
BRICS
Basic Research in Computer Science

Static Analysis for Java Servlets and JSP

Christian Kirkegaard
Anders Møller

BRICS Report Series RS-06-10

ISSN 0909-0878 June 2006

B
R

IC
S

R
S

-06-10
K

irkegaard
&

M
ø

ller:
S

tatic
A

nalysis
for

Java
S

ervlets
and

JS
P

Copyright c© 2006, Christian Kirkegaard & Anders Møller.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
IT-parken, Aabogade 34
DK–8200 Aarhus N
Denmark
Telephone: +45 8942 9300
Telefax: +45 8942 5601
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/06/10/

Static Analysis for Java Servlets and JSP

Christian Kirkegaard and Anders Møller

BRICS?, University of Aarhus, Denmark
{ck,amoeller}@brics.dk

Abstract. We present an approach for statically reasoning about the
behavior of Web applications that are developed using Java Servlets and
JSP. Specifically, we attack the problems of guaranteeing that all output
is well-formed and valid XML and ensuring consistency of XHTML form
fields and session state. Our approach builds on a collection of program
analysis techniques developed earlier in the JWIG and Xact projects,
combined with work on balanced context-free grammars. Together, this
provides the necessary foundation concerning reasoning about output
streams and application control flow.

1 Introduction

Java Servlets [17] and JSP (JavaServer Pages) [18] constitute a widely used plat-
form for Web application development. Applications that are developed using
these or related technologies are typically structured as collections of program
fragments (servlets or JSP pages) that receive user input, produce HTML or
XML output, and interact with databases. These fragments are connected via
forms and links in the generated pages, using deployment descriptors to declar-
atively map URLs to program fragments. This way of structuring applications
causes many challenges to the programmer. In particular, it is difficult to ensure,
at compile time, the following desirable properties:

– all output should be well-formed and valid XML (according to, for example,
the schema for XHTML 1.0);

– the forms and fields that are produced by one program fragment that gen-
erates an XHTML page should always match what is expected by another
program fragment that takes care of receiving the user input; and

– session attributes that one program fragment expects to be present should
always have been set previously in the session.

Our aim is to develop a program analysis system that can automatically check
these properties for a given Web application.

The small example program shown on the following page illustrates some of
the many challenges that may arise.

? Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

public class Entry extends javax.servlet.http.HttpServlet {

protected void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

HttpSession session = request.getSession();

String url = response.encodeURL(request.getContextPath()+"/show");

session.setAttribute("timestamp", new Date());

response.setContentType("application/xhtml+xml");

PrintWriter out = response.getWriter();

Wrapper.printHeader(out, "Enter name", session);

out.print("<form action=\""+url+"\" method=\"POST\">"+

"<input type=\"text\" name=\"NAME\"/>"+

"<input type=\"submit\" value=\"lookup\"/>"+

"</form>");

Wrapper.printFooter(out);

}

}

public class Show extends javax.servlet.http.HttpServlet {

protected void doPost(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

Directory directory = new Directory("ldap://ldap.widgets.org");

String name = misc.encodeXML(request.getParameter("NAME"));

response.setContentType("application/xhtml+xml");

PrintWriter out = response.getWriter();

Wrapper.printHeader(out, name, request.getSession());

out.print("Phone: "+directory.phone(name));

Wrapper.printFooter(out);

}

}

public class Wrapper {

static void printHeader(PrintWriter pw, String title,

HttpSession session) {

pw.print("<html xmlns=\"http://www.w3.org/1999/xhtml\">"+

"<head><title>"+title+"</title></head><body>"+

"<hr size=\"1\"/>"+

"<div align=\"right\"><small>"+

"Session initiated ["+session.getAttribute("timestamp")+"]"+

"</small></div><hr size=\"1\"/>"+

"<h3>"+title+"</h3>");

}

static void printFooter(PrintWriter pw) {

pw.print("<hr size=\"1\"/></body></html>");

}

}

2

This program contains two servlets: one named Entry that produces an XHTML
page with a form where the user enters a name, and one named Show that re-
ceives the user input and produces a reply as another XHTML page based on
information from an external database. We assume that the deployment descrip-
tor maps the relative URL enter to the first servlet and show to the second one.
Also, misc.encodeXML is a method that escapes special XML characters (for
example, converting < to <). At runtime, the pages may look as follows:

In order for the program to work as intended, the programmer must consider
many aspects, even for such a tiny program, as the following questions indicate:

– do all open start tags produced by printHeader match the end tags pro-
duced by printFooter?

– does getAttribute("timestamp") always return strings that are legal as
XML character data? (for example, ‘<’ should not appear here)

– does the form action URL that is produced by Enter in fact point to the
Show servlet? (this depends on the value of the action and method attributes
and the deployment descriptor mapping)

– is the parameter NAME always present when the Show servlet is executed?
(checking this requires knowledge of the presence of form fields in the XHTML
pages that lead to this servlet)

– is the attribute timestamp always present in the session state when the Show
servlet is executed? (if not, a null reference would appear)

To answer such questions statically, one must have a clear picture of which string
fragments are being printed to the output stream and how the servlets are con-
nected in the application. Presently, programmers resort to informal reasoning
and incomplete testing in order to obtain confidence of the correctness of the pro-
gram. A more satisfactory situation would of course be to have static guarantees
provided by a fully automatic analysis tool.

As the desirable properties listed above are clearly undecidable, the analysis
we present is necessarily approximative. We design our analysis to be conser-
vative in the sense that it may produce spurious warnings, but a program that
passes the analysis is guaranteed to satisfy the properties. Naturally, we aim for
an analysis that has sufficient precision and performance to be practically useful.

Application servers handle JSP through a simple translation to servlets [18].
This means that by focusing our analysis efforts on servlets, we become able to
handle JSP, and applications that combine servlets and JSP, essentially for free.

3

Contributions Our contributions are the following:

– We show how to obtain a context-free grammar that conservatively approx-
imates the possible output of servlet/JSP applications using a variant of the
Java string analysis [8].

– On top of the string analysis, we apply theory of balanced grammars by
Knuth [13] and grammar approximations by Mohri and Nederhof [15] to
check that the output is always well-formed XML.

– On top of the well-formedness checking, we show how a balanced context-
free grammar can be converted into an XML graph, which is subsequently
validated relative to an XML schema using an existing algorithm [10].

– By analyzing the form and link elements that appear in the XML graph
together with the deployment descriptor of the application, we explain how
to obtain an inter-servlet control flow graph of the application.

– Based on the knowledge of the control flow, we give examples of derived
analyses for checking that form fields and session state are used consistently.

Together, the above components form a coherent analysis system for reasoning
about the behavior of Web application that are built using Java Servlets and
JSP. The system has a front-end that converts from Java code to context-free
grammars and a back-end that converts context-free grammars to XML graphs
and checks well-formedness, validity, and other correctness properties. Our ap-
proach can be viewed as combining and extending techniques from the JWIG and
Xact projects [7, 11, 10] and applying them to a mainstream Web application
development framework.

Perhaps surprisingly, the analysis of well-formedness and validity can be made
both sound and complete relative to the grammar being produced in the front-
end. (The completeness, however, relies on an assumption that certain well-
defined contrived situations do not occur in the program being analyzed).

