CONNECTION BETWEEN
DIUKSTRA'S PREDICATE-TRANSFORMERS
AND

DENOTATIONAL CONTINUATION-SEMANTICS

by

Kurt Jensen

DAIMI PB-86
January 1978

Institute of Mathematics University of Aarhus l | —H

DEPARTMENT OF COMPUTER SCIENCE

Ny Munkegade - 8000 Aarhus C - Denmark
Phone 06-1283 55

iy
1

CONNECTION BETWEEN DIUKSTRA!'S PREDICATE-TRANSFORMERS
AND DENOTATIONAL CONTINUATION-SEMANTICS.

by

Kurt Jensen

Abstract

It is important to define and relate different semantic methods. In
particular it is interesting to compare semantics used for program-
verification to those aimed for program-execution. In this paper

the intuitive background for a number of different semantics is given.
They are all reformulated to the notation of denotational semantics
and compared. It is shown that Dijkstra's weakest predicate theory

is satisfied by a denotational continuation~semantics.

The present paper is an improved and shortened version of DAIMI
PB-61.

1. Introduction

In this paper | shall investigate the connection between different seman-~
tic approaches. In [7] Hoare and Lauer argue: for the need of such
different semantics. A semantics useful for language~designers may

not be useful for compiler-implementators nor for programmers using

the language. Therefore it is of great importance to define and relate
different semantic methods. |t seems in particular interesting to com~
pare semantics used for program-verification to those aimed for program-

execution.

In this paper the intuitive background for a number of different semantics
is revealed. It is a shortened version of [8] which contains detailed
proofs of all mentioned theorems and uses a more complicated language
containing declarations, non-deterministic commands and input/output—

commands.

Section 2 defines an example-language, SNAIL. Section 3 summarises
the work done by Hoare and Lauer in [7]. In section 4 this work is re-
formulated using the notation of denotational semantics. Section 5 intro-
duces Dijkstrals weakest predicate-transformers. ln section 6 our deno-
tational semantics is augmented by command-continuations. It turns out
that for Dijkstral!s theory this contributes considerably to a more natural
and understandable interpretation. It is shown that the predicate-trans-
former:theory is satisfied (under a given interpretation) by the denota-
tional continuation-semantics., Section 7 discusses the direction of
further research on these topics. An appendix contains a formal defini-

tion of SNAIL using denotational continuation-semantics.

I want to express my gratitude to Brian Mayoh, Ole Lehrmann Madsen,
Antoni Mazurkiewicz, Peter Mosses and Robin Milner. They all made

useful contributions and comments for this work.

2. A simple language called SNAIL

This section gives an informal description of an example-language,
SNAIL, used in the rest of this paper. A formal description using
denotational continuation~-semantics can be found in the appendix.
Readers familiar with denotational semantics may choose to study

the appendix and possibly skip the rest of this section.

By convention a word in capital letters denotes a domain {see Scott [17])
while the same word written in small letters (and possibly indexed or
marked) denotes an element of the domain. As an example dop;, dop' € DOP

where DOP is the (syntactic) domain consisting of all Dyadic OPerators.

A SNAIL-program is simply the same as a SNAIL -command:
prog i = com
A SNAIL-command is a block, a sequence of commands, an assignment,

an IF-command, a WHILE~-command or a DUMMY-command; all with the

usual semantics. |t should be noticed that SNAIL has no declarations.

com :: = BEGIN com END | com, ;3 com,] var:= exp |
IF exp THEN com; ELSE com, |
WHILE exp DO 'com | DUMMY

A SNAIL ~-expression is either: an expression enclosed by parentheses,
a constant, a variable, a monadic: (prefixed) operator used on an expres-

sion or a dyadic (infix) operator used on two expressions.
exp :: = (exp) | con | var |

mop exp] expi1i dop expa

The syntactic domains of programs, commands, expressions and vari-

ables are denoted PROG, CCM, EXP and VAR respectively.

