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A Generalisation, a Simplification and some

Applications of Paillier’s Probabilistic
Public-Key System

Ivan Damg̊ard and Mads Jurik

University of Aarhus, BRICS?

Abstract. We propose a generalisation of Paillier’s probabilistic public
key system, in which the expansion factor is reduced and which allows
to adjust the block length of the scheme even after the public key has
been fixed, without loosing the homomorphic property. We show that
the generalisation is as secure as Paillier’s original system.
We construct a threshold variant of the generalised scheme as well as
zero-knowledge protocols to show that a given ciphertext encrypts one
of a set of given plaintexts, and protocols to verify multiplicative relations
on plaintexts.
We then show how these building blocks can be used for applying the
scheme to efficient electronic voting. This reduces dramatically the work
needed to compute the final result of an election, compared to the previ-
ously best known schemes. We show how the basic scheme for a yes/no
vote can be easily adapted to casting a vote for up to t out of L can-
didates. The same basic building blocks can also be adapted to pro-
vide receipt-free elections, under appropriate physical assumptions. The
scheme for 1 out of L elections can be optimised such that for a certain
range of parameter values, a ballot has size only O(log L) bits.

1 Introduction

In [9], Paillier proposes a new probabilistic encryption scheme based on compu-
tations in the group Z∗

n2 , where n is an RSA modulus. This scheme has some
very attractive properties, in that it is homomorphic, allows encryption of many
bits in one operation with a constant expansion factor, and allows efficient de-
cryption. In this paper we propose a generalisation of Paillier’s scheme using
computations modulo ns+1, for any s ≥ 1. We also show that the system can
be simplified (without degrading security) such that the public key can consist
of only the modulus n. This allows instantiating the system such that the block
length for the encryption can be chosen freely for each encryption, independently
of the size of the public key, and without loosing the homomorphic property. The
generalisation also allows reducing the expansion factor from 2 for Paillier’s orig-
inal system to almost 1. We prove that the generalisation is as secure as Paillier’s
original scheme.
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We propose a threshold variant of the generalised system, allowing a number
of servers to share knowledge of the secret key, such that any large enough
subset of them can decrypt a ciphertext, while smaller subsets have no useful
information. We prove in the random oracle model that the scheme is as secure
as a standard centralised implementation.

We also propose a zero-knowledge proof of knowledge allowing a prover to
show that a given ciphertext encodes a given plaintext. From this we derive
other tools, such as a protocol showing that a ciphertext encodes one out of a
number of given plaintexts. Finally, we propose a protocol that allows verifica-
tion of multiplicative relations among encrypted values without revealing extra
information.

We look at applications of this to electronic voting schemes. A large number
of such schemes is known, but the most efficient one, at least in terms of the
work needed from voters, is by Cramer, Gennaro and Schoenmakers [4]. This
protocol provides in fact a general framework that allows usage of any proba-
bilistic encryption scheme for encryption of votes, if the encryption scheme has
a set of ”nice” properties, in particular it must be homomorphic. The basic idea
of this is straightforward: each voter broadcasts an encryption of his vote (by
sending it to a bulletin board) together with a proof that the vote is valid. All
the valid votes are then combined to produce an encryption of the result, using
the homomorphic property of the encryption scheme. Finally, a set of trustees
(who share the secret key of the scheme in a threshold fashion) can decrypt and
publish the result.

Paillier pointed out already in [9] that since his encryption scheme is homo-
morphic, it may be applicable to electronic voting. In order to apply it in the
framework of [4], however, some important building blocks are missing: one needs
an efficient proof of validity of a vote, and also an efficient threshold variant of
the scheme, so that the result can be decrypted without allowing a single entity
the possibility of learning how single voters voted.

These building blocks are precisely what we provide here. Thus we immedi-
ately get a voting protocol. In this protocol, the work needed from the voters
is of the same order as in the original version of [4]. However, the work needed
to produce the result is reduced dramatically, as we now explain. With the El
Gamal encryption used in [4], the decryption process after a yes/no election pro-
duces gR mod p, where p is prime, g is a generator and R is the desired result.
Thus one needs to solve a discrete log problem in order to find the result. Since
R is bounded by the number of voters M , this is feasible for moderate size M ’s.
But it requires Ω(

√
M) exponentiations, and may certainly be something one

wants to avoid for large scale elections. The problem becomes worse, if we con-
sider an election where we choose between L candidates, L ≥ 2. The method
given for this in [4] is exponential in L in that it requires time Ω(

√
M

L−1
), and

so is prohibitively expensive for elections with large L.
In the scheme we propose below, this work can be removed completely. Our

decryption process produces the desired result directly. We also give ways to
implement efficiently constraints on voting that occur in real elections, such as
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allowing to vote for precisely t out of the L candidates, or to vote for up to t of
them. In each of these schemes, the size of a single ballot is O(k·L), where k is the
bit length of the modulus used1. We propose a variant using a different technique
where ballots have size O(max(k, L log M) · log L). Thus for k ≥ L logM , this
is much more efficient, and even optimal up to a constant factor, since with less
than log L bits one cannot distinguish between the L candidates. Furthermore
this scheme requires only 1 decryption operation, even when L > 2.

2 Related Work

In work independent from, but earlier than ours, Fouque, Poupard and Stern
[6] proposed the first threshold version of Paillier’s original scheme. Like our
threshold scheme, [6] uses an adaptation of Shoup’s threshold RSA scheme [10],
but beyond this the techniques are somewhat different, in particular because
we construct a threshold version for our generalised crypto system (and not
only Paillier’s original scheme). In [6] voting was also pointed out as a potential
application, however, no suggestion was made there for protocols to prove that
an encrypted vote is correctly formed, something that is of course necessary for
a secure election in practice.

