

Length of Maximal Common Subsequences

Kim S. Larsen
kslarsen@daimi.aau.dk

Computer Science Department, Aarhus University
Ny Munkegade, 8000 Aarhus C, Denmark

October 1992

Abstract

The problem of computing the length of the maximal common sub-
sequences of two strings is quite well examined in the sequential case.
There are many variations, but the standard approach is to compute
the length in quadratic time using dynamic programming. A linear-
time parallel algorithm can be obtained via a simple modification of
this strategy by letting a linear number of processors sweep through
the table created for the dynamic programming approach.

However, the contribution of this paper is to show that the problem
is in NC. More specifically, we show that the length of the maximal
common subsequences of two strings s and t can be computed in time
O(log|s|· log|t|) in the CREW PRAM model and in time Θ(min(log|s|,
log|t|)) in the COMMON CRCW PRAM model.

1 Introduction

A subsequence of a string s is any string, which can be created from s by
deleting some of the elements. More precisely, if s is the string s1s2 · · · sk
then si1si2 · · · sip is a subsequence of s if ∀j ∈ {1, . . . , p} : ij ∈ {1, . . . , k}

1

and ∀j ∈ {1, . . . , p − 1} : ij < ij+1. For example, parle is a subsequence of
parallel.

Consider two fixed strings s = s1s2 · · · sk and t = t1t2 · · · tm. Among the
strings which are subsequences of both s and t, there will be some of maximal
length. Such subsequences are called maximal common subsequences.

For example, parallel and peal have maximal common subsequences pal and
pel. However, the length of the maximal common subsequences is unique;
in this case, it is three. Let count(s,t) denote the length of the maximal
common subsequences of s and t.

The problem of computing count(s,t) is quite well examined in the sequential
case. The solutions in the literature are variations over the basic dynamic
programming approach of filling out a table with count values for prefixes of
the argument strings. In the next section, we present one of these algorithms,
which has time complexity Θ(|s| · |t|). Faster algorithms can be obtained for
some special cases such as: short second argument, nearly identical strings,
etc. A summary of these results can be found in [1, 4]. In this paper, the
focus is on the parallel time complexity.

All algorithms presented here will be given using C. The code will be almost
complete. We will leave out some of the most trivial details, though. When
describing parallel algorithms, a few extra primitives are needed. We assume
that processes can be declared using the keyword process, and that each
processor has an id variable. Processors are assumed to be numbered from
one. For synchronization purposes, we use the keyword await followed by a
boolean expression. This could have been written using a busy loop. How-
ever, we prefer to high-light the synchronization points by using a special
keyword. Finally, variables not declared in the processes are assumed to be
global.

2 A Sequential Solution

For completeness, we now describe one of the standard sequential solutions
for computing count(s,t). We assume that s is in s[1], s[2], . . . , s[k] and that
t is in t[1], t[2], . . . , t[m]. A table is created and the value count(s1s2 . . . si,
t1t2 . . . tj) will be stored in table[i][j].

2

It turns out to be convenient to represent explicitly the fact that the value
of count(s,t) is zero if one of the strings is empty. The zero-entries will be
used for that. This decision will cut down on special cases in the rest of the
algorithm. This border is first filled out, and then the remaining entries are
computed from top to bottom and from left to right.

This formulation of the algorithm is from [2], except that we are not con-
cerned with the space complexity issues. The algorithm has time complexity
Θ(|s| · |t|).

char s[k+1], t[m+1];

int table[k+1][m+1];

int count()

{
int i,j;

for (i = 0; i <= k; i++) table[i][0] = 0;

for (j = 0; j <= m; j++) table[0][j] = 0;

for (j= 1; j <= m; j++)

for (i = 1; i <= k; i++)

table[i][j] =
(s[i] == t[j] ? 1+table[i−1][j−1]

: max(table[i][j−1],table[i−1][j]));

return table[k][m];

}

3 Parallel Solutions

The dynamic programming solution presented in the previous section is the
starting point for the parallel versions. In this section, we first present the
most obvious generalization. This solution is included primarily in order to
present the framework on a simple example. The second solution is more

3

involved. Here, we are trying to get the asymptotic parallel time complexity
down as far as possible.