The goal of the present paper is to outline our analysis system, with particular
focus on the construction of context-free grammars and the translation from
context-free grammars to XML graphs. We base our presentation on a running
example. The system is at the time of writing not yet fully implemented; we
return to this issue in Section 6.

Although we here focus on Java-based Web applications, we are not relying on
language features that are specific to Java. In particular, the approach we present
could also be applied to the .NET or PHP platforms where Web applications are
typically also built from loosely connected program fragments that each produce
XHTML output and receive form input.

Related Work We are not aware of previous attempts to statically analyze
the aspects mentioned above for Java Servlets and JSP applications. The most
closely related work is that of Minamide [14] who combines string analysis with
HTML validation for PHP. In [14], a variant of the technique from [8] is used
to produce a context-free grammar from a PHP program. HTML validation is
performed either by extracting and checking sample documents or by considering
only documents with bounded depth, which results in neither sound nor complete
analysis results.

4

There are other related interesting connections between XML data and context-
free grammars, in particular, the work by Berstel and Boasson [3] and Brüggemann-
Klein and Wood [5]. The paper [3] uses Knuth’s results to check some aspects of
XML well-formedness for a given context-free grammar, but it does not take the
full step to validity. The paper [5] only considers grammars that correspond to
well-formed XML documents, whereas our scenario involves arbitrary context-
free grammars that need to be checked for well-formedness and validity.

Inter-servlet control flow analysis is closely related to workflow and business
protocols for Web services. Much effort is put into designing workflow languages
and Web service composition languages to be used for modeling and analyzing
properties during the design phase of Web application development (examples
are WS-BPEL [2] and YAWL [20]). Our work complements this in the sense that
the analysis we present is able to reverse engineer workflows from the source code
of existing Web applications (although that is not the focus of the present paper).
This is related to process mining [9] but using source code instead of system logs,
and thereby obtaining conservative results.

As mentioned, our technique builds on our earlier work on JWIG and Xact.
JWIG [7] is a Java-based framework for Web application development where
session control-flow is explicit and XHTML pages are built in a structured man-
ner that permits static analysis of validity and form field consistency. Xact [11]
is a related language for expressing XML transformations. The notion of XML
graphs, which is essential to our analysis system, comes from these projects
(where they are also called summary graphs for historical reasons) – an XML
graph is a representation of a potentially infinite set of XML structures that
may appear in a running JWIG or Xact program. The paper [10] describes an
algorithm for validating an XML graph relative to a schema written in XML
Schema.

Overview We first, in Section 2, describe how to analyze the output stream
and produce a context-free grammar that approximates the possible output of
a given Web application. Section 3 explains the well-formedness check and the
construction of a balanced grammar. In Section 4 we then show how to convert
the balanced grammar into an XML graph and check validity relative to an XML
schema.

Section 5 describes the construction of the inter-servlet control flow graph,
based on the XML graph and the deployment descriptor. We also sketch how to
use the XML graph and the control-flow information to check consistency of the
use of form fields and session state. Finally, in Section 6 we discuss challenges
and considerations for implementing the entire analysis system and expectations
for its performance and precision.

We defer the technical details to appendices: in Appendix A we recapitu-
late Knuth’s algorithm for checking balancing of the language of a CFG and
introduce some notation used in the following appendix; Appendix B presents
our extension of Knuth’s algorithm for constructing balanced grammars; and
Appendix C explains the precision of our analysis.

5

2 Analyzing the Output Stream

A servlet sends data to its clients by writing string values to a special output
stream, which is allocated by the Web server for each request. Our analysis
must trace these output streams and keep track of all the string values written
to them. Given a Web application, the analysis produces for each servlet entry
point a context-free grammar whose language is guaranteed to contain all data
that can possibly be written to the corresponding output stream at runtime.

To keep track of string values, we first run the Java string analysis as de-
scribed in [8] with the parameters of each write, print, and append invocation
on output streams as hotspots. For each invocation, the result is a regular lan-
guage containing all the possible string values that may occur at those program
points.

The subsequent analysis of output streams is a variant of that of String-
Buffers in the string analysis [8]. In both cases the basic problem is to keep track
of the possible sequences of side-effecting operations that may be performed
on certain objects. However, there are only append-like operations on output
streams, and, since append is an associative operation, this makes the handling
of interprocedural data-flow somewhat simpler in our case.

For each method in the Web application, we produce a flow graph where
edges represent control flow and nodes have the following kinds:

– append: an append operation corresponding to a write, print, or append
operation on an output stream, where the argument is given by a regular
language of string values as produced by the preliminary string analysis;

– invoke: a method invocation carrying information about its possible targets;
– nop: a join point (for example, for a while statement or a method exit).

Constructing such a flow graph, even for a single servlet, is not trivial. The
Java language imposes many challenges, such as, virtual method dispatching,
exceptions, and data transfer via instance fields and arrays. Additionally, the
Java standard library allows stream objects to be nested in different ways (using
BufferedStream, PrintWriter, etc.). Fortunately, most of the hard work can
be done using the Soot framework [19], much like in our earlier applications
of Soot [8, 7, 11]. We also need to keep track of the relevant output streams,
but that can be done easily with Soot’s alias analysis capabilities. The request
dispatching mechanism in the Servlet API can be handled similarly.

As an example, we obtain the flow graph shown in Figure 1 for the example
program from Section 1.

We use the following terminology about context-free grammars. A context-
free grammar (CFG) G is a quadruple (V, Σ, S, P) where V is the nonterminal
alphabet, Σ is the terminal alphabet (in our grammars, Σ is the Unicode al-
phabet), V ∩ Σ = ∅, S ⊆ V is a set of start nonterminals, and P is a finite
set of productions of the form A → θ where A ∈ V and θ ∈ U∗, using U to
denote the combined alphabet V ∪ Σ. We write αAω ⇒ αθω when A → θ
is in P and α, ω ∈ U∗, and ⇒+ and ⇒∗ are respectively the transitive clo-
sure and the reflexive transitive closure of ⇒. The language of G is defined as

6

 Session initiated [...]

 <head><title>...</title></head><body>

 <div align="right"><small>

 </small></div><hr size="1"/>

 <h3>...</h3> }

 <hr size="1"/>

 { <html xmlns="http://www.w3.org/1999/xhtml">

Entry.doGet

1

11

12

Wrapper.printHeader

6

Show.doPost

{ Phone: ... }

8

9

14

Wrapper.printFooter

2

4

5

10

7

13

16

3
 </form> }

 <input type="submit" value="lookup"/>

 <input type="text" name="NAME"/>

 { <form action="..." method="POST">

{ <hr size="1"/></body></html> }

15

Fig. 1. Flow graph for the example program. (We here depict append nodes as rounded
boxes, invoke nodes are squares, nop nodes are circles, and dotted edges represent
method boundaries.)

L(G) = {x ∈ Σ∗ | ∃s ∈ S : s ⇒+ x}. The language of a nonterminal A is
LG(A) = {x ∈ Σ∗ | A ⇒+ x}. We sometimes omit the subscript G in LG when
it can be inferred from the context.