In work done concurrently with and independent from ours, Baudron, Fou-
que, Pointcheval, Poupard and Stern [1] propose a voting scheme somewhat
similar to ours. Their work can be seen as being complementary to ours in
the sense that their proposal is more oriented towards the system architectural
aspects of a large scale election, and less towards optimisation of the building
blocks. To compare to their scheme, we first note that there the modulus length k
must be chosen such that k > L log M . The scheme produces ballots of size O(k ·
L). An estimate with explicit constants is given in [1] in which the dominating
term in our notation is 9kL.

Because our voting scheme uses the generalised Paillier crypto system, k can
be chosen freely, and the voting scheme can still accommodate any values of
L, M . If we choose k as in [1], i.e. k > L log M , then the ballots we produce have
size O(k · log L). Working out the concrete constants involved, one finds that our
complexity is dominated by the term 11k log L. So for large scale elections we
have gained a significant factor in complexity compared to [1].

In [8], Hirt and Sako propose a general method for building receipt-free elec-
tion schemes, i.e. protocols where vote-buying or -coercing is not possible because
voters cannot prove to others how they voted. Their method can be applied to
make a receipt-free version of the scheme from [4]. It can also be applied to our
scheme, with the same efficiency gain as in the non-receipt free case.

1 All complexities given here assume that the length of challenges for the zero-
knowledge proofs is at most k. Also, strictly speaking, this complexity only holds if
k > log M , however, since k ≥ 1000 is needed for security anyway, this will always
be satisfied in practice

3



3 A Generalisation of Paillier’s Probabilistic Encryption
Scheme

The public-key crypto-system we describe here uses computations modulo ns+1

where n is an RSA modulus and s is a natural number. It contains Paillier’s
scheme [9] as a special case by setting s = 1.

We start from the observation that if n = pq, p, q odd primes, then Z∗
ns+1

as a multiplicative group is a direct product G × H , where G is cyclic of order
ns and H is isomorphic to Z∗

n, which follows directly from elementary number
theory. Thus, the factor group Ḡ = Z∗

ns+1/H is also cyclic of order ns. For an
arbitrary element a ∈ Z∗

ns+1 , we let ā = aH denote the element represented by
a in the factor group Ḡ.

Lemma 1. For any s < p, q, the element n + 1 has order ns in Z∗
ns+1 .

Proof. Consider the integer (1 + n)i =
∑i

j=0

(
i
j

)
nj. This number is 1 modulo

ns+1 for some i if and only if
∑i

j=1

(
i
j

)
nj−1 is 0 modulo ns. Clearly, this is the

case if i = ns, so it follows that the order of 1 + n is a divisor in ns, i.e., it
is a number of form pαqβ , where α, β ≤ s. Set a = pαqβ, and consider a term(
a
j

)
nj−1 in the sum

∑a
j=1

(
a
j

)
nj−1. We claim that each such term is divisible by

a: this is trivial if j > s, and for j ≤ s, it follows because j! can then not have
p or q as prime factors, and so a must divide

(
a
j

)
. Now assume for contradiction

that a = pαqβ < ns. Without loss of generality, we can assume that this means
α < s. We know that ns divides

∑a
j=1

(
a
j

)
nj−1. Dividing both numbers by a,

we see that p must divide the number
∑a

j=1

(
a
j

)
nj−1/a. However, the first term

in this sum after division by a is 1, and all the rest are divisible by p, so the
number is in fact 1 modulo p, and we have a contradiction.

Since the order of H is relatively prime to ns this implies immediately that
the element 1 + n := (1 + n)H ∈ Ḡ is a generator of Ḡ, except possibly for
s ≥ p, q. So the cosets of H in Z∗

ns+1 are

H, (1 + n)H, (1 + n)2H, ..., (1 + n)ns−1H,

which leads to a natural numbering of these cosets.
The final technical observation we need is that it is easy to compute i from

(1 + n)i mod ns+1. We now show how to do this. If we define the function L()
by L(b) = (b − 1)/n then clearly we have

L((1 + n)i mod ns+1) = (i +
(

i

2

)
n + ... +

(
i

s

)
ns−1) mod ns

We now describe an algorithm for computing i from this number.
The general idea of the algorithm is to extract the value part by part, so

that we first extract i1 = i mod n, then i2 = i mod n2 and so forth. It is easy
to extract i1 = L((1 + n)i mod n2) = i mod n. Now we can extract the rest by
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the following induction step: In the j’th step we know ij−1. This means that
ij = ij−1 + k ∗ nj−1 for some 0 ≤ k < n. If we use this in

L((1 + n)i mod nj+1) = (ij +
(

ij
2

)
n + ... +

(
ij
j

)
nj−1) mod nj

We can notice that each term
(

ij

t+1

)
nt for j > t > 0 satisfies that

(
ij

t+1

)
nt =(

ij−1
t+1

)
nt mod nj . This is because the contributions from k ∗ nj−1 vanish modulo

nj after multiplication by n. This means that we get:

