
Fibrations, Logical Predicates and
Indeterminates

Claudio Alberto Hermida

Doctor of Philosophy

University of Edinburg

1993

(Graduation date November 1993)

November 1993

Abstract

Within the framework of categorical logic or categorical type theory, pred-

icate logics and type theories are understood as fibrations with structure.

Fibrations, or fibred categories, provide an abstract account of the notions of

indexing and substitution. These notions are central to the interpretations

of predicate logics and type theories with dependent types or polymorphism.

In these systems, predicates/dependent types are indexed by the contexts

which declare the types of their free variables, and there is an operation of

substitution of terms for free variables.

With this setting, it is natural to give a category-theoretic account of

certain logical issues in terms of fibrations. In this thesis we explore logical

predicates for simply typed theories, induction principles for inductive data

types, and indeterminate elements for fibrations in relation to polymorphic

λ-calculi.

The notion of logical predicate is a useful tool in the study of type the-

ories like simply typed λ-calculus. For a categorical account of this concept,

we are led to study certain structure of fibred categories. In particular, the

kind of structure involved in the interpretation of simply typed λ-calculus,

2

namely cartesian closure, is expressed in terms of adjunctions. Hence we are

led to consider adjunctions between fibred categories. We give a character-

isation of these adjunctions which allows us to provide structure, given by

adjunctions, to a fibred category in terms of appropriate structure on its base

and its fibres.

By expressing the abovementioned categorical structure logically, in the

internal language of a fibration, we can give an account of logical predicates

for a cartesian closed category. By recourse to the internal language, we

regard a fibred category as a category of predicates. With the same method,

we provide a categorical interpretation of the induction principle for induc-

tive data types, given by initial algebras for endofunctors on a distributive

category.

We also consider the problem of adjoining indeterminate elements to

fibrations. The category-theoretic concept of indeterminate or generic el-

ement captures the notion of parameter. Lambek applied this concept to

characterise a functional completeness property of simply typed λ-calculus

or, equivalently, of cartesian closed categories. He showed that cartesian cat-

egories with indeterminate elements correspond to Kleisli categories for suit-

able comonads. Here we generalise this result to account for indeterminates

for cartesian objects in a 2-category with suitable structure. To specialise this

2-categorical formulation of objects with indeterminates via Kleisli objects

to the 2-category Fib of fibrations over arbitrary bases, we are led to show

the existence of Kleisli objects for fibred comonads.These results provide us

with the appropriate machinery to study functional completeness for poly-

3

morphic λ-calculi by means of fibrations with indeterminates. These are also

applied to give a semantics to ML module features: signatures, structures

and functors.

4

Acknowledgements

I would like to thank my supervisor, Don Sannella, for all his support and

encouragement throughout my studies in Edinburgh, as well as for his careful

reading of this thesis.

I benefited from discussions with Thorsten Altenkirch, Bart Jacobs and

Thomas Streicher. Bart’s encouragement is particularly appreciated, as well

as his provision of invaluable bibliography and the style macros with which

this thesis was written. Several profitable meetings with him over the past

year led to the joint work [HJ93], which is in great part reproduced in §6.

I would also like to thank Rod Burstall for his help at quite difficult

moments during my studies in Edinburgh.

An altogether special acknowledgement is due to John Power, for only

too many reasons which just cannot be expressed in a few lines. I will be

forever grateful for his pertinent guidance and much needed support, not to

mention our countless and highly entertaining discussions.

During the second and third year of my studies, I was supported by

an Edinburgh University Postgraduate Studentship. The COMPASS project

6

funded several academic visits and assistance to workshops.

Most diagrams in this thesis were drawn with Paul Taylor’s macros.

I could not finish without expressing my deepest gratitude to my mother,

Vida Luz, and my grandmother, Carmelinda. Without their love and support

all along, this thesis would have never been produced.

Declaration

This thesis was composed by myself and the work reported in it is my own

except where otherwise stated.