Given a flow graph, we derive a CFG G = (V, Σ, S, P) where each flow graph
node n is associated with a nonterminal Nn ∈ V such that L(Nn) is the set of
strings that can be output starting from n:

– for an append node n with an edge to m and whose label is L, we add a
production Nn → RLNm where RL is the start nonterminal for a linear
sub-grammar for L;

– for an invoke node n with a successor m and a possible target method rep-
resented by a node t, we add Nn → NtNm; and

– for a nop node n with a successor m we add Nn → Nm, and for one with no
successors we add Nn → ε.

The start nonterminals are those that correspond to the servlet entry points.

7

Example The grammar for the example flow graph has V = {N1, . . . , N16,
R3, R8, R12, R15}, and P contains the following productions:

N1 → N2 N6 → N7 N11 → N12 N14 → N15

N2 → N11N3 N7 → N11N8 N12 → R12N13 N15 → R15N16

N3 → R3N4 N8 → R8N9 N13 → ε N16 → ε
N4 → N14N5 N9 → N14N10

N5 → ε N10 → ε

R3 → [[<form action=" . . . " method="POST"> . . . </form>]]
R8 → [[Phone: . . .]]
R12 → [[<html xmlns="http://www.w3.org/1999/xhtml">

<head><title> . . . </title></head><body> . . .]]
R15 → [[<hr size="1"/></body></html>]]

([[·]] denotes a linear grammar for the given regular language.) For the Entry
servlet we set S = {N1}, and for Show we set S = {N6}. We may also consider
both servlets in combination using S = {N1, N6}.

3 Checking Well-formedness using Balanced Grammars

The goal of this phase is to check for a given CFG G whether all strings in L(G)
are well-formed XML documents. We simplify the presentation by ignoring XML
comments, processing instructions, entity references, and the compact form of
empty elements (for example, that
</br> may be written as
), and
we assume that all attributes are written on the form name="value".

This phase proceeds in a number of steps that consider different aspects of
well-formedness. First, however, we need to be able to easily identify occurrences
of the two characters </ in the language of the grammar. We achieve this by
a simple preliminary grammar transformation that – without changing the lan-
guage of the grammar – eliminates productions on the form A → α<ω where
ω ∈ V U∗ ∧ / ∈ FIRST (ω) or ω ⇒∗ ε ∧ / ∈ FOLLOW (A). (See, for instance,
[1] for a definition of FIRST and FOLLOW .) From here on, </ is treated as a
single alphabet symbol.

To be able to identify the XML structure in the grammar, we define six spe-
cial forms of grammar productions:

C → < T A > C </ T > (element form)
C → X (text form)
C → C C (content sequence form)
A → W T = " V " (attribute form)
A → A A (attribute sequence form)
A → ε (empty form)

Here, C represents nonterminals, called content nonterminals, whose produc-
tions are all on element form, text form, or content sequence form, and A rep-
resents nonterminals, called attribute nonterminals, whose productions are all

8

on attribute form, attribute sequence form, or empty form. T represents non-
terminals whose languages contain no whitespace and no <, >, or = symbols,
W represents nonterminals whose languages consist of nonempty whitespace, X
represents nonterminals whose languages do not contain <, and V means the
same as X except that it also excludes ". We say that a CFG is on tag-form if
every start nonterminal s ∈ S is a content nonterminal. Our aim is to convert
G into an equivalent grammar on tag-form and check various well-formedness
requirements on the way.

3.1 Step 1: Obtaining a Balanced Grammar

We now view < (which marks the beginning of a start tag) as a left parenthesis
and </ (which marks the beginning of an end tag) as a right parenthesis. A
necessary condition for L(G) to be well-formed is that the language in this view is
balanced. (A language L is balanced if the parentheses balance in every string x ∈
L.) To check this property, we simply apply Knuth’s algorithm [13] as described
in detail in Appendix A. If the grammar passes this check, Knuth moreover
gives us an equivalent completely qualified grammar G′, as also explained in
Appendix A.

As the next step towards tag-form, we will now convert G′ into a balanced
grammar. (A CFG is balanced if every nonterminal is balanced in the sense that
the parentheses balance in all derivable strings; for a formal definition see [13]
or Appendix B.) Balanced grammars have the useful property that in every
production that contains a left parenthesis (< in our case), the matching right
parenthesis (</) appears in the same production. Again we resort to Knuth: in
[13], Knuth shows how a completely qualified CFG that has a balanced language
can be converted to a balanced grammar – however, under the assumption that
the language has bounded associates. Our grammars generally do not have this
property (one can easily write a servlet that results in any desirable grammar), so
we need to modify Knuth’s algorithm to accommodate for a more general setting.
Although L(G′) is balanced, there may in fact not exist a balanced grammar
G′′ with L(G′) = L(G′′), as observed in [13]. Hence we resort to approximation
(using a local variant of [15]): the grammar G′′ that we produce has the property
that it is balanced and L(G′) ⊆ L(G′′). Surprisingly, the loss of precision incurred
by this approximation is limited to the degree that it does not affect precision of
our well-formedness and validity analyses. A detailed explanation of this rather
technical algorithm is given in Appendix B, and proofs of soundness and relative
completeness are presented in Appendix C.

Example For the example grammar shown in Section 2, notice that L(R12)
and L(R15) are not balanced: the former has an excess of < symbols (for the
html and body start tags), and the latter has a converse excess of </ symbols.
Our algorithm straightens this and outputs a grammar where every production
that contains a < symbol also contains the matching </ symbol. In this simple
example, no approximations are necessary.

9

3.2 Step 2: Transforming to Tag-form

The symbols <, >, and " are essential for our further transformation to tag-form
since they function as context delimiters in XML documents in the sense that
they delimit the tag, element content, and attribute value contexts, respectively.
Given a balanced grammar G = (V, Σ, S, P) we will in the following classify
nonterminals and symbols occurring on right-hand sides of productions in P
according to their possible contexts. If such classification can be uniquely de-
termined, we will use the contexts to extract a grammar on tag-form for L(G),
otherwise we have evidence that some strings in L(G) are not well-formed.

Let C be a lattice with values ⊥, tag, content, attrval, and error ordered by

tag attrvalcontent

error

and define a function δ : C ×Σ → C by

δ(c, σ) =




c if σ 6∈ {<, >, "} or c = ⊥
tag if (σ = < and c = content) or (σ = " and c = attrval)
attrval if (σ = " and c = tag) or (σ = > and c = attrval)
content if σ = > and (c = tag or c = content)
error otherwise

Intuitively, δ determines transitions on C according to the context delimiters
{<, >, "} and is the identity function on all other symbols.

We may now define a constraint system on the grammar G expressed as a
function ∆ : C × U∗ → C defined by the following rules:

∆(content, s) w content for all s ∈ S

∆G(c, A) w ∆G(c, θ) for all A → θ ∈ P

∆(c, x) w




c when x = ε

∆(δ(c, σ), y) when x = σy where σ ∈ Σ, y ∈ U∗

∆(∆(c, θ), y) when x = Ay where A ∈ V, y ∈ U∗ and A → θ ∈ P

The constraint system will always have a unique least solution ∆G, which can
be found using a standard fixed-point algorithm. (This is the case because a
finite subset of U∗ containing all nonterminals and all prefixes of right-hand
sides of productions in P is enough to fulfill the constraints.) Furthermore, if
∆G(content, s) = error for some s ∈ S then L(G) contains a non-well-formed
string. In that case, we can issue a precise warning message by producing a
derivation starting from s and using productions A → θ with ∆G(c, θ) = error.

