ ]((t, s),m)], v〉 ⇒cm
sec 〈t, s, C [(v, ε)[ ]]〉

〈C [((λt, s),m)[ ]], v〉 ⇒cm
sec 〈t, v · s, C 〉

where R = P \ R and C [R 7→ v] is a modification of the permission table in the
context C obtained by granting or restricting the permissions R, depending on v.

The following proposition states the equivalence of the fg machine and the cm
machine with respect to the values they compute:

Proposition 8. For any term t in the λρ̂sec-calculus,

〈t, •, [ ]〉 ⇒∗
sec v if and only if 〈t, •, [ ]〉 (⇒cm

sec)
∗
v.

Moreover, it can be shown that each step of the fg machine is simulated by at most
one step of the cm machine [16]. At the level of the calculus, this is reflected in
the fact that the reduction semantics implemented by the cm machine has fewer
reductions than λρ̂sec.

7.2.2 The underlying calculus λρ̂cm
sec

The calculus corresponding to the storeless cm machine is very close to the λρ̂sec-
calculus. The grammar of terms, closures and substitutions is the same, but the
reduction contexts (which correspond to the stack frames in the machine) contain
permission tables. Consequently, the functions plug and decompose are defined
in a non-standard way:

plug (c,m[ ]) = build (m, c)
plug (c0,C [[ ](c1,m)]) = plug (build (m, c0 c1),C )
plug (c,C [(v,m)[ ]]) = plug (build (m, v c),C )

where the auxiliary function build conservatively constructs a closure based on the
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permission table of the reduction context:

buildG (m, c) =
{

c if m−1(>) = ∅
grantm−1(>) in c otherwise

buildF (m, c) =
{

c if m−1(⊥) = ∅
m−1(⊥)[c] otherwise

build (m, c) = buildF (m, buildG (m, c))

Any closure that is not already a value or a potential redex, can be further
decomposed as follows:

decompose (c0 c1,C ) = decompose (c0,C [[ ](c1, ε)])
decompose (grantR in c,C ) = decompose (c,C [R 7→ >])

decompose (R[c],C ) = decompose (c,C [R 7→ ⊥])
decompose (v,C [[ ](c,m)]) = decompose (c,C [(v, ε)[ ]])

The notion of reduction includes most rules of the λρ̂sec-calculus, except for
(Frame) and (Grant).

From a calculus standpoint, Clements and Felleisen therefore obtained proper
tail recursion by changing the computational model (witness the change from
OKsec to OKcm

sec) and by simplifying the reduction rules and modifying the com-
patibility rules.

7.3 State-based properly tail-recursive stack inspection

On the observation that the stack of the cm machine can be unzipped into the
usual control stack of the CEK machine and a state-like list of permission tables,
Ager et al. have presented an unzipped version of the cm machine (characterizing
properly tail-recursive stack inspection as a monad in passing) [4]. We first present
this machine, and then the corresponding calculus of closures.

7.3.1 The unzipped storeless cm machine

The unzipped cm machine operates on a λsec-term, an environment, and an ordi-
nary evaluation context. In addition, the machine has a read-write security reg-
ister m holding the current permission table and a read-only security register ms
holding a list of outer permission tables. Given the predicate OKucm

sec (R,m,ms),

OKucm
sec (∅,m,ms)

R ∩m−1(⊥) = ∅
OKucm

sec (R,m, •)

R ∩m−1(⊥) = ∅ OKucm
sec (R \m−1(>),m ′,ms)

OKucm
sec (R,m,m ′ ·ms)
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the transitions of the unzipped storeless cm machine read as follows:

〈i, s, m,ms , C 〉 ⇒ucm
sec 〈C , s(i), ms〉

〈λt, s, m,ms , C 〉 ⇒ucm
sec 〈C , (λt, s), ms〉

〈t0 t1, s, m,ms , C 〉 ⇒ucm
sec 〈t0, s, ε,m ·ms, C [[ ] (t1, s)]〉

〈grantR in t, s, m,ms , C 〉 ⇒ucm
sec 〈t, s, m[R 7→>],ms , C 〉

〈testR then t0 else t1, s, m,ms , C 〉 ⇒ucm
sec 〈t0, s, m,ms , C 〉

if OKucm
sec (R,m,ms)