L((1 + n)i mod nj+1) = (ij−1 + k ∗ nj−1 +
(

ij−1

2

)
n + ...+

(
ij−1

j

)
nj−1) mod nj

Then we just rewrite that to get what we wanted

ij = ij−1 + k ∗ nj−1

= ij−1 + L((1 + n)i mod nj+1) − (ij−1 +
(

ij−1

2

)
n

+ ... +
(

ij−1

j

)
nj−1) mod nj

= L((1 + n)i mod nj+1) − (
(

ij−1

2

)
n + ... +

(
ij−1

j

)
nj−1) mod nj

This equation leads to the following algorithm:

i := 0;
for j:= 1 to s do
begin

t1 := L(a mod nj+1);
t2 := i;
for k:= 2 to j do
begin

i := i − 1;
t2 := t2 ∗ i mod nj ;
t1 := t1 − t2∗nk−1

k! mod nj ;
end
i := t1;

end

We are now ready to describe our cryptosystem. In fact, for each natural
number s, we can build a cryptosystem CSs, as follows:
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Key Generation On input the security parameter k, choose an RSA modulus
n = pq of length k bits2. Also choose an element g ∈ Z∗

ns+1 such that
g = (1 + n)jx mod ns+1 for a known j relatively prime to n and x ∈ H .
This can be done, e.g., by choosing j, x at random first and computing g;
some alternatives are described later. Let λ be the least common multiple
of p− 1 and q − 1. By the Chinese Remainder Theorem, choose d such that
d mod n ∈ Z∗

n and d = 0 mod λ. Any such choice of d will work in the
following. In Paillier’s original scheme d = λ was used, which is the smallest
possible value. However, when making a threshold variant, other choices are
better - we expand on this in the following section.
Now the public key is n, g while the secret key is d.

encryption The plaintext set is Zns . Given a plaintext i, choose a random
r ∈ Z∗

ns+1 , and let the ciphertext be E(i, r) = girns

mod ns+1.
decryption Given a ciphertext c, first compute cd mod ns+1. Clearly, if c =

E(v, r), we get

cd = (girns

)d = ((1 + n)jixirns

)d = (1 + n)jid mod ns

(xirns

)d mod λ

= (1 + n)jid mod ns

Now apply the above algorithm to compute jid mod ns. Applying the same
method with c replaced by g clearly produces the value jd mod ns, so this
can either be computed on the fly or be saved as part of the secret key. In
any case we obtain the cleartext by (jid) · (jd)−1 = i mod ns.

Clearly, this system is additively homomorphic over Zns , that is, the product
of encryptions of messages i, i′ is an encryption of i + i′ mod ns.

The security of the system is based on the following assumption, introduced
by Paillier in [9] the decisional composite residuosity assumption (DCRA):

Conjecture 1. Let A be any probabilistic polynomial time algorithm, and assume
A gets n, x as input. Here n has k bits, and is chosen as described above, and x
is either random in Z∗

n2 or it is a random n’th power in Z∗
n2 (that is, a random

element in the subgroup H defined earlier). A outputs a bit b. Let p0(A, k) be
the probability that b = 1 if x is random in Z∗

n2 and p1(A, k) the probability
that b = 1 if x is a random n’th power. Then | p0(A, k) − p1(A, k) | is negligible
in k.

Here, “negligible in k” as usual means smaller than 1/f(k) for any polynomial
f() and all large enough k.

We now discuss the semantic security of CSs. There are several equivalent
formulations of semantic security. We will use the following:

Definition 1. An adversary A against a public-key cryptosystem gets the pub-
lic key pk generated from secuity parameter k as input and outputs a mes-
sage m. Then A is given an encryption under pk of either m or a message
2 strictly speaking, we also need that s < p, q, but this is insignificant since s is a

constant
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chosen uniformly in the message space, and outputs a bit. Let p0(A, k), re-
spectively p1(A, k) be the probability that A outputs 1 when given an encryp-
tion of m, respectively a random encryption. Define the advantage of A to be
Adv(A, k) = |p0(A, k)−p1(A, k)|. The cryptosystem is semantically secure if for
any probabilistic polynomial time adversary A, Adv(A, k) is negligible in k.

In [9], Paillier showed that semantic security of his cryptosystem (which is
the same as our CS1) is equivalent to DCRA. This equivalence holds for any
choice of g, and follows easily from the fact that given a ciphertext c that is
either random or encrypts a message i, cg−i mod n2 is either random in Z∗

n2 or
a random n’th power. In particular one may choose g = n + 1 always without
degrading security. We do this in the following for simplicity, so that a public
key consists only of the modulus n. We now show that in fact security of CSs is
equivalent to DCRA:

Theorem 1. For any s, the cryptosystem CSs is semantically secure if and only
if the DCRA assumption is true.

Proof. From a ciphertext in CSs, one can obtain a ciphertext in CS1 by reducing
modulo n2, this implicitly reduces the message modulo n. It is therefore clear
that if DCRA fails, then CSs cannot be secure for any s. For the converse, we
show by induction on s that security of CSs follows from DCRA. For s = 1, this
is exact.ly Paillier’s result. So take any s > 1 and assume that CSt for any t < s
is secure.

The message space of CSs is Zns . Thus any message m can be written in
n-adic notation as an s-tuple (ms, ms−1, ..., m1), where each mi ∈ Zn and m =∑s−1

i=0 mi+1n
i. Let Dn(ms, ..., m1) be the distribution obtained by encrypting the

message (ms, ..., m1) under public key n. If one or more of the mi are replaced
by ∗’s, this means that the corresponding position in the message is chosen
uniformly in Zn before encrypting.