8

Contents

Abstract 1

Acknowledgements

Declaration 7

Introduction 1

1 Preliminaries on fibrations 23

1.1 2-categorical preliminaries . 26

1.2 Basic fibred concepts 35

1.2.1 The 2-categories of fibrations 45

1.3 Indexed categories and the Grothenieck construction 53

1.4 Fibred structure, products and sums 61

1.5 Internal categories . 71

2 Preliminaries on categorical logic 77

3

5

10 CONTENTS

2.1 Review of propositional and first-order categorical logic 78

2.1.1 Intuitionistic propositional calculus - Simply typed λ-

calculus . 79

2.1.2 First-order intuitionistic predicate calculus 82

2.1.3 Polymorphic lambda calculi 86

2.2 Logical predicates over applicative structures 90

2.3 Reflective and coreflective cartesian closed categories 95

3 Fibred adjunctions and change of base 99

3.1 Change-of-base and 2-categorical structure 100

3.1.1 Algebra of fibred 2-cells 105

3.2 Lifting and factorisation of adjunctions 110

3.3 Fibred limits and cartesian closure 118

4 Logical predicates for simply typed λ-calculus 129

4.1 Internal language for a fibred-ccc with products 130

4.2 Logical predicates for cartesian closed categories 133

4.2.1 Basic lemma for categorical logical predicates 138

4.3 Some examples . 140

4.3.1 Sconing . 141

4.3.2 Logical predicates for complete partial orders 142

CONTENTS 11

4.3.3 Kipke logical predicates 145

4.3.4 Deliverables . 147

4.3.5 Categories derived from realisability 150

4.4 A related categorical approach to logical predicates 158

4.5 Induction principle for data types in a fibration 161

5 Comonads and Kleisli fibration 175

5.1 Introduction . 175

5.2 Categories with an indeterminate element 177

5.3 Comonads and Kleisli objects in a 2-category 180

5.3.1 Products in a 2-category 184

5.3.2 Cartesian objects in a 2-category with products 185

5.3.3 Comonad induced by a global element of a cartesian

object . 187

5.3.4 Objects with an indeterminate 188

5.4 Fibred comonads and resolutions 193

5.4.1 Kleisli fibration for a vertical fibred comonad 196

5.4.2 Kleisli fibration for a comonad in Fib 199

6 Indeterminates in polymorphic λ-calculi 211

6.1 Contextual and functional completness for λ-calculi 212

12 CONTENTS

6.2 Indeterminates for fibrations over a given base 217

6.3 Indeterminates for fibrations in Fib 225

6.3.1 A semantics for ML-style modules using polynomial

fibrations . 231

7 Conclusions and further work 235

Introduction

Categorical logic or categorical type theory, as presented in [Jac91a] for in-

stance, is the application of category theory to the understanding (semantics,

relative interpretations, independence results, etc.) of logics and type the-

ory. Type theory subsumes logic via the propositions-as-types paradigm,

also known as the Curry-Howard isomorphism [How80], which identifies a

proposition with the type of its proofs. This is the point of view adopted in

categorical logic; if we only care about entailment between propositions (a

proof-irrelevant approach) propositions become with at most one element.

Category theory is convenient to study non-conventional logics like sev-

eral kinds of lambda calculi. This has been a major application of category

theory in computer science. Following the categorical logic approach, cate-

gory theory gives abstract denotational semantics for programming languages

and their associated logics [BW90, AL91, KN93]. The paradigmatic example

of such application is the semantics of the simply typed λ-calculus, which

can be regarded as a primitive typed functional programming language, as

explained for instance in [Mit90]. The idea is that data types of the program-

ming language correspond to types of λ-calculus, while programs correspond

14 CONTENTS

to terms. The simply typed λ-calculus can be described in terms of cartesian

closed categories, as in [LS86]. The interpretation regards types as objects

and terms, or ‘programs’, as morphisms. The various type and term con-

structors are described by the product and exponential adjunctions. Such

an interpretation yields insight into the essential features of the language, by

providing an abstract, syntax-free presentation of these.