〈testR then t0 else t1, s, m,ms , C 〉 ⇒ucm
sec 〈t1, s, m,ms , C 〉

otherwise
〈R[t], s, m,ms , C 〉 ⇒ucm

sec 〈t, s, m[R 7→⊥],ms , C 〉
〈fail, s, m,ms , C 〉 ⇒ucm

sec fail

〈[ ], v, •〉 ⇒ucm
sec v

〈C [[ ] (t, s)], v, ms〉 ⇒ucm
sec 〈t, s, ε,ms, C [v [ ]]〉

〈C [(λt, s) [ ]], v, m ·ms〉 ⇒ucm
sec 〈t, v · s, m,ms , C 〉

The following proposition states the equivalence of the cm machine and the
unzipped cm machine:

Proposition 9. For any term t in the λρ̂sec-calculus,

〈t, •, [ ]〉 (⇒cm
sec)

∗ v if and only if 〈t, •, ε, •, [ ]〉 (⇒ucm
sec )∗ v.

Moreover, it can be shown that each step of the cm machine is simulated by one
step of the unzipped cm machine.

7.3.2 The language of λρ̂ucm
sec

(terms) t ::= i | λt | t t | grantR in t | testR then t else t |
testR then t else t | R[t] | fail

(closures) c ::= t[s]
(values) v ::= (λt)[s] | fail

(substitutions) s ::= • | c · s
(reduction contexts) C ::= [ ] | C [[ ] c] | C [v [ ]]
(annotated closures) c̃ ::= c[m,ms ] | c c̃ | c̃ c | fail

(annotated values) ṽ ::= v[m,ms ] | fail

7.3.3 Notion of context-sensitive reduction

The notion of reduction is specified by the rules below. Compared to the rules of
Section 7.1.2, the current permission table and the list of outer permission tables
are propagated locally to each closure being evaluated. When a value is consumed,
the current permission table is discarded.
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(Prop) 〈(t0 t1)[s][m,ms ], C 〉 →ucm
sec 〈(t0[s][ε,m ·ms ]) (t1[s]), C 〉

(Var) 〈i[c1 · · · cj ][m,ms ], C 〉 →ucm
sec 〈ci[m,ms ], C 〉 if i ≤ j

(Test1) 〈testR then t0 else t1[s][m,ms ], C 〉 →ucm
sec 〈t0[s][m,ms ], C 〉

if OKucm
sec (R,m,ms)

(Test2) 〈testR then t0 else t1[s][m,ms ], C 〉 →ucm
sec 〈t1[s][m,ms ], C 〉

otherwise
(Fail) 〈fail[s][m,ms ], C 〉 →ucm

sec 〈fail, [ ]〉
(Switch) 〈(v[m,ms ]) c, C 〉 →ucm

sec 〈v (c[ε,ms ]), C 〉
(Beta) 〈((λt)[s]) (v[m,m ′ ·ms]), C 〉 →ucm

sec 〈t[v · s][m ′,ms ], C 〉
(Frame) 〈R[t][s][m,ms ], C 〉 →ucm

sec 〈t[s][m[R 7→⊥],ms], C 〉
(Grant) 〈grantR in t[s][m,ms ], C 〉 →ucm

sec 〈t[s][m[R 7→>],ms ], C 〉

A new reduction rule (Switch) is now necessary to go from one evaluated sub-
closure to a subclosure to evaluate. The (Beta) rule doubles up with discarding
the permission table of the actual parameter. The (Frame) and (Grant) rules
embody the state counterpart of Clements and Felleisen’s design to enable proper
tail recursion.

7.3.4 Formal correspondence

Proposition 10. For any term t in the λsec-calculus,

t[•](→ucm
sec )∗v if and only if 〈t, •, ε, •, [ ]〉 (⇒ucm

sec )∗ v.

7.4 Conclusion

We have presented three corresponding calculi of closures and machines for stack
inspection, showing first how the storeless fg machine reflects the λρ̂sec-calculus,
second, how the λρ̂cm

sec-calculus reflects the storeless cm machine, and third, how
the λρ̂ucm

sec -calculus reflects the unzipped storeless cm machine. In doing so, we
have provided a calculus account of machine design and optimization.

8 A calculus for proper tail-recursion

At PLDI’98 [19], Clinger presented a properly tail-recursive semantics for Scheme
in the form of a store-based abstract machine. This machine models the memory-
allocation behavior of function calls in Scheme and Clinger used it to specify in
which sense an implementation should not run out of memory when processing a
tail-recursive program (such as a program in CPS).