3.1 A Simple Parallel Solution

An easy observation from the sequential case is that the value of table[i][j],
independently of whether or not s[i] equals t[j], is computed from table
entries table[i′][j′], where i′ + j′ < i + j. This means that a parallel version
can be designed by letting a number of processors sweep diagonally down the
table.

As in the sequential dynamic programming solution, we use one row and one
column to explicitly represent the fact that a count involving an empty string
gives zero. The processors share the responsibility for initializing these extra
entries.

The “sweep” now works as follows. We use m processors numbered from
one. Processor j will be responsible for computing all the entries in the jth
row. In the first step, processor 1 computes table[1][1]. In the second step,
processor 1 computes table[2][1] while processor 2 computes table[1][2]. In
the third step, the processors 1, 2, and 3 compute the entries table[3][1],
table[2][2], and table[1][3], respectively. Proceeding like this, the whole table
will be filled out in |s| + |t| − 1 steps. Notice that just as some processors
start late, some processors finish early.

In each step, each processor performs a constant amount of work. This can
easily be bounded. We assume that the global variable step is incremented
by a designated processor using this bound. All m processors have the same
code, which depend on their id variable:

char s[k+1], t[m+1];

int table[k+1][m+1], step;

process

{
int next, i;

table[0][id] = 0

4

for (i = id−1; i <= k; i+ = m) table[i][0] = 0;

next = id;

while (next-id+1 <= k){
await (next == step);

i = next−id+1;

table[i][j] =
(s[i] == t[j] ? 1+table[i−1][id−1]

: max(table[i][id−1],table[i−1][id]));
next++;

}
}

The result of the computation can be found in table[k][m]. We have demon-
strated that count(s,t) can be computed in time Θ(|s| + |t|) on a CREW
PRAM (or even an EREW PRAM).

3.2 A Fast Parallel Solution

By only storing count values, as we did in the previous section, it does not
seem possible to get below Θ(|s|+|t|) because of the dependencies in the table.
In the following, we store more information. Each table entry, table[i][j], will
now be a table of size |t|+ 1 instead of simply an integer.

The processors contain a loop, which will be executed at most log |s| + 1
times. We assume that |s| is a power of two (if not, then we can always
extend s using a special symbol not appearing elsewhere in the strings; this
cannot affect the value of count). As in the previous algorithm, a global
variable step is used to count the number of iterations of these loops. At a
certain point, given the value of step, we are only interested in the following
substrings of s:

s1 · · · s2step , s2step+1 · · · s2·2step , s2·2step+1 · · · s3·2step · · · , |s|.

In that round, only the entries table[i][j][v], where i ∈ {2step, 2 · 2step, 3 ·
2step, . . . , |s|} are maintained.

5

The basic idea is that p = table[i][i][v] should be the maximal index (giving
rise to the shortest substring of t) such that

count(si−2step+1 · · · si, tp+1 · · · tj) = v

Notice that the substring of t starts with tp+1 rather than with tp. This
results in a more elegant algorithm, as we need not worry about tp being
matched with two elements from s, when combining the values for two adja-
cent substrings of s into a value for the concatenation.

In the algorithm, we assign a processor to each table[i][j][v] entry. Each of
these processors controls their own collection of processors to compute the
maxima they need. Exactly how many processors are needed for this depends
on how fast we want the maxima computed and in which model. We return
to the complexity issues later.

We assume that in each step, all processors have time to read all their entries
before any processor writes. Apart from computing maxima, the computa-
tion strategy of which we have not specified, we are within the CREW model
of computation, as only processor (i, j, v) writes in table[i][j][v].