Now, assume for contradiction that CSs is insecure, thus there is an adversary
A, such that for infinitely many k, Adv(A, k) ≥ 1/f(k) for some polynomial f().
Take such a k. Without loss of generality, assume we have p0(A, k)− p1(A, k) ≥
1/f(k). Suppose we make a public key n from security parameter k, show it to A,
get a message (ms, ..., m1) from A and show A a sample of Dn(∗, ms−1, ..., m1).
Let q(A, k) be the probability that A now outputs 1. Of course, we must have

(∗) p0(A, k) − q(A, k) ≥ 1
2f(k)

or q(A, k) − p1(A, k) ≥ 1
2f(k)

for infinitely many k.
In the first case in (∗), we can make a successful adversary against CS1, as

follows: we get the public key n, show it to A, get (ms, ..., m1), and return ms as
output. We will get a ciphertext c that either encrypts ms in CS1, or is a random
ciphertext, i.e., a random element from Z∗

n2 . If we consider c as an element in
Z∗

ns+1 , we know it is an encryption of some plaintext, which must have either ms

7



or a random element in its least significant position. Hence cns−1
mod ns+1 is

an encryption of (ms, 0, ..., 0) or (∗, 0, ..., 0). We then make a random encryption
d of (0, ms−1, ..., m1), give cns−1

d mod ns+1 to A and return the bit A outputs.
Now, if c encrypts ms, we have shown to A a sample of Dn(ms, ..., m1), and
otherwise a sample of Dn(∗, ms−1, ..., m1). So by assumption on A, this breaks
CS1 with an advantage of 1/2f(k), and so contradicts the induction assumption.

In the second case of (∗), we can make an adversary against CSs−1, as fol-
lows: we get the public key n, show it to A, and get a message (ms, ..., m1). We
output (ms−1, ..., m1) and get back a ciphertext c that encrypts in CSs−1 either
(ms−1, ..., m1) or something random. If we consider c as a number modulo ns+1,
we know that the corresponding plaintext in CSs has either (ms−1, ..., m1) or
random elements in the least significant s − 1 positions - and something un-
known in the top position. We make a random encryption d of (∗, 0, ..., 0), show
cd mod ns+1 to A and return the bit A outputs. If c encrypted (ms−1, ..., m1),
we have shown A a sample from Dn(∗, ms−1, ...., m1), and otherwise a sample
from Dn(∗, ..., ∗). So by asumption on A, this breaks CSs−1 with an advantage
of 1/2f(k) and again contradicts the induction assumption.

3.1 Adjusting the Block length

To facilitate comparison with Paillier’s original system, we have kept the above
system description as close as possible to that of Paillier. In particular, the
description allows choosing g in a variety of ways. However, as mentioned, we
may choose g = n + 1 always without loosing security, and the public key may
then consist only of the modulus n. This means that we can let the receiver
decide on s when he encrypts a message. More concretely, the system will work
as follows:

Key Generation Choose an RSA modulus n = pq. Now the public key is n
while the secret key is λ, the least common multiple of (p − 1) and (q − 1).

encryption Given a plaintext i ∈ Zns , choose a random r ∈ Z∗
ns+1 , and let the

ciphertext be E(i, r) = (1 + n)irns

mod ns+1.
decryption Given a ciphertext c, first compute, by the Chinese Remainder

Theorem d, such that d = 1 mod ns and d = 0 mod λ (note that the length of
the ciphertext allows to decide on the right value of s, except with negligible
probability). Then compute cd mod ns+1. Clearly, if c = E(i, r), we get

cd = ((1 + n)irns

)d = (1 + n)id mod ns

(xirns

)d mod λ = (1 + n)i mod ns+1

Now apply the above algorithm to compute i mod ns.

4 Some Building Blocks

4.1 A Threshold Variant of the Scheme

What we are after in this section is a way to distribute the secret key to a set of
servers, such that any subset of at least t of them can do decryption efficiently,
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while less than t have no useful information. Of course this must be done without
degrading the security of the system.

In [10], Shoup proposes an efficient threshold variant of RSA signatures. The
main part of this is a protocol that allows a set of servers to collectively and
efficiently raise an input number to a secret exponent modulo an RSA modulus
n. A little more precisely: on input a, each server returns a share of the result,
together with a proof of correctness. Given sufficiently many correct shares, these
can be efficiently combined to compute ad mod n, where d is the secret exponent.

As we explain below it is quite simple to transplant this method to our case,
thus allowing the servers to raise an input number to our secret exponent d
modulo ns+1. So we can solve our problem by first letting the servers help us
compute E(i, r)d mod ns+1. Then if we use g = n + 1 and choose d such that
d = 1 mod ns and d = 0 mod λ, the remaining part of the decryption is easy to
do without knowledge of d.

We warn the reader that this is only secure for the particular choice of d we
have made, for instance, if we had used Paillier’s original choice d = λ, then
seeing the value E(i, r)d mod ns+1 would allow an adversary to compute λ and
break the system completely. However, in our case, the exponentiation result can
safely be made public, since it contains no trace of the secret λ.

A more concrete description: Compared to [10] we still have a secret exponent
d, but there is no public exponent e, so we will have to do some things slightly
differently. We will assume that there are l decryption servers, and a minimum
of k < n/2 of these are needed to make a correct decryption.

Key generation
Key generation starts out as in [10]: we find 2 primes p and q, that satisfies
p = 2p′ + 1 and q = 2q′ + 1, where p′ and q′ are primes and different from p and
q. We set n = pq and m = p′q′. We decide on some s > 0, thus the plaintext
space will be Zns . We pick d to satisfy d = 0 mod m and d = 1 mod ns. Now we
make the polynomial f(X) =

∑k−1
i=0 aiX

i mod nsm, by picking ai (for 0 < i < k)
as random values from {0, · · · , ns ∗ m − 1} and a0 = d. The secret share of the
i’th authority will be si = f(i) for 1 ≤ i ≤ l and the public key will be n. For
verification of the actions of the decryption servers, we need the following fixed
public values: v, generating the cyclic group of squares in Z∗

ns+1 and for each
decryption server a verification key vi = v∆si mod ns+1, where ∆ = l!.