We first present a similar machine for the λ-calculus with left-to-right call-
by-value evaluation and assignments. This machine is in the range of refocusing,
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transition compression, and closure unfolding, and so we next present the corre-
sponding store-based calculus, λρ̂ptr.

8.1 A simplified version of Clinger’s abstract machine

Our simplified version is an eval/apply machine with an environment and a store:

〈x, s, C , σ〉 ⇒ptr 〈C , σ(s(x)), σ〉
〈λx.t, s, C , σ〉 ⇒ptr 〈C , (λx.t, s), σ〉
〈t0 t1, s, C , σ〉 ⇒ptr 〈t0, s, C [[ ] (t1, s)], σ〉

〈x := t, s, C , σ〉 ⇒ptr 〈t, s, C [upd(s(x), [ ])], σ〉
〈[ ], v, σ〉 ⇒ptr (v, σ)

〈C [[ ] (t, s)], v, σ〉 ⇒ptr 〈t, s, C [v [ ]], σ〉
〈C [(λx.t, s) [ ]], v, σ〉 ⇒ptr 〈t, (x, `) · s, C , σ[` 7→ v]〉

if ` does not occur within s,C , v, σ

〈C [upd(`, [ ])], v, σ〉 ⇒ptr 〈C , σ(`), σ[` 7→ v]〉
Locations ` range over an unspecified set of locations. A store σ is a finite mapping
from locations to value closures. Denotable values are locations.

Clinger’s machine also has a garbage-collection rule [19, Figure 5 and Sec-
tion 3], but for simplicity we ignore it here.

8.2 The language of λρ̂ptr

The abstract syntax of the language is as follows:

(terms) t ::= x | λx.t | t t | x := t

(closures) c ::= t[s] | c c

(values) v ::= (λx.t)[s]
(substitutions) s ::= • | (x, `) · s
(red. contexts) C ::= [ ] | C [[ ] c] | C [v [ ]] | C [upd(`, [ ])]
(store) σ ::= • | σ[` 7→ v]
(store closures) c̃ ::= c[σ]
(store values) ṽ ::= v[σ]

(store contexts) C̃ ::= C [σ]

8.3 Notion of context-sensitive reduction

In the rules below, (Var) dereferences the store; (Beta) allocates a fresh loca-
tion, and extends both the substitution and the store with it; (Prop) is context-
insensitive and therefore essentially as in the λρ̂-calculus; and (Upd) updates the
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store.

(Var) 〈i[c1 · · · cj ], C [σ]〉 →ptr 〈σ(ci), C [σ]〉 if i ≤ j

(Beta) 〈((λx.t)[s]) v, C [σ]〉 →ptr 〈t[(x, `) · s], C [σ[` 7→ v]]〉
if ` does not occur withins, v,C , σ

(Prop) 〈(t0 t1)[s], C [σ]〉 →ptr 〈(t0[s]) (t1[s]), C [σ]〉
(Upd) 〈upd(`, v), C [σ]〉 →ptr 〈σ(`), C [σ[` 7→ v]]〉

Refocusing, compressing the intermediate transitions, and unfolding the data type
of closures mechanically yields the abstract machine of Section 8.1.

8.4 Formal correspondence

Proposition 11. For any term t in the λρ̂ptr-calculus,

t[•][•] →∗
ptr v[σ] if and only if 〈t, •, [ ], •〉 ⇒∗

ptr (v, σ).

The λρ̂ptr-calculus therefore directly corresponds to the simplified version of Clin-
ger’s properly tail-recursive machine.

In Section 7, we showed storeless variants of two machines for stack inspection
(the fg and the cm machines). The original versions of these machines use a store
in the Clinger fashion [16], and we can exhibit their underlying calculi with an
explicit representation of the store, as straightforward extensions of the storeless
calculi. We do not include them here for lack of space.

9 A lazy calculus of closures

The store-based account of proper tail-recursion from Section 8 suggests the fol-
lowing lazy calculus of closures, λρ̂l.

9.1 The language of λρ̂l

The abstract syntax of the language is as follows:

(terms) t ::= i | λt | t t

(closures) c ::= t[s] | c ` | upd(`, c)
(values) v ::= (λt)[s]
(substitutions) s ::= • | ` · s
(reduction contexts) C ::= [ ] | C [[ ] `] | C [upd(`, [ ])]
(store) σ ::= • | σ[` 7→ v]
(store closures) c̃ ::= c[σ]
(store values) ṽ ::= v[σ]

(store contexts) C̃ ::= C [σ]
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9.2 Notion of context-sensitive reduction

The notion of reduction is specified by the five rules shown below.