In predicate logics and type theories, where predicates, types and terms

may involve free variables, contexts are used to provide types for such vari-

ables. Hence, contexts have a structural role: every entity with free variables

is given relative to a typing context. We view such entities as indexed by the

contexts. The operation of substitution of a term for a variable in a predi-

cate/type/term is characteristic of these systems. The categorical study of

such systems must therefore account for the notions of indexing and substitu-

tion. The appropriate categorical structure to understand these concepts is

that of fibration or fibred category [Gro71]. It consists of a functor p : E → B

satisfying a certain ‘cartesian lifting’ property. Within the framework of fi-

brations, the usual logical connectives and quantifiers are modelled by fibred

adjunctions, a notion which plays a central role in this thesis.

In this setting, is natural to interpret logical issues categorically by look-

ing at properties and constructions in the 2-category Fib, the ‘universe of

fibrations’. In this thesis we consider logical predicates for simply typed λ-

calculus, the induction principle for inductive data types, and indeterminates

for fibrations. We comment on these topics below.

CONTENTS 15

The notion of logical predicate, as in [Mit90], is an important tool in

the study of metatheoretic properties of type theories like the simply typed

λ-calculus, e.g. strong normalisation. It has several applications in program-

ming language semantics. [Abr90] uses logical relations to relate concrete and

abstract interpretations of a simple programming language and thus estab-

lish correctness of certain analyses of program properties, like strictness and

termination analysis. [OT93] use a relational semantics based on logical rela-

tions to obtain models for local variables which validate desirable operational

equivalences between programs. [Rey83] proposed the use of logical relations

to characterise parametric polymorphism, by requiring the identity relation

to be logical, in a sense adequate for system F. A logical predicate over a

model of the simply typed λ-calculus consists of a collection of predicates,

one for each type in the system, satisfying certain conditions. Logical pred-

icates could be used to provide a ‘relational semantics’ (types-as-relations)

for λ-calculi, as explained in [MS92].

The original definition of logical predicates is couched in set-theoretic

terms, for Henkin-type models, as given in [Mit90]. It is convenient for a

better understanding of the meaning of logical predicates, in particular with

a view to their generalisation to other systems, to give an abstract account

of them. An intended categorical account of logical predicates appears in

[MR91]. The authors introduce a ‘category of relations’ Rel over a base

category B, with a forgetful functor U : Rel → B, intended as a direct gen-

eralisation of the category Sub(Set) consisting of sets equipped with a dis-

tinguished subset/predicate and functions which respect such subsets, with

16 CONTENTS

the forgetful functor ι : Sub(Set) → Set. Their category of relations Rel is

based on the notion of subobject. The point is that, under certain assump-

tions, the category of relations has the appropriate structure to interpret

the type theory under consideration, e.g. cartesian closure for simply typed

λ-calculus. A similar approach is taken in [MS92].

Here we take a more abstract approach, based on the observation that

the abovementioned categories of relations are fibred over their base cate-

gories: U : Rel → B is a fibration. The relevant structure, e.g. cartesian

closure of Rel, required for the interpretation of logical predicates in such

categories arises precisely because they are fibred.

This latter aspect of ‘categories of relations’ is therefore central to our

approach: not only does it allow us to give a precise connection between

logical predicates and categorical structure, via the internal language of the

fibration, but it also allows us to formulate suitably abstract results which

show the conceptual unity of the various constructions involved. Specifically,

the cartesian closed structure of a category is given in terms of adjunctions.

This leads us to consider adjunctions between fibrations, over possibly differ-

ent bases. A main technical result characterises these adjunctions in terms

of adjunctions between the base categories and vertical fibred adjunctions,

involving the change-of-base construction (Theorem 3.2.3). This gives as a

simple consequence the ‘lifting’ of cartesian closed structure from B to Rel,

Corollary 3.3.11. This lifting of cartesian closure could be proved directly,

but the existence of the abovementioned characterisation puts the result in

its appropriate context.

CONTENTS 17

Exploiting the above mentioned relationship between logical concepts

and categorical structure in a fibred category, we give a categorical formula-

tion of the induction principle for inductive data types. We adopt the simple

approach in [Jac93, CS91] and present inductively defined data types as ini-

tial algebras for an endofunctor in a distributive category. The formulation is

in the same spirit as Reynold’s identity extension lemma [MR91]. It asserts

the validity of the induction principle in a fibration by requiring a functor to

preserve some structure, namely initial algebras.