Encryption
To encrypt a message M , a random r ∈ Z∗

ns+1 is picked and the cipher text is
computed as c = gMrns

mod ns+1.

Share decryption
The i’th authority will compute ci = c2∆si , where c is the ciphertext. Along with
this will be a zero-knowledge proof that logc4(c2

i ) = logv(vi), which will convince
us, that he has indeed raised to his secret exponent si

3

3 A non interactive zero-knowledge proof for this using the Fiat-Shamir heuristic is
easy to derive from the corresponding one in [10]

9



Share combining
If we have the required k (or more) number of shares with a correct proof, we
can combine them into the result by taking a subset S of k shares and combine
them to

c′ =
∏
i∈S

c
2λS

0,i

i mod ns+1 where λS
0,i = ∆

∏
i′∈S\i

−i

i − i′
∈ Z

The value of c′ will have the form c′ = c4∆2f(0) = c4∆2d. Noting that 4∆2d =
0 mod λ and 4∆2d = 4∆2 mod ns, we can conclude that c′ = (1 + n)4∆2M mod
ns+1, where M is the desired plaintext, so this means we can compute M by ap-
plying the algorithm from Section 3 and multiplying the result by (4∆2)−1 mod
ns.

Compared to the scheme proposed in [6], there are some technical differences,
apart from the fact that [6] only works for the original Paillier version modulo
n2: in [6], an extra random value related to the public element g is part of the
public key and is used in the Share combining algorithm. This is avoided in our
scheme by the way we choose d, and thus we get a slightly shorter public key
and a slightly simpler decryption algorithm.

The system as described requires a trusted party to set up the keys. This
may be acceptable as this is a once and for all operation, and the trusted party
can delete all secret information as soon as the keys have been distributed.
However, using multi-party computation techniques it is also possible to do the
key generation without a trusted party.

Note that the key generation phase requires that a value of the parameter s
is fixed. This means that the system will be able to handle messages encrypted
modulo ns′+1, for any s′ ≤ s, simply because the exponent d satisfies d =
1 mod ns′

, for any s′ ≤ s. But it will not work if s′ > s. If a completely general
decryption procedure is needed, this can be done as well: If we assume that λ is
secret-shared in the key set-up phase, the servers can compute a suitable d by
running a secure protocol that first inverts λ modulo ns to get some x as result,
and then computes the product d = xλ (over the integers). This does not require
generic multi-party computation techniques, but can be done quite efficiently
using techniques from [5]. Note that, while this does require communication
between servers, it is not needed for every decryption, but only once for every
value of s that is used.

We can now show in the random oracle model that this threshold version is
as secure as a centralised scheme where one trusted player does the decryption4,
in particular the threshold version is secure relative to the same complexity
assumption as the basic scheme. This can be done in a model where a static
adversary corrupts up to k − 1 players from the start. Concretely, we have:

Theorem 2. Assume the random oracle model and a static adversary that cor-
rupts up to k − 1 players from the beginning. Then we have: Given any cipher-
4 In fact the random oracle will be needed only to ensure that the non-interactive

proofs of correctness of shares will work. Doing these proofs interactively instead
would allow us to dispense with the random oracle
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text, the decryption protocol outputs the correct plaintext, except with negligible
probability. Given an oracle that on input a ciphertext returns the correspond-
ing plaintext, the adversary’s view of the decryption protocol can be efficiently
simulated with a statistically indistinguishable distribution.

The full proof will be included in the final version of this paper. Here we only
give the basic ideas: correctness of the scheme is immediate assuming that the
adversary can contribute bad values for the ci’s with only negligible probability.
This, in turn, is ensured by soundness of the zero-knowledge proofs given for
each ci.

For the simulation, we start from the public key n. Then we can simulate the
shares si1 , ..., sik−1 of the bad players by choosing them as random numbers in
an appropriate interval. Since d is fixed by the choice of n, this means that the
shares of uncorrupted players and the polynomial f are now fixed as well, but
are not easy for the simulator to compute.

However, if we choose v as a ciphertext with known plaintext m0, we can also
compute what vf(0) would be, namely vf(0) = vd mod ns+1 = (1 + n)m0 mod
ns+1. Then by doing Lagrange interpolation ”in the exponent” as in [10], we can
compute correct values of vi = v∆si for the uncorrupted players. When we get
a ciphertext c as input, we ask the oracle for the plaintext m. This allows us
to compute cd = (1 + n)m mod ns−1. Again this means we can interpolate and
compute the contributions ci from the uncorrupted players. Finally, the zero-
knowledge property is invoked to simulate the proofs that these ci are correct.

4.2 Some Auxiliary Protocols

Suppose a prover P presents a sceptical verifier V with a ciphertext c and claims
that it encodes plaintext i. A trivial way to convince V would be to reveal also
the random choice r, then V can verify himself that c = E(i, r). However, for
use in the following, we need a solution where no extra useful information is
revealed.

