Equational Axioms for Probabilistic Bisimilarity (Preliminary Report)

Luca Aceto, Zoltán Ésik, Anna Ingólfsdóttir

Abstract


This paper gives an equational axiomatization of probabilistic bisimulation equivalence for a class of finite-state agents previously studied by Stark and Smolka ((2000) Proof, Language, and Interaction: Essays in Honour of Robin Milner, pp. 571-595). The axiomatization is obtained by extending the general axioms of iteration theories (or iteration algebras), which characterize the equational properties of the fixed point operator on (omega-)continuous or monotonic functions, with three axiom schemas that express laws that are specific to probabilistic bisimilarity. Hence probabilistic bisimilarity (over finite-state agents) has an equational axiomatization relative to iteration algebras.

Full Text:

PDF


DOI: http://dx.doi.org/10.7146/brics.v9i6.21724
This website uses cookies to allow us to see how the site is used. The cookies cannot identify you or any content at your own computer.
OK


ISSN: 0909-0878 

Hosted by the State and University Library and Aarhus University Library