We then consider the problem of adjoining indeterminate elements to

fibrations. The aim is to generalise to the fibred setting the following situa-

tion: given a category C, with a terminal object 1, and an object I, we can

construct the so-called polynomial category C[x : I], obtained by adding a

morphism x : 1 → I to C. Such construction captures the notion of param-

eterisation: regarding C as a theory (objects = types, morphisms = terms),

the terms of the theory of C[x : I] have an extra parameter x of type I.

This is used in [LS86] to characterise a functional completeness property of

cartesian closed categories, meaning that in such categories every term with

an extra parameter of type I, i.e. a morphism in C[x : I], can be represented

by a term in C which does not involve x. By generalising this to the fibred

setting, we can then characterise semantically functional completeness for

polymorphic λ-calculi, where there are two sorts of parameters to consider:

type variables and term variables.

In [LS86], it is shown that for cartesian (closed) categories C[x : I] can

be presented as the Kleisli category of a certain comonad on C. Categories

18 CONTENTS

with finite products, also called cartesian categories, constitute the basic

categorical structure for the interpretation of algebraic theories: terms are

given relative to a typing context (for the free variables). Thus, given that

types = objects, finite products provide an appropriate structure to interpret

contexts. On top of this basic structure, we may require additional features,

e.g. exponentials to interpret −→-types.

In generalising the abovementioned result about Kleisli categories to fi-

brations, we are led to reformulate the problem in 2-categorical terms. We

prove it for cartesian objects in a suitable structured 2-category. In order

to instantiate this result to the 2-category of fibrations, we prove another

important technical result: the existence of Kleisli fibrations for comonads

in this 2-category. The construction of these Kleisli fibrations is based on

the already mentioned characterisation of fibred adjunctions. It yields as an

easy corollary the existence of polynomial fibrations for fibrations with finite

products and is shown to be also appropriate for fibrations bearing the struc-

ture required to interpret polymorphic λ-calculi. We can then show adequate

versions of functional completeness for the calculi λ → and λω. Among the

immediate applications in programming language semantics, we outline an

interpretation of some aspects of ML-style module features, following [FP92].

The structure of the thesis is as follows: ‘ §n’ refers to Chapter ‘n’, ‘

§n.m’ refers to section ‘m’ in Chapter ‘n’, and similarly for subsections and

items therein.

§1 reviews the basic material on fibred categories. 2-categories play an

CONTENTS 19

organisational role in this thesis and thus a few basic concepts of this theory

are included right at the start. We continue with the basic notions about

fibrations, organising them into 2-categories Fib(B), for fibrations with base

B, and Fib for fibrations over arbitrary bases. We review the correspondence

between fibrations and in-dexed categories, as well as with internal categories.

We also describe some fibred structure necessary to interpret certain type

theories, as given in the following chapter.

In §2 we review the categorical interpretation of intuitionistic proposi-

tional and first-order predicate calculus, and of polymorphic λ-calculi. We

also recall the definition of logical predicates for the simply typed λ-calculus.

The chapter concludes with some auxiliary results about reflective and core-

flective categories, used to analyse some of the examples in §4.3.

§3 contains the main technical results about fibred adjunctions. In §3.1

we analyse some 2-categorical aspects of the change-of-base construction,

which result in a series of algebraic laws concerning fibred-2-cells presented in

§3.1.1. In §3.2 we prove the fundamental property relating fibred adjunctions

and change-of-base, Theorem 3.2.3. It yields two important corollaries: 3.3.6

and 3.3.11. The first of these gives a new and simple proof of a well-known

characterisation of fibred limits, as given in [Gra66, BGT91]. The second

gives the categorical counterpart of logical predicates for simply typed λ-

calculus.