It is easy to see that that this is equivalent to convincing V that cg−i mod
ns+1 is an ns’th power. So we now propose a protocol for this which is a simple
generalisation of the one from [7]. We note that this and the following protocols
are not zero-knowledge as they stand, only honest verifier zero-knowledge. How-
ever, first zero-knowledge protocols for the same problems can be constructed
from them using standard methods and secondly, in our applications, we will
always be using them in a non-interactive variant based on the Fiat-Shamir
heuristic, which means that we cannot obtain zero-knowledge, we can, however,
obtain security in the random oracle model. As for soundness, we prove that the
protocols satisfy so called special soundness (see [2]), which in particular implies
that they satisfy standard knowledge soundness.

Protocol for ns’th powers
Input: n, u
Private Input for P : v, such that u = vns

mod ns+1

11



1. P chooses r at random mod ns+1 and sends a = rns

mod ns+1 to V
2. V chooses e, a random k bit number, and sends e to P .
3. P sends z = rve mod ns+1 to V , and V checks that zns

= aue mod ns+1,
and accepts if and only if this is the case.

It is now simple to show

Lemma 2. The above protocol is complete, honest verifier zero-knowledge, and
satisfies that from any pair of accepting conversations (between V and any
prover) of form (a, e, z), (a, e′, z′) with e 6= e′, one can efficiently compute an
ns’th root of u, provided 2t is smaller than the smallest prime factor of n.

Proof. Completeness is obvious from inspection of the protocol. For honest ver-
ifier simulation, the simulator chooses a random z ∈ Z∗

ns+1, a random e, sets
a = zns

u−e mod ns+1 and outputs (a, e, z). This is easily seen to be a perfect
simulation.

For the last claim, observe that since the conversations are accepting, we
have zns

= aue mod ns+1 and z′n
s

= aue′
mod ns+1, so we get

(z/z′)ns

= ue−e′
mod ns+1

Since e− e′ is prime to n by the assumption on 2t, choose α, β such that αns +
β(e − e′) = 1. Then let v = uα(z/z′)β mod ns+1. We then get

vns

= uαns

(z/z′)nsβ = uαns

uβ(e−e′) = u mod ns+1

so that v is indeed the desired ns’th root of u

In our application of this protocol, the modulus n will be chosen by a trusted
party, or by a multi-party computation such that n has two prime factors of
roughly the same size. Hence, if k is the bit length of n, we can set t = k/2 and
be assured that a cheating prover can make the verifier accept with probability
≤ 2−t.

The lemma immediately implies, using the techniques from [2], that we can
build an efficient proof that an encryption contains one of two given values,
without revealing which one it is: given the encryption C and the two candi-
date plaintexts i1, i2, prover and verifier compute u1 = C/gi1 mod ns+1, u2 =
C/gi2 mod ns+1, and the prover shows that either u1 or u2 is an ns’th power.
This can be done using the following protocol, where we assume without loss
of generality that the prover knows an ns’th root u1, and where M denotes the
honest-verifier simulator for the ns-power protocol above:

Protocol 1-out-of-2 ns’th power
Input: n, u1, u2

Private Input for P : v1, such that u1 = vns

1 mod ns+1

1. P chooses r1 at random mod ns+1. He invokes M on input n, u2 to get a
conversation a2, e2, z2. He sends a1 = rns

1 mod ns+1, a2 to V
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2. V chooses s, a random t bit number, and sends s to P .
3. P computes e1 = s − e2 mod 2t and z1 = r1v

e1
1 mod ns+1. He then sends

e1, z1, e2, z2 to V .
4. V checks that s = e1 + e2 mod 2t, zns

1 = a1u
e1
1 mod ns+1 and zns

2 = a2u
e2
2

mod ns+1, and accepts if and only if this is the case.

The proof techniques from [2] and Lemma 2 immediately imply

Lemma 3. Protocol 1-out-of-2 ns’th power is complete, honest verifier zero-
knowledge, and satisfies that from any pair of accepting conversations (between
V and any prover) of form (a1, a2, s, e1, z1, e2, z2), (a1, a2, s

′, e′1, z
′
1, e

′
2, z

′
2) with

s 6= s′, one can efficiently compute an ns’th root of u1, and an ns’th root of u2,
provided 2t is less than the smallest prime factor of n.

Our final building block allows a prover to convince a verifier that three
encryptions contain values a, b and c such that ab = c mod ns. For this, we
propose a protocol inspired by a similar construction found in [3].

Protocol Multiplication-mod-ns

Input: n, g, ea, eb, ec

Private Input for P : a, b, c, ra, rb, rc such that ab = c mod n and ea = E(a, ra),
eb = E(b, rb), ec = E(c, rc)

1. P chooses a random value d ∈ Zns and sends to V encryptions ed =
E(d, rd), edb = E(db, rdb).

2. V chooses e, a random t-bit number, and sends it to P .
3. P opens the encryption ee

aed = E(ea + d, re
ard mod ns+1) by sending f =

ea + d mod ns and z1 = re
ard mod ns+1. Finally, P opens the encryption

ef
b (edbe

e
c)

−1 = E(0, rf
b (rdbr

e
c)

−1 mod ns+1) by sending z2 = rf
b (rdbr

e
c)

−1 mod
ns+1.

4. V verifies that the openings of encryptions in the previous step were correct,
and accepts if and only if this was the case.

Lemma 4. Protocol Multiplication-mod-ns is complete, honest verifier zero-
knowledge, and satisfies that from any pair of accepting conversations (between
V and any prover) of form (ed, edb, e, f, z1, z2), (ed, edb, e

′, f ′, z′1, z′2) with e 6= e′,
one can efficiently compute the plaintext a, b, c corresponding to ea, eb, ec such
that ab = c mod ns, provided 2t is smaller than the smallest prime factor in n.