/∗ Algorithm Fast Counting ∗/

char s[k+1], t[m+1];

int table[k+1][m+1]t[m+1];

int step;

process (i,j,v) / ∗ 1<=i<=k, 0<=j<=m, 0<=v<=m ∗ /
{

int h, next;

if (v == 0)
table[i][j][v] = j

else if (v == 1)
table [i][j][v] =

max ({−1} ∪ {u ∈ {0, . . . , j − 1} | s[i] = t[u+ 1]});
else

table[i][j][v] = −1

6

h = 1;
next = 1;
while (i% (2 ∗ h) == 0){

await (next == step);

table[i][j] =
max ({−1} ∪ {q | u ∈ {0, . . . , v}∧

p = table[i][j][u] ∧ p 6= −1∧
q = table[i− h][p][v − u] ∧ q 6= −1});

h = 2 ∗ h
next++;

}
}

For the purpose of giving a correctness proof, we now formulate and prove
the invariant, which was outlined intuitively before presenting the algorithm.

Lemma 1 The following loop invariant holds for the values of step encoun-
tered in the algorithm:
for i ∈ {c · 2step | c ∈ IN\{0} ∧ c · 2step ≤ |s|}, and j, v ∈ {0, . . . , |t|}, we have
that table[i][j][v] equals

max({−1} ∪ {r | 0 ≤ r ≤ j ∧ count(si−2step+1 · · · si, tr+1 · · · tj) = v}).

Proof First, we prove that the invariant holds after the initialization. As
step = 0, we consider all i’s in {1, . . . , |s|}. In the following, assume that
i and j are fixed. Notice that si−2step+1 · · · si is simply si. For each v, we
determine the maximal r such that r ≤ j and count(si, tr+1 · · · tj) = v.

Assume that v = 0. As count(si, ε) = 0, we can choose r = j (ε denotes the
empty string).

Assume that v = 1. In order for count(si, tr+1 · · · tj) to equal one, si must
appear in t1 · · · tj. If it does not, then the maximum is −1 and table[i][j][1]
is also assigned −1. Now, assume that sj is present in t1 · · · tj. Let tu be the
right-most occurrence of si in t1 · · · tj. Then count(si, tu · · · tj) = 1 and u is
the maximal integer for which this is the case. So, we can choose r = u− 1.

7

Assume that v > 1. As si has length one, count(si, tr+1 · · · tj) can be at most
one no matter what the value of r is. So, in this case, table[i][j][u] should be
assigned −1.

Now, we turn to the induction step. Let step′ = step + 1. Assume that the
maximum is −1, i.e., no r exists such that

count(si−2step′+1 · · · si, tr+1 · · · tj) = v.

This means that even count(si−2step
′
+1 · · · si, t1 · · · tj) < v. Now, assume

to the contrary that a u exists such that p 6= −1 and q 6= −1. By the
invariant, this means that count(si−2step′+1 · · · si, tp+1 · · · tj) = u and that
count(si−2step′+1 · · · si−2step , tq+1 · · · tp) = v − u. But the two substrings of s
are disjoint as are the two substrings of t, so by definition of count, we must
have that count(si−2step

′
+1 · · · si, tq+1 · · · tj) = v, which is a contradiction.

Now, assume that the maximum is r ≥ 0. By dividing a maximal common
subsequence of si−2step′+1 · · · si and tr+1 · · · tj up into the part which is in
si−2step′+1 · · · si−2step and the part in si−2step′+1 · · · si it is clear that a u and
an l must exist such that

count(si−2step+1 · · · si, tl+1 · · · tj) = u

and

count(si−2step′+1 · · · si−2step , tr+1 · · · tl) = v − u

By the invariant, p (in the algorithm) is the maximal integer such that
count(si−2step+1 · · · si, tp+1 · · · tj) = u, so obviously l ≤ p. But then

count(si−2step
′
+1 · · · si−2step , tr+1 · · · tp)

is at least v−u. By the invariant, q (in the algorithm) is now the maximal in-
teger such that count(si−2step

′
+1 · · · si−2step , tq+1 · · · tp) = v−u. So, given that

we insist on matching exactly u elements from si−2step+1 · · · si with elements
from t, q must also be the maximal integer such that count(si−2step′+1 · · · si,
tq+1 · · · tj) = v. Because in order to use a larger q, we would have to use a
larger p, and that would make

8

count(si−2step+1 · · · si, tp+1 · · · tj)

strictly smaller than u, as p was chosen to be maximal.