3. Four different semantics - I—Ioa_re and L auer ‘

In [7] Hoare and Lauer formulate four different semantics for a langua-
ge similar to SNAIL., These semantics range from an extreme construc-
tive approach depending on an (abstract) machine to an extreme implicit
approach where sémantics are defined via a logical deduction system
using axioms and rules of inference. In [9] Lauer extends these seman-
tics to a richer language containing nondeterminism, procedures and
declarations. In this section | shall give a very brief explanation of

the intuitive contents of these semantics without giving the actual defi-

nitions.

Interpretive Model

This approach describes how an abstract machine executes a pr‘ogr*arh
step by step. It is a simplified version of the VDL definition-language
developed by IBM Laboratory Vienna (see MARCOTTY, LEDGARD and
BOCHMANN [12]).

A machine configuration is a pair {s,com) € SXCOM where s is a member
of the domain of memory states and com is the control state describing the com-
mands » remaining to be executed. The state transformations performed

by the abstract machine is defined by a transition function
next € [S X COM » S x COM].

The result of a SNAIL-computation is the memory state obtained by

iterated use of the function next until the control state becomes empty:

result € [S X PROG = S |

s iff prog = empty
result (s, prog) =
result { next (s, prog)) else

Computational Model

This approach differs from the previous one in that it discards the
notion of control state. Now an initial state and a program is mapped in

a sequence of memory states representing the entire computation:
comp € [S X PROG = S* |

The definition is recursive.

Relational Theory

We now move into the implicit approaches by discarding all intermediate
steps in the computation. This can be compared with the difference be-
tween a procedure specifying in detail every step in an evaluation-
algorithm and a (mathematical) function merely giving a relation between
values in definition-domain and range without prescribing an actual
evaluation-method. For a further discussion of this see Scott [17] and

Strachey [19].

In this approach each command is equipped with a relation on S X S

where the intuitive meaning of s Rcvom Ss ({51 ,32) element of the relation
associated with com) is that execution of com brings the abstract machine
from initial state s, to final state s5 . The relations are defined by

axioms ; theorems derived from these axioms are intended to be valid

assertions about memory states before and after execution of a program.

Deductive Theory

We now introduce a further abstraction by discarding memory states
and only handling predicates describing properties of memory states.
This approach has been used by Hoare [6] As in the relational theory
commands will be associated with relations, but now these relations
will be on PRED X PRED where PRED is the domain of first order
logical predicates defined on domain S,

and with elements of VAR as free variables. The relations are defined

by axioms and deduction rules and
{ pred; } com { preds }

has the intuitive meaning that execution of com with an initial state
satisfying pred; will either result in a final state satisfying pred, or

fail to terminate. We say that com is partially correct with respect to

pred; and pred,.

Connection between the 4 semantics

Theorem 1

The interpretive and computational models are equivalent:

| ast o comp = resuit

where last is a function yielding the last item of a non—-empty
finite sequence and undefined for empty or infinite arguments

(and fo g(x) means f{g(x)).

Theorem 2

The relational theory is satisfied by the computational model

under the interpretation:

s. R 2 = sp =last (comp (s1 , prog))

s
prog

Theorem 3

The deductive theory is conservative with respect to the relatio-

nal theory under the interpretation:

{pred, } com {pred;}=

¥ s; s, [pred (s;)A s R S, = predy(s)]

com

By conservatism is meant that any theorem deducible in the de-

ductive theory also has a deduction in the relational theory.

Corollary

The interpretive and computational models are equivalent and the
relational and deductive theories are satisfied under these two

models (using the given interpretations).

4, Four different semantics — a reformulation

In this section | shall reformulate Hoare and L,auer!s ideas using the
notation of denotational semantics (see Scott, Strachey and Wadsworth
[17, 18, 19, 20] or Tennent [21]).It turns out that such a change of
notation in many aspects make the theorems and proofs more straight-

forward and understandable.

Interpretive Model

In the original formulation meaning is assigned to programs by a function
result € [S X PROG - S |

In denotational semantics (without continuations) it is common practice

to use a function
C,€ [COM > [s-5]]

Since the above two domains are isomorphic {remember PROG = COM) it is

tempting to substitute C [[com]] s everywhere for result (s, com).