Proof. Completeness is clear by inspection of the protocol. For honest verifier
zero-knowledge, observe that the equations checked by V are ee

aed = E(f, z1)
mod ns+1 and ef

b (edbe
e
c)

−1 = E(0, z2) mod ns+1. From this it is clear that we
can generate a conversation by choosing first f, z1, z2, e at random, and then
computing ed, edb that will satisfy the equations. This only requires inversion
modulo ns+1, and generates the right distribution because the values f, z1, z2, e
are also independent and random in the real conversation. For the last claim,
note first that since encryptions uniquely determine plaintexts, there are fixed
values a, b, c, d contained in ea, eb, ec, ed, and a value x contained in edb. The
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fact that the conversations given are accepting implies that f = ea + d mod ns,
f ′ = e′a+d mod ns, fb−x−ec = 0 = f ′b−x−e′c mod ns. Putting this together,
we obtain (f − f ′)b = (e − e′)c mod ns or (e − e′)ab = (e − e′)c mod ns. Now,
since (e− e′) is invertible modulo ns by assumption on 2t, we can conclude that
c = ab mod ns (and also compute a, b and c).

The protocols from this section can be made non-interactive using the stan-
dard Fiat-Shamir heuristic of computing the challenge from the first message
using a hash function. This can be proved secure in the random oracle model.

5 Efficient Electronic Voting

In [4], a general model for elections was used, which we briefly recall here: we have
a set of voters V1, ..., VM , a bulletin board B, and a set of tallying authorities
A1, ..., Av. The bulletin board is assumed to function as follows: every player
can write to B, and a message cannot be deleted once it is written. All players
can access all messages written, and can identify which player each message
comes from. This can all be implemented in a secure way using an already
existing public key infrastructure and server replication to prevent denial of
service attacks. We assume that the purpose of the vote is to elect a winner
among L candidates, and that each voter is allowed to vote for t < L candidates.

In the following, h will denote a fixed hash function used to make non-
interactive proofs according to the Fiat-Shamir heuristic. Also, we will assume
throughout that an instance of threshold version of Paillier’s scheme with public
key n, g has been set up, with the Ai’s acting as decryption servers. We will
assume that ns > M , which can always be made true by choosing s or n large
enough.

The notation ProofP (S), where S is some logical statement will denote a bit
string created by player P as follows: P selects the appropriate protocol from
the previous section that can be used to interactively prove S. He computes the
first message a in this protocol, computes e = h(a, S, ID(P )) where ID(P ) is his
user identity in the system and, taking the result of this as the challenge from
the verifier, computes the answer z. Then ProofP (S) = (e, z). The inclusion of
ID(P ) in the input to h is done in order to prevent vote duplication. To check
such a proof, note that all the auxiliary protocols are such that from S, z, c one
can easily compute what a should have been, had the proof been correct. For
instance, for the protocol for ns powers, the statement consists of a single number
u modulo ns+1, and the verifier checks that zns

= aue mod ns+1, so we have
a = zns

u−e mod ns+1. Once a is computed, one checks that e = h(a, S, ID(P )).
A protocol for the case L = 2 is now simple to describe. This is equivalent

to a yes/no vote and so each vote can thought of as a number equal to 0 for no
and 1 for yes:

1. Each voter Vi decides on his vote vi, he calculates Ei = E(vi, ri), where ri

is randomly chosen. He also creates
ProofVi (Ei or Ei/g is an ns’th power modulo ns+1)
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based on the 1-out-of-2 ns’th power protocol. He writes the encrypted vote
and proof to B.

2. Each Aj does the following: first set E = 1. Then for all i: check the proof
written by Vi on B and if is it valid, then E := E ·Ei mod ns+1. Finally, Aj

executes his part of the threshold decryption protocol, using E as the input
ciphertext, and writes his result to B.

3. From the messages written by the Aj ’s, anyone can now reconstruct the
plaintext corresponding to E (possibly after discarding invalid messages).
Assuming for simplicity that all votes are valid, it is evident that E =∏

i E(vi, ri) = E(
∑

i vi mod ns,
∏

i ri mod ns+1). So the decryption result
is

∑
i vi mod ns which is

∑
i vi since ns > M .

Security of this protocol (in the random oracle model) follows easily from
security of the sub-protocols used, and semantic security of Paillier’s encryption
scheme. Proofs will be included in the final version of this paper.

There are several ways to generalise this to L > 2. Probably the simplest way
is to hold L parallel yes/no votes as above. A voter votes 1 for the candidates
he wants, and 0 for the others. This means that Vi will send L votes of form
(j = 1, .., L)

Eij =E(vij , rij),
P roofVi (Eij or Eij/g is an ns’th power modulo ns+1)

To prove that he voted for exactly t candidates, he also writes to B the num-
ber

∏
j rij mod ns+1. This allows the talliers to verify that

∏
j E(vij , rij) is an

encryption of t. This check is sufficient, since all individual votes are proved to
be 0 or 1. It is immediate that decryption of the L results will immediately give
the number of votes each candidate received.

We note that his easily generalises to cases where voters are allowed to vote
for up to t candidates: one simply introduces t ”dummy candidates” in addition
to the actual L. We then execute the protocol as before, but with t+L candidates.
Each voter places the votes he does not want to use on dummy candidates.

The size of a vote in this protocol is seen to be O(Lk), where k is the bit length
of n, by simple inspection of the protocol. The protocol requires L decryption
operations. As a numeric example, suppose we have k = 1000, M = 64000, L =
64, s = 1 and we use challenges of 80 bits in the proofs. Then a vote in the above
system has size about 50 Kbyte.