(Var1) 〈i[`1 · · · `j ], C [σ]〉 →l 〈v, C [σ]〉 if σ(`i) = v

(Var2) 〈i[`1 · · · `j ], C [σ]〉 →l 〈upd(`i, c), C [σ]〉 if σ(`i) = c

(Beta) 〈((λt)[s]) `, C [σ]〉 →l 〈t[` · s], C [σ]〉
(App) 〈(t0 t1)[s], C [σ]〉 →l 〈(t0[s]) `, C [σ[` 7→ t1[s]]]〉

where ` does not occur in s,C , σ

(Upd) 〈upd(`, v), C [σ]〉 →l 〈v, C [σ[` 7→ v]]〉
Variables denote locations, and have two reduction rules, depending on whether
the store holds a value or not at that location. In the former case—handled by
(Var1)—the result is this value, the current context, and the current store. In the
latter case—handled by (Var2)—a special closure upd(`, c) is created, indicating
that c is a shared computation. When this computation completes and yields a
value, the store at location ` should be updated with this value, which is achieved
by (Upd). Since every argument to an application can potentially be shared,
(App) conservatively allocates a new location in the store for such shared closures.
(Beta) extends the substitution with this location.

9.3 An eval/apply abstract machine

Refocusing, compressing the intermediate transitions, and unfolding the data type
of closures mechanically yields the following store-based machine:3

〈i, s, C , σ〉 ⇒l 〈C , (λt′, s′), σ〉
where s(i) = ` and σ(`) = (λt′)[s′]

〈i, s, C , σ〉 ⇒l 〈t′, s′, C [upd(`, [ ])], σ〉
where s(i) = ` and σ(`) = t′[s′]

〈λt, s, C , σ〉 ⇒l 〈C , (λt, s), σ〉
〈t0 t1, s, C , σ〉 ⇒l 〈t0, s, C [[ ] `], σ[` 7→ (t1, s)]〉

where ` does not occur in s,C , σ

〈[ ], v, σ〉 ⇒l (v, σ)
〈C [[ ] `], (λt, s), σ〉 ⇒l 〈t, ` · s, C , σ〉
〈C [upd(`, [ ])], v, σ〉 ⇒l 〈C , v, σ[` 7→ v]〉

This lazy abstract machine coincides with the one derived by Ager et al. out of a
call-by-need interpreter for the λ-calculus [3], thereby connecting the present syn-
tactic correspondence between calculi and abstract machines with the functional
correspondence between evaluators and abstract machines [2, 4, 7].

3When a shared closure is to be evaluated, the current context is extended with what is
known as an ‘update marker’ in the Three Instruction Machine (denoted C [upd(`, [ ])] here).
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9.4 Formal correspondence

Proposition 12. For any term t in the λρ̂l-calculus,

t[•][•] →∗
l v[σ] if and only if 〈t, •, [ ], •〉 ⇒∗

l (v, σ).

The λρ̂l-calculus therefore directly corresponds to call-by-need evaluation [76].
In λρ̂l, sharing is made possible through a global heap where actual param-

eters are stored. On the other hand, a number of other calculi modeling call by
need extend the set of terms with a local let-like construct, either by statically
translating the source language into an intermediate language with explicit indi-
cations of sharing (as in Launchbury’s approach [57]), or by providing dynamic
reduction rules to the same effect (as in Ariola et al.’s calculus [5]). A sequence
of let constructs binding variables to shared computations is a local version of a
global heap where shared computations are bound to locations; extra reductions
are then needed to propagate all the let operators to the top level.

Another specificity is that allocation occurs early in λρ̂l, i.e., a new cell is
allocated in the store every time an application is evaluated. Allocation, however,
occurs late in Ariola et al.’s semantics, i.e., a new binding is created only when the
operator of the application is known to be a λ-abstraction. Delaying allocation is
useful in the presence of strict functions, which we do not consider here.

We can construct a local version of our calculus with either of the store prop-
agated inside closures or of late allocation, and from there, mechanically derive
the corresponding abstract machine.