This gives the following semantics

C, [BEGIN comEND s =C; [[com] s

Cy [Lcoma; com; | s =C; [[com, [(C; [[com] s)

Cy [var: = exp] s = ASSIGN (var, &; [exp]| s)s

C, [[IF exp THEN com, ELSE com; | 's
=&; [exp] s »Cy [com]'s, C; [come s

C;, [WHILE exp DO com | s
=€, [exp]l s »C, [[WHILE exp DO com] (C; [com]s), s
=(Y(F.As' & [explls! > E(C, [com]s!), st)) s

C, [DUMMY] s = s

61 is a semantic function giving meaning to expressions (E; € [EXP -
[S >V 11). V is the domain of expression values. Expressions have no
side-effects and their evaluations always terminate. ASSIGN is an

auxiliary function with functionality

ASSIGN € [VAR x V= [S-S]]
ASSIGN is defined analogous with UPDATE (see appendix).

Y is the least fixpoint operator on domain S.

5 1 is the conditional operator defined by
s; iffv=TT
Vs, , s, = s, iffv=FF

—Ls else

(TT and FF are supposed to be elements of v representing TRUE and
FALSE respectively).

It is easily seen that this is a "natural!! denotational semantics for SNAIL..

Computational Model

This model is treated analogously. We substitute C, [Acomz]] s for

comp (s, com) which gives C, functionality
C, e[coOM =~ [s~»s*]].
However, it turns out that this gives a rather lengthy and inelegant
equation for C, [com; ; com, [|. To avoid this we ""[ift! C, to a function
C. € [COM ~» [s* »S*]]
defined by

Ce [[com] s* = s* || tail (C, [com [Jlast (s*))

where s* € 5%, 11 || 1l is the append operator and tail is a function
yielding its argument {(a sequence) with initial element removed and
undefined for empty argument. (last is defined in connection with

theorem 1).

This apparently complex definition has the following straightforward

intuitive visualization:

¥
A N
Initial state sequence "0 0 0 e o o o & 0
C, [Lcom] last(s¥)
A -
C,[[com] applied to last (s*) “0 0 G e o 5 s 0O
s* tail (C, [[com JJlast(s™))
. - ~ ~ —A I
Concatenation - omitting O 0 O « s o o« o 0 0 O « & » & » O
one of the two b 4

occurences of last (s¥) C, [com] last(s*)

We now get C. [[comy 5 comz [|s* =C. [[com, [(C. [com,] s*)

Again it could be seen by a more detailed inspection that the obtained

function C. is a "natural! denotational semantics for SNAIL

Relational and Deductive Theory

The two theories are defined by axioms and deduction rules. These
are not affected by the reformulation on the previous pages; only the

interpretations of the theories are altered.

Connection between the 4 semantics

Theorem 4

The reformulated and computational models are equivalent:

last (C. [com]s*) =C, [[com] last(s*)

This can also be expressed as commutation of the following diagram

(for all com € COM):

s*¥{ ——— C; [com] ——F | s*

last last

n

¢, [[om] ——

n

Theorem 5

The relational theory is satisfied by the reformulated inter—

pretive model under the interpretation:

Sy Rcom So = 55, =C; [com]s

10

Theorem 6

The deductive theory is satisfied by the reformulated interpretive

model under the interpretation:
{ predi } com { pred, }
= Ws [pred; (s)AC,; [[com s *L

= pred, (C; [[com J's)]

It should be noticed that in this reformulation the two theories are
interpreted directly in terms of the interpretive model and not via the

computational model.

5. Predicate — transformer theory

In[1, 2, 3, 4 | Dijkstra presents a semantic theory based on
predicate~transformers. lts ideas are very closely related to those
represented by Hoares deductive theory, but there are 2 main differen-

ces:

1) Dijkstra demands total correctness (i.e. termination)

while Hoare only demands partial correctness

2) Dijkstra demands a sufficient and necessary (weakest)

precondition while Hoare only demands sufficiency
Dijkstra defines (by axioms) a function
wp € [COM X PRED - PRED .