Assume now that ∆G(content, s) 6= error for all s ∈ S. The balanced grammar
G can then be converted as follows into an equivalent grammar on tag-form.

First, we will ensure that nonterminals occur in unique contexts in all deriva-
tions. For every A ∈ V and c ∈ {content, tag, attrval} where ∆G(c, A) 6= ⊥, create

10

an annotated nonterminal Ac with the same productions as A. Then make Ac

a start nonterminal if A ∈ S and replace every production Bc1 → αAω where
∆G(c1, α) = c2 with a production Bc1 → αAc2ω. All unannotated nonterminals
and productions are now unreachable and can be removed.

Now that the grammar is balanced with respect to < and </ and each nonter-
minal is used in only one context in any derivation, it is straightforward to bring
the grammar on tag-form (except for the attribute nonterminals) by repeatedly
applying Transformation 1 and Transformation 2 from [13] to eliminate all non-
terminals A ∈ V where ∆G(c, A) 6= c. We can handle attribute nonterminals
similarly by considering a few more context delimiters (whitespace and =).

Example The extracted CFG for the example program in Section 2 has a bal-
anced language and our transformation results in a grammar on tag-form. After
applying some basic simplification rules to make it more readable, we obtain the
following grammar with C1 being the only start nonterminal (assuming that we
consider S = {N1, N6} in the original grammar):

C1 → < html A1 > C2 C4 </ html > C8 → < h3 > X1 </ h3 >

C2 → < head > C3 </ head > C9 → C5 | C13 X3

C3 → < title > X1 </ title > C10 → < hr A2 ></ hr >

C4 → < body > C10 C11 C10 C8 C9 C10 </ body > C11 → < div A3 > C12 </ div >

C5 → < form A4 A5 > C6 C7 </ form > C12 → < small > X2 </ small >

C6 → < input A6 A7 > </ input > C13 → < b > Phone: </ b >

C7 → < input A8 A9 > </ input >

A1 → xmlns="http://www.w3.org/1999/xhtml" A6 → type="text"

A2 → size="1" A7 → name="NAME"

A3 → align="right" A8 → type="submit"

A4 → action=" V1 " A9 → value="lookup"

A5 → method="POST"

X1 → Enter name | LCDATA V1 → contextpath/show
X2 → Session initiated [LDATE]

X3 → Lphone

LCDATA is the set of all strings that can be returned from misc.encodeXML,
LDATE are the legal date string values, Lphone contains the possible output of
the method directory.phone, and contextpath denotes the application context
path as obtained by getContextPath. These regular languages are obtained by
the preliminary string analysis.

3.3 Step 3: Checking Well-formedness

The previous steps have checked a number of necessary conditions for well-
formedness. Now that we have the grammar on tag-form, we can easily check
the remaining properties:

11

– All start productions must be on element form. (In other words, there is
always exactly one root element.)

– For every production C1 → < T1 A > C2 </ T2 > on element form, both
L(T1) and L(T2) must be singleton languages and equal. (Otherwise, one
could derive a string where a start tag does not match its end tag.)

– For every production C1 → < T1 A > C2 </ T2 > on element form, the
attributes corresponding to A must have disjoint names. More precisely,
whenever A ⇒+ αA1φA2ω where α, φ, ω ∈ U∗ and Ai → Wi T ′

i = " Vi " for
i = 1, 2, we check that L(T ′

1) ∩ L(T ′
2) = ∅. If the sub-grammars of T ′

1 and
T ′

2 are linear, this check is straightforward; otherwise, since the property is
generally undecidable we sacrifice completeness and issue a warning.

The only way sub-grammars that correspond to attribute names can be nonlinear
is if the program being analyzed uses a recursive method to build individual
attribute names in a contrived way where a part of a name is written to the
output stream before the recursive call and another part is written after the call.
(We give an example in Appendix C). With the exception of this pathological
case, the checks described above are passed if and only if L(G) contains only
well-formed XML documents. Our running example passes the well-formedness
check.

4 Checking Validity using XML Graphs

An XML graph is a finite structure that represents a potentially infinite set
of XML trees, as defined in [11, 10] (where XML graphs are called summary
graphs). We here give a brief description of a variant of the formalism, tailored
to our present setting.

An XML graph contains finite sets of nodes of various kinds: element nodes
(NE), attribute nodes (NA), text nodes (NT), sequence nodes (NS), and choice
nodes (NC). (The definition of summary graphs used in earlier papers also in-
volves gap nodes, which we do not need here.) Let N = NE∪NA∪NT ∪NS∪NC .
The graph has a set of root nodes R ⊆ N . The map contents : NE ∪ NA → N
connects element nodes and attribute nodes with descriptions of their contents.
For sequence nodes it returns sequences of nodes, contents : NS → N ∗, and
for choice nodes it returns sets of nodes, contents : NC → 2N . The map
val : NT ∪ NA ∪ NE → REG, where REG are all regular string languages over
the Unicode alphabet, assigns a set of strings to each text node, element node,
and attribute node, in the latter two cases representing their possible names.

An XML graph may be viewed as a generalized XML tree that permits
choices, loops, and regular sets of possible attribute/element names and text
values. The language L(χ) of an XML graph χ is intuitively the set of XML
trees that can be obtained by unfolding it, starting from a root node.

As an example, consider the set of all ul lists with one or more li items
that each contain a string from some regular language L. It can be described
by an XML graph with six nodes N = {e1, e2, s1, s2, c, t}, roots R = {e1}, and

12

maps contents = {e1 7→ s1, e2 7→ t, s1 7→ e2 c, s2 7→ ε, c 7→ {s1, s2}} and
val = {e1 7→ {ul}, e2 7→ {li}, t 7→ L}. This is illustrated as follows:

CHOICE

ul

li

SEQ

L

SEQ2

1

s

e

s

e

c

1 1

2

2

The rounded boxes represent the element nodes e1 and e2, the SEQ boxes represent
the sequence nodes s1 and s2 (edges out of s1 are ordered according to their
indices), and the CHOICE box represents the choice node c. The text node t is
represented by its associated language L.

From the Xact project, we have an algorithm that can check for a given
XML graph χ and a schema S, written in either DTD or XML Schema, whether
or not every XML tree in L(χ) is valid according to S. (See [10] for a description
of the algorithm and [12] for an implementation.) Hence, our only remaining task
in order to be able to validate the output of the servlets is to convert the balanced
grammar on tag-form that we produced and checked for well-formedness in Sec-
tion 3 into an XML graph. Fortunately, this is straightforward to accomplish, as
explained in the following.