10 Conclusion

We have presented a series of calculi and abstract machines accounting for a variety
of computational effects, making it possible to directly reason about a computa-
tion in the calculus and in the corresponding abstract machine (horizontally in
the diagram below) and to directly account for actual and explicit substitutions
both in the world of calculi and in the world of abstract machines (vertically in
the diagram below, where σ maps a closure into the corresponding λ-term and
an environment-machine configuration into a configuration in the corresponding
machine with actual substitutions):

λ-calculus oo
syntactic

correspondence
// machine with
actual substitutions

λρ̂-calculus oo
syntactic

correspondence
//

σ

OO

environment-based
machine

σ

OO

29



The correspondence between each calculus and each abstract machine is simple
and each can be mechanically built from the other. All of the calculi are new.
Many of the abstract machines are known and have been independently designed
and proved correct.

The work reported here leads us to drawing the following conclusions.

Curien’s calculus of closures: Once extended to account for one-step reduc-
tion, λρ directly corresponds to the notions of evaluation (i.e., weak-head nor-
malization) accounted for by environment-based machines, even in the presence
of computational effects (state and control).

Refocusing: Despite its pragmatic origin—fusing a plug function and a de-
composition function in a reduction-based evaluation function to improve its ef-
ficiency [32], and in combination with compressing intermediate transitions and
unfolding closures, refocusing proves consistently useful to construct reduction-
free evaluation functions in the form of abstract machines, even in the presence
of computational effects.

Defunctionalization: Despite its practical origin—representing a higher-order
function with first-order means [65], defunctionalization proves consistently useful,
witness the next item and also the fact that except for the abstract machines
for λρ̂F and the cm machine, all the abstract machines in this article are in
defunctionalized form.

Reduction contexts and evaluation contexts: There are three objective
reasons—one extensional and two intensional—why contexts are useful as well as,
in some sense, unavoidable:

• reduction contexts are in one-to-one correspondence with the compatibility
rules of a calculus;

• reduction contexts are the data type of the defunctionalized continuation
of a one-step reduction function (as used in a reduction-based (weak-head)
normalization function); and

• evaluation contexts are the data type of the defunctionalized continuation
of an evaluation function (as used in a reduction-free (weak-head) normal-
ization function).

If nothing else, each of these three reasons has practical value as a guideline for
writing the grammar of reduction / evaluation contexts (which can be tricky in
practice). But more significantly [26], reduction contexts and evaluation con-
texts coincide, which means that they mediate between one-step reduction and
evaluation, particularly since, as initiated by Reynolds [65], defunctionalizing a
continuation-passing evaluator yields an abstract machine [2, 3, 4, 7], and since
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as already pointed out above, a vast number of abstract machines are in defunc-
tionalized form [9, 11, 27]:

context

plug

wwoooooooooooooo
apply

''OOOOOOOOOOOOOO

one-step
reduction function

eval/apply
abstract machine

evaluation function
in CPS

defunctionalization

OO

Together, the syntactic correspondence and the functional correspondence con-
nect apparently distinct approaches to the same computational situations. We
already illustrated this connection in Section 5 with delimited continuations; let
us briefly illustrate it with the simpler example of call/cc:

Call/cc was introduced in the Scheme programming language [17] as a
Church encoding of Reynolds’s escape operator [65]. A typed version
of it is available in Standard ML of New Jersey [46] and Griffin has
identified its logical content [43]. It is endowed with a variety of spec-
ifications: a CPS interpreter [47, 65], a denotational semantics [51],
a big-step operational semantics [46], the CEK machine [38], calculi
in the form of reduction semantics [37], and a number of implemen-
tation techniques [18, 49]—not to mention its call-by-name version in
the archival version of Krivine’s machine [54].

Question: How do we know that all the specifications in this semantic jungle
define the same call/cc?

The elements of answer we contribute here are that the syntactic correspon-
dence links calculi and abstract machines, and the functional correspondence links
abstract machines and interpreters. So by construction, all the specifications that
are inter-derivable are consistent.

Normalization by evaluation: Finally, refocusing provides a guideline for
constructing reduction-free normalization functions out of reduction-based ones
[25]. The reduction-free normalization functions take the form of eval/apply ab-
stract machines, which usually are in defunctionalized form, which paves the way
to writing normalization functions as usually encountered in the area of normal-
ization by evaluation. We have illustrated the method with weak reduction and
weak-head normalization (i.e., evaluation), but it also works for strong reduction
and normalization, thus linking one-step reduction, abstract machines for strong
reduction, and normalization functions.
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