The intuitive meaning of wp (com, pred;) is the weakest precondition
(predicate), pred, , which guarantees that execution of com with an
initial state satisfying pred,; terminates (without error) with a final

state satisfying predy .

The semantics of SNAIL in this theory is expressed by the following

axioms

11

WP1: wp(BEGIN com END, pred) = wp(com, pred)

WP2: wpl(com; ; coms, pred) = wp(com; ,wp(comy , pred))

var

WP3: wplvar: = exp, pred) = pred exp

WP 4 : wp(lF exp THEN com; ELSE com,, pred)
= (exp A wp(comy , pred)) V (mexp A wp{com, , pred))

WP5: wp(WHILE exp DO com, pred) = (di 20 : H;(pred))

where Hg (pred) = (mexp Apred)

H; {pred) = wp(lE exp THEN com ELSE DUMMY, H,_; (pred)) (i=1)

WP6 : wp{(DUMMY, pred) = pred

var

where pred denotes pred with exp substituted for all free occurences

of var (expressions are evaluated without sideeffects).

Theorem 7

The predicate-transformer theory is satisfied by the reformulated

interpretive model under the interpretation:
wp (com, pred)s = pred(C; [com]s)

with the convention that all predicates map —LS to FALSE.

6. Predicate —~ transformer theory and continuation - semantics

It is now the time to introduce command-continuations and investigate
how this affects the interpretation of the 3 theories. For the relational
and deductive theories it turns out that this adds very little to the
flexibility and understanding of the theories, but when the predicate~
transformer theory is considered the situation is quite different. Here
the use of command~continuations is very convenient and a much more

natural and straightforward interpretation is achieved.

12

We make the assumption that all our predicates are continuous functions
from the domain of memory states, S, into the domain of truthvalues TF,

(TE = { false, true} with ordering false € true). Then PRED = [S ~» TF .

We define the domain of command-continuations by CC = [S » A] where

A is an answer domain assumed to contain TF. Then PRED ¢ CC.

Moreover we define a denotational continuation-semantics
Ce[com~[cc~ccl]

by the equation
Cllcom]ces = cc(Cy [com ||s)

It can be seen that this definition of C is equivalent to that in the appendix.

The original interpretation:
wp (com, pred)s = pred (C; [[com] s)

then becomes
wp (com, pred)s =C [com [|pred s
or

wp (com, pred) = C [[com] pred

where we moreover assume that all predicates are strict (i. e. they map
Lgon _]_TF = FALSE).

Thus we have established a close connection between the two functions:

wp € [COM x PRED - PRED |
C €[comMm=[cc=ccl]

where it should be remembered that PRED & CC.

It gives a much more elegant interpretation of Dijkstra's theory for
predicate-transformers., Moreover it shows a connection between program-
execution represented by C and program-verification represented by wp.
This idea, originally due to Brian Mayoh, has very interesting aspects

as it suggests a possibility for combining verification- and execution-
systems thus eliminating the problem of proving consistency of a

verification-system with respect to ‘an actual implementation.

To use predicates as command~continuations is technically nothing
but choosing the answer domain, A, to be (or at least contain) the do-
main of truthvalues TF., This is only one possibility among many.
Compared to the use of memory states as answer domain it reveals
one outstanding difference. Using memory states we define a function
mapping initial-states into final-states while using predicates we
define a transformation from post~conditions to weakest
pre-conditions . This is very much the same as the difference
between relational theory and deductive theory. The former deals

explicitly with memory states; the latter only implicitly via predicates.
Theorem 8
The predicate~-transformer theory is satisfied by the denotational

Continuation-semantics represented by C (see appendix) under

the interpretation:

wp (com, pred) = C[com]pred

Proof for theorem 8

The proof is done by structural induction on commands:

P1 wp (BEGIN com END, pred)