Starting from the start nonterminals S and their productions, each pro-
duction p ∈ P is converted to an XML graph node np according to its form.
Also, each nonterminal A is converted to a choice node nA with contents(nA) =
{np | p is a production of A}:
element form For a production p = C1 → < T1 A > C2 </ T2 >, np becomes

an element node. We know from the well-formedness check that L(T1) =
L(T2) is some singleton language {s}, so we set name(np) = {s}. To capture
the attributes and contents, a sequence node nq is also added, and we set
contents(np) = nq and contents(nq) = nA nC2 .

text form For a production p = C → X , the sub-grammar starting from X
is converted to an equivalent sub-graph rooted by np, using only sequence
nodes, choice nodes, and text nodes. We omit the details.

attribute form For a production p = A → W T = " V ", np becomes an
attribute node. As in the previous case, the sub-grammar rooted by V
is converted to an equivalent sub-graph rooted by a node nV , and we let
contents(np) = nV . From the well-formedness check, we know that the sub-
grammar of T is linear, so its language is regular and we set name(np)
accordingly.

content or attribute sequence form For a production p = C → C1 C2, np

becomes a sequence node with contents(np) = nC1 nC2 . Productions on at-
tribute sequence form are converted similarly.

empty form For a production p = A → ε, np becomes a sequence node with
contents(np) = ε.

The root nodes R are the nodes that correspond to the start nonterminals.

13

SEQ

SEQ

{Phone:}

b
phoneL

5

CHOICE

LCDATA

CHOICE

{Enter name}
SEQ

1
2

div

small

{Session initiated [..]}

align

{right}

{1}

size

SEQ

{text}

type

SEQ

1
2

1

2

{NAME}

{submit}

{lookup}

type
name value

input input

method

{POST}

SEQ

SEQ

2
31

{http://..}

xmlns body

html

head

form

1
2

title

4

h3
2

hr

3 61

{ /show}

action

1

2
3

4

contextpath

Fig. 2. XML graph for the example program. (We depict element nodes as rounded
boxes, attribute nodes as ellipses, and sequence and choice nodes as SEQ and CHOICE

boxes, respectively. Edges out of sequence nodes are ordered according to the indices.)

For the example program from Section 1, we obtain the XML graph shown
in Figure 2 (slightly simplified by combining nested sequence nodes). Note that
since the program has no recursive methods, there are no loops in the graph.
Running the Xact validator on this XML graph and the schema for XHTML
gives the result “Valid!”, meaning that the program is guaranteed to output only
valid XHTML documents.

5 Analyzing Inter-Servlet Control Flow

Servlet/JSP applications are typically structured as collections of dynamic pages
that are connected via a deployment descriptor, web.xml, together with links
() and forms (<form action=". . .">) appearing in generated
XHTML documents. Since links and forms are intertwined with general page

14

layout and various kinds of data, it is often a challenging task to recognize and
apprehend the complete control flow of applications consisting of more than a
few servlets or JSP pages. We will now briefly describe how to further bene-
fit from the XML graphs to obtain an inter-servlet control flow graph for an
application.

The goal is to produce a graph with nodes corresponding to the doGet and
doPost methods of each servlet class and edges corresponding to the possible
control flow via links or forms in the generated documents. The challenge in
producing such a graph is associating a set of possible servlet classes to the links
and forms appearing in generated documents by using the URL mappings of the
deployment descriptor.

Given an XML graph corresponding to the output of a servlet method we
recognize the links and forms by searching (that is, unfolding according to the
contents map, starting from the roots) for element nodes named a or form, and
further, searching for their attribute nodes with names href and action, re-
spectively. From each of the attribute values, we can extract a regular language
of all possible target URLs and compare with the mappings described by the
deployment descriptor to get the corresponding set of servlet classes. This set
forms the inter-servlet flow edges out of the method. By applying the process to
all servlet methods we obtain an inter-servlet control flow graph, which is guar-
anteed to be sound because the XML graphs represent sound approximations of
the possible XHTML output.

The inter-servlet control flow graph for our running example is like the one in
Figure 1, however extended with an inter-servlet flow edge from the exit node n5

of the Entry.doGet method to the entry node n6 of the Show.doPost method.
The inter-servlet control flow graph provides a whole-program view of the

Web application. This is useful for visualizing the flow to the programmer and
for checking reachability properties of the application workflow. It also serves as
the foundation for a number of interesting derived analyses. One such analysis is
consistency checking of form fields (as explained in detail in the JWIG paper [7]),
which guarantees that all request parameters expected by a servlet exist as form
fields in the XHTML output of every immediately preceeding servlet in the flow
graph. A related analysis is consistency checking of session state, which can
guarantee that every use of a session state variable has been preceeded by a
definition. Clearly, such analyses are only feasible if the inter-servlet control flow
is known, and, as sketched above, the XML graphs are a key to obtain precise
knowledge of this flow.

6 Implementation Considerations and Conclusion

We have presented an approach for analyzing servlet/JSP applications to detect
XML well-formedness and validity errors in the output being generated and
outlined how to obtain and apply knowledge of the inter-servlet control flow.
The front-end, which constructs a CFG for the program being analyzed, is sound;
the back-end, which constructs an XML graph from the CFG and analyzes well-
formedness and validity is both sound and complete relative to the CFG (under

15

the assumption that certain well-defined contrived patterns do not occur in the
program).

We have chosen an approach of imposing as few restrictions as possible on
the programs being analyzed (see the definition of “contrived” in Appendix C
and its use in Section 3.3). An alternative approach, which might of course lead
to a simpler analysis, would be to restrict the class of programs that the analysis
can handle or sacrifice soundness. The trade-off we have chosen investigates the
possibilities in the end of this design spectrum that is most flexible seen from
the programmer’s point of view.

Only a complete implementation and experiments on real applications can tell
whether the precision and performance are sufficient for practical use. However,
we have reasons to believe that this is the case. Regarding the front-end, it
is our experience from the JWIG, Xact, and string analysis projects [7, 11, 8]
that the extraction of flow graphs from Java programs works well in practice –
regarding both precision and performance – and the extraction of CFGs from
flow graphs is both precise and efficient. Similarly, the analysis of XML graphs
in the back-end has also shown to work well in practice. The only remaining
question is whether the grammar manipulations can be done efficiently, but
our preliminary experiments indicate that this is the case. We are presently
implementing the grammar manipulations and connecting the components of
the analysis system, which will hopefully give more confidence to the practical
feasibility of the approach.

Acknowledgments We thank Aske Simon Christensen for inspiring discussions
about various aspects of the program analysis.

References

1. Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley, 1986.

2. Assaf Arkin et al. Web Services Business Process Execution Language Version 2.0,
December 2005. OASIS, Committee Draft.

3. Jean Berstel and Luc Boasson. Formal properties of XML grammars and languages.
Acta Informatica, 38(9):649–671, 2002. Springer-Verlag.

4. Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and François Yergeau.
Extensible Markup Language (XML) 1.0 (third edition), February 2004. W3C
Recommendation. http://www.w3.org/TR/REC-xml.

5. Anne Brüggemann-Klein and Derick Wood. Balanced context-free grammars,
hedge grammars and pushdown caterpillar automata. In Proc. Extreme Markup
Languages, 2004.

6. Aske Simon Christensen. Something to do with Java. PhD thesis, BRICS, Depart-
ment of Computer Science, University of Aarhus, December 2005.

7. Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Extending
Java for high-level Web service construction. ACM Transactions on Programming
Languages and Systems, 25(6):814–875, 2003.

8. Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Precise
analysis of string expressions. In Proc. 10th International Static Analysis Sympo-
sium, SAS ’03, volume 2694 of LNCS, pages 1–18. Springer-Verlag, June 2003.

16

9. M. H. Jansen-Vullers, Wil M. P. van der Aalst, and Michael Rosemann. Min-
ing configurable enterprise information systems. Data & Knowledge Engineering,
56(3):195–244, 2006.

10. Christian Kirkegaard and Anders Møller. Type checking with XML Schema in
Xact. Technical Report RS-05-31, BRICS, 2005. Presented at Programming
Language Technologies for XML, PLAN-X ’06.

11. Christian Kirkegaard, Anders Møller, and Michael I. Schwartzbach. Static analysis
of XML transformations in Java. IEEE Transactions on Software Engineering,
30(3):181–192, March 2004.

12. Christian Kirkegaard and Anders Møller. dk.brics.schematools, 2006.
http://www.brics.dk/schematools/.

13. Donald E. Knuth. A characterization of parenthesis languages. Information and
Control, 11:269–289, 1967.

14. Yasuhiko Minamide. Static approximation of dynamically generated Web pages.
In Proc. 14th International Conference on World Wide Web, WWW ’05, pages
432–441. ACM, May 2005.

15. Mehryar Mohri and Mark-Jan Nederhof. Robustness in Language and Speech Tech-
nology, chapter 9: Regular Approximation of Context-Free Grammars through
Transformation. Kluwer Academic Publishers, 2001.

16. Makoto Murata, Dongwon Lee, Murali Mani, and Kohsuke Kawaguchi. Taxonomy
of XML schema languages using formal language theory. ACM Transactions on
Internet Technology, 5(4):660–704, 2005.

17. Sun Microsystems. Java Servlet Specification, Version 2.4, 2003. Available from
http://java.sun.com/products/servlet/.

18. Sun Microsystems. JavaServer Pages Specification, Version 2.0, 2003. Available
from http://java.sun.com/products/jsp/.

19. Raja Vallee-Rai, Laurie Hendren, Vijay Sundaresan, Patrick Lam, Etienne Gagnon,
and Phong Co. Soot – a Java optimization framework. In Proc. IBM Centre for
Advanced Studies Conference, CASCON ’99. IBM, November 1999.

20. Wil M. P. van der Aalst, Lachlan Aldred, Marlon Dumas, and Arthur H. M. ter
Hofstede. Design and implementation of the YAWL system. In Proc. 16th Inter-
national Conference on Advanced Information Systems Engineering, CAiSE ’04,
volume 3084 of LNCS. Springer-Verlag, June 2004.

17

A Checking Balancing of a Context-Free Language

We here recapitulate Knuth’s algorithm for checking balancing of the language
of a CFG (Theorem 1 in [13]).

Let G = (V, Σ, S, P) be a CFG (as defined in Section 2). Without loss of
generality, we assume that G has no useless nonterminals and is non-circular
(this can be achieved with well-known techniques). Let U = V ∪ Σ. Assume
that Σ contains two distinguished symbols, (and), and let T = Σ\{(,)}. The
functions c, d : Σ∗ → N are defined as follows where a ∈ Σ and x ∈ Σ∗:

c(a) =




1 if a = (

0 if a ∈ T

−1 if a =)

d(a) =




0 if a = (

0 if a ∈ T

1 if a =)

c(ε) = d(ε) = 0

c(xa) = c(x) + c(a)

d(xa) = max(d(x), d(a) − c(x))

Intuitively, c(x) is the excess of left parentheses over right parentheses in x, and
d(x) is the greatest deficiency of left parentheses from right parentheses in any
prefix of x. A string x ∈ Σ∗ is balanced if c(x) = d(x) = 0, and a language
L ⊆ Σ∗ is balanced if every x ∈ L is a balanced.

For each nonterminal A ∈ V we can find strings α, φ, ω ∈ Σ∗ such that
s ⇒∗ αAω ⇒∗ αφω for some s ∈ S. Then define c(A) = c(φ) and d0(A) = c(α).
The function c is now extended to the domain U∗ in the same way as above.

Knuth shows that L(G) is balanced if and only if the following properties
hold:

– c(s) = 0 for each s ∈ S;
– c(A) = c(θ) for each A → θ in P ; and
– there exists a function d : U∗ → N satisfying the rules above and furthermore,

• d(s) = 0 for each s ∈ S;
• 0 ≤ d(A) ≤ d0(A) for each A ∈ V ; and
• d(A) ≥ d(θ) for each A → θ.

Furthermore, Knuth shows that if L(G) is balanced then we can construct
a grammar G′ where L(G) = L(G′) such that G′ is completely qualified, that
is, d has the property that d(A) = d(θ) for each production A → θ. It follows
directly that a grammar is completely qualified if and only if c(A) = c(x) and
d(A) = d(x) whenever x ∈ L(A).

B Constructing a Balanced Grammar from a
CFG with a Balanced Language

In this section we recapitulate Knuth’s algorithm for constructing a balanced
grammar from a CFG with a balanced language (Theorem 3 in [13]) and present
an extension for CFGs whose languages do not have bounded associates.

18

Let G = (V, Σ, S, P) be a completely qualified, non-circular CFG and assume
that L(G) is a balanced language. Also, let c, d : U∗ → N be functions as defined
in Appendix A. G is a balanced grammar if c(A) = d(A) = 0 for every A ∈ V
(in other words, if L(A) is balanced for every A ∈ V).

For notational convenience we will allow the symbol ∗, representing zero-or-
more occurrences, in grammars. More precisely, for a nonterminal A, we assume
the implicit productions A∗ → AA∗ | ε in P .

To construct balanced grammars we will need to distinguish between match-
ing and free parentheses. The two parentheses in x(y)z ∈ Σ∗ are said to match
if y is balanced. The left parenthesis in x(y ∈ Σ∗ is free if d(y) = 0. The right
parenthesis in x)y ∈ Σ∗ is free if c(x) ≤ 0 and d(x) = −c(x).

For a string u = u1u2 . . . un ∈ U∗ we form its parenthesis image I(u) by
replacing every symbol ui by a sequence of d(ui) right parentheses followed by
c(ui) + d(ui) left parentheses and then removing all matching parentheses. The
result is a string over the alphabet {(,)} with d(u) free right parentheses and
c(u) + d(u) free left parentheses. The parenthesis image of a nonterminal is
defined by I(A) = I(θ) if P contains a production A → θ (this is well-defined
since G is completely qualified).

Using the parenthesis images of the productions in P we construct a directed
graph DG. The nodes of DG are labeled [A)u] or [A(u] where A ∈ V and u ∈ N.
The label [A)u] represents the u’th free right parenthesis in strings derived from
A, and similarly, [A(u] represents the u’th free left parenthesis in strings derived
from A. For each production A → θ in P we include an edge in DG for each
parenthesis in I(A) that does not correspond to an actual parenthesis symbol in
θ. More precisely, DG has an edge [A)u] −→ [B)v] if P contains a production
A → αBω where the u’th right parenthesis in I(αBω) corresponds to the v’th
right parenthesis in I(B) (and similarly for the left parentheses). The important
property of DG is that it has no edges if and only if G is a balanced grammar.