As all u’s are considered in the algorithm, and as si−2step+1 · · · si must match
u elements from t for some u(0 ≤ u ≤ v), we are bound to find the right u
and, thus, the correct maximum value. 2

Corollary 2 Algorithm Fast Counting correctly computes count(s,t) when
the two strings s and t are used in the algorithm and the final result is
computed from the table by

count(s, t) = max
0≤v≤m

{v | table[k][m][v] 6= −1}.

Proof The last processors terminate when step = log k, and at that point,

table[k][m][v] = max({−1} ∪ {r | 0 ≤ r ≤ m ∧ count(s, tr+1 · · · tm) = v}).

Clearly, table[k][m][v] = −1 if and only if count(s, t) < v. 2

Finally, we consider the complexity issues. Recall that in the CREW PRAM
model, there are a polynomial number of processors and a shared memory.
Any number of processors can read from the same memory cell at the same
time, but at most one processor can be writing to any memory cell at a given
time. The COMMON model is a CRCW PRAM model. The CRCW PRAM
is like the CREW PRAM except that concurrent writes are allowed. In the
COMMON model, if more than one processor writes to the same memory cell
at the same time, then they must all write the same value. The COMMON
model has also been called a WRAM in the literature.

The algorithm has been designed such that maxima computations and the
remaining computation can be analyzed separately. In the following, we state
the known maxima results of interest here.

Lemma 3 The problem of calculating the maximum of n elements is in NC,
and the maximum can be computed in time

• O(log n) in the CREW model.

• Θ(1) in the COMMON CRCW model.

9

Proof In the CREW model, use a binary tree of height d log ne.
In the COMMON model,

(
n
2

)
processors are used to perform every possible

comparison in one step. The details can be found in [3].

Only comparisons, assignments, additions, and subtractions are used in the
algorithms, so the problem is clearly in NC. 2

Theorem 4 The complexity of calculating the length of the maximal com-
mon subsequences is

• O(log |t|· log |s|) in the CREW model.

• Θ(min(log |t|, log |s|)) in the COMMON model.

Proof Rename, if necessary, so that |s| ≤ |t|. The algorithm runs in log |s|+1
steps and, except for the calculation of maxima, only a constant amount of
work is done by each processor in each step. Notice that the sets for which
we find the maxima have size at most |t| + 2. Furthermore, the predicates
used in their definition can be computed in constant time. The result now
follows from lemma 3. 2

Corollary 5 The problem of computing the length of the maximal common
subsequences is in NC.

Proof All computations, except the maxima computations, are independent
of the input length. As stated in lemma 3, computing the maximum is in
NC, so our problem is as well. 2

Notice that since computing the maximum is in NC1, the problem of com-
puting the length of the maximal common subsequences is in NC2. Using
unbounded fan-in, the maximum can be computed in constant time, so the
problem of computing the length of the maximal common subsequences is
also in AC1.

Acknowledgement The author would like to thank Joan Boyar for valuable
discussions on the models of parallel computation and for helpful comments
on an earlier draft of the paper.

10

References

[1] Alfred V. Aho. Algorithms for finding patterns in strings. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, pages 255-
300. Elsevier Science Publishers, 1990.

[2] D. S. Hirschberg. A linear space algorithm for computing maximal com-
mon subsequences. Comm. ACM, 18(6):341-343, 1975.

[3] Yossi Shiloach and Uzi Vishkin. Finding the maximum, merging, and
sorting in a parallel computation model. J. Algorithms, 2:88-102, 1981.

[4] Graham A. Stephen. String search. Technical Report TR-92-gas-01,
School of Electronic Engineering Science, University College of North
Wales, 1992.

11