= C [BEGIN com END [pred

=C [[com] pred

i

wp (com, pred)

s
T
N

wp (comy ; com, , pred)

|

= C[com; ; comy]| pred

Clcomy] { C[com, Jpred}

1il

i

wp (comy , C [[com, [pred)

i

wp (com, , wp(com;, pred))

13

s
T
o

wp (var: = exp, pred)

Ml

C[var: = exp [pred

il

€lexp]l {Av. UPDATE (var, v) pred }

var,
exp

fli

(pred

by the definition of UPDATE (see appendix) and under
the assumption that expressions are evaluated without

side - effects.

wp (IE exp THEN com; ELSE coms, pred)

=C[[IF exp THEN com, ELSE com;] pred

il

Elexp] {COND(C [com; Jpred, C[com, ||pred) }

i

((exp AC [comy Jpred) V (-iexp A C [[coms] pred))

i

({exp A wp (comy , pred))V (mexp A wp(com, , pred)))

where Mexp!' (I"-1exp ') in the last two lines denotes the
predicate yielding TRUE for exactly those states where
exp € EXP evaluates to TRUE (FALSE).

wp (WHILE exp DO com, pred)

=C[[WHILE exp DO com || pred

1]

Y (A cc'; € [exp] { COND(C [[com] cc!, pred)})

Il

Y(pccl. ({(exp A ¢l com JJec!) v (Texp A pred)))

Y () pred!. {{{exp A wp{com, pred!")) v (Tlexp A pred))))

Y (F)

1

where F =) pred'. (((exp A wp (com, pred!)) v (Texp A pred)))

We first show by induction that for all i = 0:
(*) Texp A H, (pred) = Texp A pred

where H; is defined in wp 5 (section 5).

cas

ei=0:

ei>=1:

cas

We then have

and

H, (pred)

H,(pred)

15

“Texp A H (pred)
= Texp A (Texp A pred)
using wp 5

= Texp A pred

Texp A Hi (pr‘ed)

= Texp A wp (IF exp THEN com ELSE DUMMY, H;_, (pred))

Texp A ({(exp A wplcom, H,_, (pred))) v

(Texp A wp (DUMMY, H,_, (pred))))

il

Texp A Hy., (pred)
using wp 5, wp 3 and wp 6
= Texp A pred

by the inductional hypothesis.,

= wp (IF exp THEN com ELSE DUMMY, H,_, (pred))

1l

il

(exp A wp (com, H,_, (pred)))v (Texp A H,(pred))
using wp 5, wp 3 and wp &
= (exp A wplcom, H,_, (pred))) v (7exp A pred)

using (%)

i

F (H;., (pred))

i

Texp A pred

=F (Lpgep)

16

We thus conclude that the sequence

{ Hy(pred) } ,5, is exactly the sequence

i
LF ('LPRED) }121 used when calculating

the minimal fixpoint Y(F) and hence
Y(F) =231 2 0: H, (pred)

which finishes the proof.

(1t should be mentioned that this proof would have been much simpler

if wp(WHILE exp DO com, pred) had been defined using the minimal

fixpoint operator, but I wanted to use Dijkstrals original definition

for the WHILE - command).

WG : wp (DUMMY, pred)

Il

C [DuMMY] pred

1

pred

17

REFERENCES

10.
11.

12.
13.

14,

]5.

DIUKSTRA, E.W.: A simple axiomatic basis for programming
language constructs, Indagationes Mathematicae, 36
(1974) 1-15 (EWD 372).

DIUKSTRA, E.W.: Guarded commands, non determinacy and
calculus for the derivation of programs, Comm, ACM,
18, 453-457 (aug. 1975)

DIUKSTRA, E.W.: Sequencing primitives revisited,
Technical University Eindhoven, The Netherlands (1973)
(EWD 398 + EWD 399),

DIUKSTRA, E.W.: A discipline of programming, Prentice Hall
inc. Englewood Cliffs, New Jersey, (1976),

DOMAHUE, J.E.: The mathematical semantics of axiomatically
defined programming language constructs, Colloques IRIA,
Arc et Senans 1-3 juillet 1975, 353-367.