Knuth gives a simple algorithm for transforming G such that the edges in
DG are removed without changing L(G), thereby transforming G into an equiv-
alent balanced grammar. The algorithm progresses by repeatedly eliminating
sink nodes from DG, which naturally only works when DG has no cycles. Knuth
only considers languages with bounded associates and observes that this property
implies DG being acyclic.

Contrasting Knuth, we permit unrestricted CFGs whose languages in general
may have unbounded associates. This means that the resulting DG graph may
contain cycles and that Knuth’s algorithm does not immediately work. In the
following we will show how to eliminate cycles in DG. Intuitively, we replace a
set of grammar productions corresponding to a cycle in DG by a different set
of grammar productions without the cycle, in such a way that the transformed
grammar has a slightly larger, but still balanced, language.

Assume that DG has a simple cycle:

[A0)u0] −→ · · · −→ [Ai)ui] −→ · · · −→ [An−1)un−1] −→ [A0)u0]

19

We can then (by repeatedly inlining the productions of Ai+1 in the productions
of Ai) consider the productions of A0 on the equivalent form

A0 → α1 A0 ω1 | . . . | αm A0 ωm | φ1 | . . . | φk (1)

where each of the first m productions gives rise to a cycle in D from [A0)u0] to
itself, and the remaining k productions do not have this property. The resulting
grammar is denoted G1.

Next, the productions of A0 are replaced by

A0 → X X∗Z Y ∗ Y | X X∗Z | Z Y ∗ Y | Z (2)

where X , Y , and Z are new nonterminals defined by

X → α1 | . . . | αm

Y → ω1 | . . . | ωm

Z → φ1 | . . . | φk

and finally, the productions of X and Y are inlined in the productions of A0

(that is, X and Y can be thought of as abbreviations rather than nonterminals).
The resulting grammar is denoted G2. (A cycle involving left parentheses is
handled similarly.) The step from G1 to G2 can be seen as an application of
Mohri and Nederhof’s algorithm for constructing a regular approximation of a
CFG [15]; however, we apply it locally rather than to a complete CFG (and we
use a slightly different notation). Note that the four productions in (2) together
have the same language as A0 → X∗ZY ∗ – the reasons for choosing the form in
(2) should be clear from the proof below.

Proposition 1 (Correctness of cycle removal). Let G be a completely quali-
fied, non-circular CFG with a balanced language and a DG cycle through [A0)u0].
The transformed grammar G2 given by the above construction has the following
properties:

(a) G2 is completely qualified;
(b) L(G2) is a balanced language; and
(c) DG2 has strictly fewer simple cycles than DG.

(The case with left parentheses is symmetric.)

Proof.

(a) The production inlining steps clearly do not affect the set of strings that can
be derived from a given nonterminal, so G1 is completely qualified. From the
proof of Theorem 3 in [13], we have that c(X) = c(Y) = 0, which implies
that c(XX∗) = c(Y ∗Y) = 0 so d(XX∗) = d(X) and d(Y ∗Y) = d(Y). Since
G1 is completely qualified, we then have that d(Z) ≥ d(X) and d(Z) ≥ d(Y).
From G1 to G2 only the productions of A0 are changed, so it follows by the
definitions of c and d that G2 is also completely qualified.

20

(b) As noted in part (a), L(G) = L(G1), so L(G1) is a balanced language. Since
LG1(A0) ∩ LG2(A0) 6= ∅ and both G1 and G2 are completely qualified we
have that both c(A0) and d(A0) are unchanged by the step from G1 to
G2. Therefore, this step does not affect the free parentheses in any string
derived from A0, which implies that L(G1) is balanced if and only if L(G2)
is balanced.

(c) The production inlining steps clearly do not change the number of simple
cycles, so no new cycles are introduced in G1. Consider now the step from
G1 to G2. The entities X∗ and Y ∗ cannot participate in any DG2 cycles since
I(XX∗ZY ∗Y) cannot have any parentheses that come from X∗ or Y ∗ (and
similarly for I(XX∗Z) and I(ZY ∗Y)). Furthermore, any edge in DG2 on the
form [A0)u] −→ [B)v] for some u, v and B 6= Z must also be present in DG1 .
Since the only productions being changed from G1 to G2 are ones with A0

on the left-hand side, this implies that no new cycles have been introduced.
(The case with left parentheses is symmetric.) As the final step, we show
that a cycle has actually been removed. The only possible outgoing edge in
DG2 from [A0)u0] leads to [Z)u0]. By construction, none of the productions
on the form A0 → φi give rise to a cycle in DG1 through [A0)u0], so DG2 has
no path from [Z)u0] to [A0)u0] for any v. Hence, the cycle in DG1 through
[A0)u0] has no counterpart in DG2 . (Again, the case with left parentheses is
symmetric.) �

If DG2 contains another cycle, then we can repeat the above process to also
eliminate that cycle. Termination of this repeated process is guaranteed because
the number of simple cycles is finite and strictly decreasing in each round.

The result of the entire transformation process is a completely qualified gram-
mar Ĝ with a balanced language and no cycles in D bG. We can then apply Knuth’s
algorithm from Theorem 3 in [13] to get an equivalent balanced grammar.

C Soundness and Relative Completeness

Recall that our analysis has a front-end that extracts a CFG from the Java
program and a back-end that transforms the CFG to tag-form, checks well-
formedness, and extracts an XML graph whose language is validated with respect
to an XML schema. We will now consider soundness and completeness of this
combined analysis of well-formedness and validity.

We say that a string x ∈ Σ∗ is well-formed if it is a well-formed XML
document [4], and if well-formed, we say that x is valid with respect an XML
schema S if it belongs to the language L(S) of the schema. A language L ⊆ Σ∗ is
well-formed or valid with respect to S if every string in L is well-formed or valid
with respect to S, respectively. We use single-type tree languages for modeling
schemas, which includes DTD and XML Schema [16].

The extraction of a CFG from a program can be made sound by constructing
a flow graph that includes every possible runtime trace of the program, and by
conservatively modeling all open and unknown parts (see [6]). Several well-known

21

techniques can be applied to obtain good precision of the flow graph construction,
but getting a precise answer is of course generally undecidable. The extraction
of flow graphs and CFGs is therefore necessarily incomplete.

Perhaps more surprisingly, the analysis of well-formedness and validity is both
sound and complete relative to the CFGs produced by the front-end – as long
as certain well-defined contrived situations do not occur in the program being
analyzed. This property is not immediately apparent because the transformation
from a CFG to a balanced grammar, as described in Appendices A and B, might
have to approximate certain sub-grammars, which leads to a larger language of
the resulting balanced grammar.