§4 makes explicit the connection between the lifting of cartesian closed

structure through a fibration, with appropriate structure, with logical pred-

20 CONTENTS

icates via a suitable internal language. The so-called ‘Basic Lemma’ for

logical predicates, which is their essential property, is shown in this con-

text to be a consequence of the soundness of typing for the interpretation

of simply typed λ-calculus in a ccc, again by recourse to the internal lan-

guage of the fibration involved. We present a few examples of fibrations with

structure, which admit the interpretation of logical predicates, like admissi-

ble subsets for ωCpo and Kripke logical predicates, among other examples of

fibred categories whose cartesian closed structure can be inferred from the

abovementioned Corollary 3.3.11. We then make a few comparative remarks

between our approach to logical predicates and that of [MR91]. We conclude

the chapter with a categorical characterisation of the induction principle for

inductively defined data types in a distributive category. The latter are the

basis of the Charity programming system [CS91]. The formulation of the

abovementioned induction principle exploits the view of a fibred category as

a category of predicates, as in the case of logical predicates.

§5 develops the technical results required to carry out the abovemen-

tioned presentation of polynomial fibrations as Kleisli fibrations for comon-

ads. In §5.3, we review the notion of comonad and Kleisli object in a 2-

category. After recalling the appropriate notion of finite products in a 2-

category in §5.3.1, we introduce cartesian objects in a 2-category in §5.3.2,

and make explicit some of their intrinsic structure. These objects are a direct

generalisation of categories with finite products. Under suitable assumptions

on the 2-category, we prove that cartesian objects with an indeterminate

can be presented as Kleisli objects for a comonad, thereby generalising the

CONTENTS 21

abovementioned result of Lambek to the 2-categorical level. §5.4.1 presents

the construction of Kleisli objects for comonads in Fib(B), which is a simple

generalisation of that for categories. It also shows how the so-called simple

fibration of [Jac91a] can be presented as a Kleisli fibration. In §5.4.2 we

present the construction of Kleisli objects for comonads in Fib, Theorem

5.4.11, based on the results of the previous section and a fattorisation for

oplax cocones in Fib, using the algebraic properties of fibred 2-cells devel-

oped in §3.1.1.

§6 applies the results of the previous chapter to build polynomial fi-

brations, which interpret the two-level parameterisation of polymorphic λ-

calculi. Thus we can characterise so-called contextual and functional com-

pleteness properties of these calculi. In §6.3.1 we show how these construc-

tions can be applied to interpret some features of the ML module system:

signatures, structures and functors.

§7 contains concluding remarks and considerations for further work.

22 CONTENTS

Chapter 1

Preliminaries on fibrations

This chapter introduces the basic concepts of fibrations or fibred categories.

Fibred categories capture the notion of a category varying (continuously)

over another. As such, they form the structure required to interpret predicate

logics, where predicates correspond to variable propositions, indexed by the

type contexts of their free variables. Similarly, fibrations provide a setting to

interpret polymorphic calculi, where the terms, or functions, are indexed by

the type variables occurring in them. Hence, such terms can be interpreted as

morphisms of a fibred category, over a category of contexts, where a context

declares the types of the variables which may occur free in an expression.

Our presentation of this preliminary material follows mostly [Jac91a].

We include the material relevant to the applications in this thesis. We con-

sider fibrations from a logical viewpoint, with our application to the inter-

pretation of languages as primary. The categorical interpretation of certain

logics will be reviewed in §2.1, once the appropriate technical notions have

been introduced in the present chapter. Of course, fibred category theory

24 Preliminaries on fibrations

goes beyond this logical/type theoretic application; see [Bén85] for the foun-

dational relevance of fibrations for category theory.

We assume the reader is familiar with the basic concepts of category

theory, as in [Mac71]. We require some basic concepts of 2-categories, which

we review in the next section. In §1.2 we recall some basic definitions con-

cerning fibrations. In §1.3, we review an alternative formulation of variable

categories, in terms of indexed categories ; we recall the equivalence between

fibrations and indexed categories given by the Grothendieck construction.

§1.4 presents structure for fibrations relevant to the interpretation of lan-

guages like polymorphic λ-calculi and first-order logic. §1.5 presents elemen-

tary notions of internal categories and their relationship with fibrations.

1.0.1 Notational Convention.

• Categories will generally be written A, B, etc.

• Set denotes the category of sets and functions, relative to a given uni-

verse, as in [Mac71, p.21]. Cat denotes the 2-category of small cate-

gories, functors and natural transformations.

• Composition of morphisms, functors, etc. is expressed by ◦ or juxta-

position, so that f ◦ g and fg denote the composite of f : B → C and

g : A → B.