HOARE, C.A.R.: An axiomatic basis for computer programming,
Comm. ACM, 12 576-580 (1967)

HOARE, C.A.R. and LAUER, P.: Consistent and complementary
formal theories of the semantics of programming languages,

Acta Inform. 3, 135-153 (1974) by Springer-Verlag

JENSEM; K.: An investigation into different semantic approaches,
DAIMI PB-61, Dept. of Computer Science, Ny Munkegade, 8000
Aarhus C, Denmark

LAUER, P.: Consistent formal theories of the semantics of
programming languages, IBM Laboratory Vienna, TR 25. 121
(Nov. 1971)

LEVIMN, M.: Mathematical logic for computer scientists,
Massachusetts Institute of Technology, MAC TR=-131 (June 1974)

LIGLER, G.: Surface properties of programming language constructs,
Colloques IRIA, Arc et Senans 1-3 juillet 1975, 299-323

MARCOTTY, M., LEDGARD, H.F. and BOCHMANN, G. V.:
A Sampler of Formal Definitions, Comp. Surveys, Vol. 8, No. 2,
191-276 (June 1976)

MOSSES, P.: The mathematical semantics of Algol 60,
Technical Monograph PRG-12, Oxford University Computing
Laboratory, (Jan. 1974)

MOSSES, P.: Mathematical Semantics and Compiler Generation,
D. Phil. Thesis, University of Oxford, (1975)

MOSSES, P.: The Semantics of Semantic Equations. Proc. Symp.
on Math., Found. Comp. Sci., Jadwisin 1974, Lect. Notes Comput.
Sci. 28, 409-422, Springer Verlag, (1975)

18

17.

18.

190

20,

21,

MCSSES, P.: Compiler Generation using Denotational Semantics,
Proc. Symp. on Math., Found. Com. Sci., Gdahsk 1976, L.ect.
Notes Comput. Sci. 45, 436-441, Springer Verlag, (1976)

SCOTT, D.: Outline of mathematical theory of computation,
Proc. of the fourth anual Princeton conference on information
science and systems, 169-176, and Technical Monograph PRG-2,
Oxford University Computing Laboratory, (Nov. 1970)

SCOTT, D. and STRACHEY, C.: Toward a mathematical semantics
for computer languages, Proc. of the symposium on computers

and automata, Polytechnic Institute of Brooklyn, and Technical
Monograph PRG-6, Oxford University.: Computing Laboratory,

(Aug., 1971)

STRACHEY, C.: The varieties of programming language, Proc.

of the international computing symposium 222-233, Cini Foundations
Venice, and Technical Monograph PRG-10, Oxford University
Computing Laboratory, (March 1973)

STRACHEY, C. and WADSWORTH C.P.: Continuations. A mathe-~
matical-semantics foi* handlingfull jumps, Technical Monograph
PRG-11, Oxford University Computing Laboratory, (Jan. 1974)

TENNENT, R.D.: The Denotational Semantics of Programming
Languages , Comm. ACM, 19, 437-453, (1976)

19

APPENDIX

Formal Description of SINAIL

This appendix contains a formal description of the syntax and semantics
for SNAIL. The syntax is described in a BNF-like notation, while
semantics are described using denotational semantics (see Scott,
Strachey and Wadsworth [17, 18, 19, 20] or Tennent [21]), The struc-
ture of this description is taken from Ligler [1 1] but some changes have
been made to improve readability by using mnenomics instead of the usual
Greek letters. By convention a word in capital letters denotes a domain
(see Scott [17]) while the same word written in small letters (and possi-
bly indexed or marked) denotes an element of the domain. As an example
dop ;, dop! € DOP where DOP is the (syntactic) domain consisting of

all Dyadic OPerators.