If the parameters are such that L log2 M < k · s and t = 1, then we can do
significantly better. These conditions will be satisfied in many realistic situations,
such as for instance in the numeric example above.

The basic idea is the following: a vote for candidate j, where 0 ≤ j < L is
defined to be an encryption of the number M j. Each voter will create such an en-
cryption and prove its correctness as detailed below. When all these encryptions
are multiplied we get an encryption of a number of form a =

∑L
j=0 ajM

j mod ns,
where aj is the number of votes cast for candidate j. Since L log2 M < k · s, this
relation also holds over the integers, so decrypting and writing a in M -ary no-
tation will directly produce all the aj ’s.
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It remains to describe how to produce encryption hiding a number of form
M j , for some 0 ≤ j < L, and prove it was correctly formed. Let b0, ..., bl be the
bits in the binary representation of j, i.e. j = b020 +b121 + ...+bl2l. Then clearly
we have M j = (M20

)b0 · ... · (M2l

)bl . Each factor in this product is either 1 or
a power of M . This is used in the following algorithm for producing the desired
proof (where P denotes the prover):

1. P computes encryptions e0, ..., el of (M20
)b0 , ..., (M2l

)bl . For each i = 0...l

he also computes ProofP (ei/g or ei/gM2i

is an ns’th power).
2. Let Fi = (M20

)b0 · ... · (M2i

)bi , for i = 0...l. P computes an encryption fi of
Fi, for i = 1..l. We set f0 = e0. Now, for i = 1...l, P computes

ProofP (Plaintexts corr. to fi−1, ei, fi satisfy

Fi−1 · (M2i

)bi = Fi mod ns ),

based on the multiplication-mod-ns protocol. The encryption fl is the desired
encryption, it can be verified from the ei, fi and all the proofs computed.

It is straightforward to see that a vote in this system will have length
O(k log L) bits (still assuming, of course, that L log2 M ≤ k · s).

With parameter values as in the numeric example before, a vote will have
size about 8.5 Kbyte, a factor of more than 5 better than the previous system.
Moreover, we need only 1 decryption operation as opposed to L before.

6 Efficiency and Implementation Aspects

An implementation of some of the teqniques discussed in this paper can be found
at http://www.brics.dk/∼jurik/research.html.

Key Generation. The primes p and q are made using the usual techniques, so
that n will be as difficult as possible to factor. Since there is no difference in
choosing a general g and (n + 1) as generator, we can just use (n + 1) and save
some work for finding a suitable g.

Encryption. As mentioned in Paillier we can choose g = 2 (provided it satisfies
the contraints) to get a speed-up in encryption. But since we can use (n + 1)
as generator we can make it even more efficient since calculating (n + 1)i is the
same as calculating:

1 + in +
(

i

2

)
n2 + ... +

(
i

s

)
ns mod ns+1

this means raising (n + 1) to i’th power takes about 5s multiplications. We can
precompute the factors k!−1nk mod ns+1 which reduces the number of multi-
plications to 2s. We can’t get rid of the exponentiation rns

mod ns+1, but the
random value can be choosen in advance and the exponentiation calculated in
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advance. If rns

mod ns+1 is calculated in advance an encryption will take 2s
multiplications which is approximately as efficient as RSA for small s.

Decryption. Decryption can be speeded up by calculating the different powers
of n, and the k!−1 mod nj for 2 ≤ k ≤ j ≤ s. All this can be calculated modpj

and modqj instead of modnj by using

Lp(x) =
x − 1

p
and Lq(x) =

x − 1
q

instead of the normal L. The decryption algorithm is then executed 2 times, once
modpj ’s instead of modnj and with Lp instead of L and once with modqj and
Lq. Then after the 2 parts have been calculated they are combined using Chinese
remaindering.

Performance Evaluations. We give here a comparison between the schemes
presented in this paper, Paillier’s original scheme, RSA with public exponent
216 + 1 and El-Gamal. There are 3 versions of our scheme, namely one without
precomputation, one with, and one with s = 1 (and no precomputation), since
this is equivalent to Paillier’s scheme. It is assumed that all numbers has about
the same number of 1’s and 0’s in their binary representation. In figure 1 we
compare the different scheme using the same security parameter. It should be
noted that it compares the number of multiplications, but these multiplications
are made using different modulus size. It should be also be noted that the 2 first
columns encrypt sk bits of plaintext instead of k bits in the other columns. The
last 2 rows of the table shows the number of bits that are encrypted for each
multiplication made. It only makes sense to compare the numbers in these 2 rows
if the modulus size is the same and thus the security parameter k is different.

Fig. 1. Comparison with equal security parameter k
Scheme General Scheme Scheme

No Precomp. Precomp. s = 1 Paillier RSA El-Gamal

n/p Size (k) k k k k k k

Modulus Size (s + 1)k (s + 1)k 2k 2k k k

Plaintext Size sk sk k k k k

Multiplications
for Encryption 3

2
sk + 5s 2s 3

2
k + 5 3k + 1 17 3k + 1

Multiplications 5
2
(s + 1)k+ 5

2
(s + 1)k+

for Decryption 2s(s + 1) s(s + 1) 5k + 8 3
2
k 3k + 3 3

2
k + 1

Multiplications
per bit encrypted ≈ 3

2
2
k

3
2

3 17
k

3

Multiplications
per bit decrypted ≈ 5

2
≈ 5

2
5 3 3

2
3
2
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