Let us say that a grammar G is contrived if there are element or attribute
names in L(G) that are produced by non-linear sub-grammars. Such grammars
can only appear in unnatural cases where a program recursively constructs names
by printing some parts to the output stream before a recursive method call and
printing other parts after the call as in this example:

void m(OutputStream out, int n) {

out.print("<");

rec(out, n);

out.print(">");

}

void rec(OutputStream out, int n) {

if (n==0) out.print("x></x");

else {

out.print("x");

rec(out, n-1);

out.print("x");

}

}

The output language for the method m is {<xn></xn> | n ≥ 1}, and a sub-
grammar describing the tag names is clearly non-linear. Certainly, this program
structure is not occurring in real servlet/JSP application code, and we will conse-
quently assume that grammars being produced by the front-end are uncontrived.

Proposition 2 (Soundness and relative completeness). Let S be a schema
with a single-type tree language (the paper [16] explains how DTD and XML
Schema fit into this category). Let G be a CFG with a balanced language (treating
< as left parenthesis and </ as right parenthesis as in Section 3) and let Ĝ be the
corresponding balanced grammar produced by the transformations described in
Appendices A and B. Assume that G is uncontrived. Then L(G) is well-formed
and valid with respect to S if and only if L(Ĝ) is well-formed and valid with
respect to S.

Proof. The only step that is not language preserving is from G1 to G2 in Ap-
pendix B. This step can only add strings to the language, so L(G) ⊆ L(Ĝ),
which implies the “if” direction (soundness). The other direction (completeness)
is shown in the following, first for well-formedness and then for validity.

When transforming from G1 to G2, we might produce strings in L(G2)\L(G1)
only when productions on the form (1) are replaced by productions on the form
(2), which, as noted in Appendix B, has the same language as the form A0 →
X∗ Z Y ∗. This replacement is only performed when there is a DG cycle through
[A0)u] or [A0(u] for some u, which implies that a parenthesis derived via αi

22

(or X∗) cannot match a parenthesis derived via ωj (or Y ∗) for any i, j, and
I(X∗ZY ∗) contains a parenthesis originating from Z. Every G2 derivation of a
string x ∈ L(G2)\L(G1) must by construction have the form

s ⇒∗ ϕ1 A0 ϕ2 ⇒+ ϕ1 α θ ω ϕ2 = x (3)

where α ∈ L(X)∗, θ ∈ L(Z), and ω ∈ L(Y)∗. However, by the definitions of X
and Y we can find corresponding derivations in G1:

s ⇒∗ ϕ1 A0 ϕ2 ⇒+ ϕ1 α θ ω′ ϕ2 (4)

s ⇒∗ ϕ1 A0 ϕ2 ⇒+ ϕ1 α′ θ ω ϕ2 (5)

where α′ ∈ L(X)∗ and ω′ ∈ L(Y)∗. Let us consider what this means to well-
formedness of x. Since ϕ1αθ is a prefix of a well-formed string ϕ1αθω′ϕ2, it
makes sense to say that every symbol in ϕ1αθ belongs to some tag or character
data in ϕ1αθω′ϕ2, and similarly, every symbol in θωϕ2 belongs to some tag or
character data in ϕ1α

′θωϕ2. The substring θ must contain < or </, so every
symbol in x belongs to a tag or some character data in a well-defined manner.
The only question is now whether the tags in x are balanced.

Assume for a contradiction that the tags in x are not balanced. Since x is
balanced with respect to < and </, the unbalancing must be caused by a start
tag tS whose name is not equal to the name of the corresponding end tag tE .
Since G is assumed to be uncontrived and (4) is well-formed, the entire name of
tS comes from the prefix ϕ1αθ, and similarly, since (5) is also well-formed, the
entire name of tE comes from the suffix θωϕ2. From the observations above, αθω
always contains a free parenthesis from θ. If that parenthesis is a <, then the
matching </ in x must come from ϕ2. However, tS matches tE , so the name of
tE must come from θ. If we replace ω by ω′ in x, then we have obtained a well-
formed string without changing tS and tE , which contradicts the assumption
that the tags in x are not balanced. The case where the free parenthesis from θ
is of type </ is symmetric. Hence, x is well-formed.

Let us now consider validity. As noted above, αθω always contains a free
parenthesis (< or </) from θ. No tag (or character data) from α can therefore
be sibling, ancestor, or descendant of any tag (or character data) from ω in the
XML tree structure corresponding to x. By assumption, L(S) is a single-type
tree language, so validity of α is independent of ω and vice versa. Since both
strings derived in (4) and (5) are valid with respect to S, this means that x must
also be valid. �

Proposition 2 gives that producing balanced grammars from uncontrived
CFGs is sound and complete with respect to analysis of well-formedness and
validity. The transformation of a balanced grammar to tag-form as described in
Section 3 is language preserving. Also, the grammar remains uncontrived by the
transformations, so disjointness of attribute names is decidable as required for
completeness of the well-formedness check. The extraction of XML graphs pre-
sented in Section 4 is obviously sound and complete with respect to validity. We
conclude that the analysis of well-formedness and validity is sound and complete
relative to CFGs that are not contrived in the sense defined above.

23

Recent BRICS Report Series Publications

RS-06-10 Christian Kirkegaard and Anders Møller. Static Analysis for
Java Servlets and JSP. June 2006. 23 pp. Full version of paper
presented at SAS ’06.

RS-06-9 Claus Brabrand, Robert Giegerich, and Anders Møller.Ana-
lyzing Ambiguity of Context-Free Grammars. April 2006. 19 pp.

RS-06-8 Christian Kirkegaard and Anders Møller. Static Analysis for
Java Servlets and JSP. April 2006. 22 pp.

RS-06-7 Petr Jaňcar and Jiř ı́ Srba. Undecidability Results for Bisimilar-
ity on Prefix Rewrite Systems. April 2006. 20 pp. Presented at
FoSSaCS 2006, LNCS 3921:277–291.

RS-06-6 Luca Aceto, Willem Jan Fokkink, Anna Inǵolfsdóttir, and Bas
Luttik. A Finite Equational Base for CCS with Left Merge and
Communication Merge. March 2006. 22 pp.

RS-06-5 Kristian Støvring. Extending the Extensional Lambda Calculus
with Surjective Pairing is Conservative. March 2006. 18 pp.
To appear in Logical Methods in Computer Science. Supersedes
RS-05-35.

RS-06-4 Olivier Danvy and Kevin Millikin. A Rational Deconstruction
of Landin’s J Operator. February 2006. ii+26 pp. To appear in
the post-reviewed proceedings of the 17th International Work-
shop on theImplementation and Application of Functional Lan-
guages(IFL’05), Dublin, Ireland, September 2005.

RS-06-3 Małgorzata Biernacka and Olivier Danvy. A Concrete Frame-
work for Environment Machines. February 2006. ii+29 pp. To
appear in the ACM Transactions on Computational Logic. Su-
persedes BRICS RS-05-15.

RS-06-2 Mikkel Baun Kjærgaard and Jonathan Bunde-Pedersen. A
Formal Model for Context-Awareness. February 2006. 26 pp.

RS-06-1 Luca Aceto, Taolue Chen, Willem Jan Fokkink, and Anna
Ingólfsdóttir. On the Axiomatizability of Priority. January 2006.
25 pp.

RS-05-38 Małgorzata Biernacka and Olivier Danvy. A Syntactic Corre-
spondence between Context-Sensitive Calculi and Abstract Ma-
chines. December 2005. iii+39 pp. Revised version of BRICS
RS-05-22.