Syntactic domains

PROGrams

COMmands CONstants
EXPressions Monadic OPerators
VARiables: Dyadic OPerators

(These are all simple, flat domains)

Semantic domains

Values

Answers

States [VAR »V |
Command Continuations [~ A] |
Expression Continuations [v~cC]

V is a simple, flat and implementation dependent domain assumed
to contain TRUE and FALSE. A is a compound domain denoting

the possible answers (results) of a computation in SNAIL..

20

Syntax

prog i = com

com i = BEGIN com ERD | comy ; comg Ivﬁa‘r?: = exp [

1F exp THEN com; ELSE com, | WHILE exp DO com | DUMMY.

i

exp it (exp) | con | var

mop exp | expy dop exps

VAR, CON, MOP and DOP are implementation defined sets

of symbols.

Semantic functions

: [PROG > A]

: [com = [cc-ccl]
[ExXP - [EC » CC]]

: [CON = V]

[MOP = [V = V]]

: [DOP = [VXxV-~=V]]

B 5 = ™m® Q9

where P, C and € give meaning to programs, commands and
expressions respectively., M and ® are implementation
dependent and give meaning to the elements of CON, MOP
and DOR.

Semantic equations

P [com:ﬂ =C U:com]] CCinSin

where ce, = = As. s

s

21

C [BEGIN com END JJcc = C [[com] cc
C[[comy ;3 comgz lecc = C[lcom; J] {C [com, Jce}
Clvar: = exp]lcc =& [[exp] {Av. UPDATE (var, v) cc}

C[[IF exp THEN com; ELSE comj [cc

=€ [[exp]] { COND (C [com: Jlcc, C[[com, Jecc)}
C [WHILE exp DO com] cc

=Y(hcc'. €[exp]] { COND (C [com Jcc!, cc) 1)

C[DUMMY [cc = cc

e (exp) Jlec =€ [[exp] ec

€lcon]lec = ec(¥ [con])

€[varlec = As.(ec(CONTENTS (var)s)s)

€ [[mop expflec = €[[exp]l { Av. ec (M (mop)v)}

8[[e><p1 dop exp g]]ec
=¢[[expy | {Avi. €[lexpy [] { Av,. ec(®(dop) (vi,va)) 11}

Auxilliary functions

COND € [cC x CcC = [V~ CC]] ccy iff v = TRUE

COND(ccy, ccz)(v) =v 2 cc, , ccg ={ccy iff v=FALSE

-J-»CC else

vye[[cc~cc] »cC]
Y(f) = lim f“(__]__cc)

n-*co

22

UPDATE € [VAR X V » [CC » CC] |

UPDATE (var, v) cc s = cc(s') where
1 i '
slvart)= {s(var‘)} iff var! £ var

\Y; var! = var

CONTENTSE [VAR » [S »V]]

CONTENTS (var) (s) = s(var)

	20050929144638_Page_01_Image_0001.tiff
	20050929144638_Page_02_Image_0001.tiff
	20050929144638_Page_03_Image_0001.tiff
	20050929144638_Page_04_Image_0001.tiff
	20050929144638_Page_05_Image_0001.tiff
	20050929144638_Page_06_Image_0001.tiff
	20050929144638_Page_07_Image_0001.tiff
	20050929144638_Page_08_Image_0001.tiff
	20050929144638_Page_09_Image_0001.tiff
	20050929144638_Page_10_Image_0001.tiff
	20050929144638_Page_11_Image_0001.tiff
	20050929144638_Page_12_Image_0001.tiff
	20050929144638_Page_13_Image_0001.tiff
	20050929144638_Page_14_Image_0001.tiff
	20050929144638_Page_15_Image_0001.tiff
	20050929144638_Page_16_Image_0001.tiff
	20050929144638_Page_17_Image_0001.tiff
	20050929144638_Page_18_Image_0001.tiff
	20050929144638_Page_19_Image_0001.tiff
	20050929144638_Page_20_Image_0001.tiff
	20050929144638_Page_21_Image_0001.tiff
	20050929144638_Page_22_Image_0001.tiff
	20050929144638_Page_23_Image_0001.tiff