• Given a category C, we denote the product of two objects A and B

by A × B, with associated projections πA,B : A × B → A and π′
A,B :

25

A × B → B. Similarly, A + B denotes the sum of the two objects,

with associated injections ιA,B : A → A + B and ι′A,B : A → A + B.

We sometimes omit subscripts for brevity. Given f : A → C and

g : B → C, their pullback is written

We sometimes write f �(B) for A ×
f,g

B. Given a span (s : D → A, t :

D → B) such that f ◦ s = g ◦ t, we write 〈s, t〉 : D → A ×
f,g

B for the

unique mediating morphism. Also, we may write t̂ for 〈s, t〉 whenever

convenient.

• For categories C and D, the category of functors from C to D and

natural transformations between them will be written DC or [C, D].

• Cop denotes the dual category of C, obtained by reversing the mor-

phisms.

• For a category C, |C| denotes its class (or set) of objects.

• We write α : F ·→G : C → D (or briefly α : F ·→G or even α : F ⇒ G)

for a natural transformation between the functors F, G : C → D.

26 Preliminaries on fibrations

1.1 2-categorical preliminaries

We present basic definitions concerning 2-categories to the extent we need

them when dealing with fibred adjunctions in §3. This material is from

[KS74], where further references can be found.

1.1.1. Definition (2-category). A 2-category K consists of:

• objects or 0-cells A, B, . . .

• morphisms or 1-cells f : A → B, . . .

• 2-cells α : f ⇒ g, . . .

• The objects and morphisms form a category K0, called the underlying

category of K.

• For objects A and B, the morphisms A → B and the 2-cells between

them form a category K(A, B) under vertical composition, denoted β◦α

or simply βα. The identity 2-cell on f : A → B is denoted by 1f .

K(A, B) is referred to as a hom-category.

• There is an operation of horizontal composition of 2-cells, whereby from

2-cells

1.1 2-categorical preliminaries 27

we get

Under this operation the 2-cells form a category with identities

• In the situation

we have the following interchange law

(δ ! β) ◦ (γ ! α) = (δ ◦ γ) ! (β ◦ α)

and for any pair of composable 1-cells f and g

1g ! 1f = 1gf

28 Preliminaries on fibrations

We usually write fαg for 1f ! α ! 1g. By the interchange law, this is

the only kind of horizontal composition we need. Observe that a 2-cell in a

2-category has vertical domain and codomain given by 1-cells and horizontal

domain and codomain given by the 0-cells which constitute the usual domain

and codomain for the 1-cells involved. We will display such information as

α : f ⇒ g : A → B, or more simply α : f ⇒ g, to indicate that α is

a 2-cell from f to g, where f and g are 1-cells (the vertical domain and

codomain respectively) from A to B (the horizontal domain and codomain

respectively).

The paradigmatic 2-category is Cat, whose objects are small categories,

1-cells are functors and 2-cells are natural transformations. The reason for

introducing 2-categories is that we need to consider not only Cat but also other

2-categories. In particular, for any small category A, the slice category Cat/A

is again a 2-category, with 2-cells those natural transformations α : H ·→K :

F → G, where F and G are functors into A, such that Gα = 1F . Similarly,

Cat→, the category of functors and commuting squares is a 2-category with

2-cells being pairs of natural transformations (α′, α) as displayed below

1.1 2-categorical preliminaries 29

i.e. Gα′ = αF . When considering fibrations, we will need sub-2-categories

of Cat/A and Cat→.

1.1.2. Definition. For a 2-category K, Kop is the 2-category obtained

from it by reversing the direction of the morphisms but not the 2-cells, and

Kco is the 2-category obtained from K by reversing the direction of the 2-cells

but not the 1-cells. In terms of hom-categories:

Kop(A, B) = K(B, A)

Kco(A, B) = (K(B, A))op

Note that (Kop)co = (Kco)op.

The extra structure present in a 2-category, the 2-cells, makes it possible

to define categorical concepts involving equations between natural transfor-

mations. A typical case is that of an adjunction.

1.1.3. Definition (Adjunction in a 2-category). An adjunction f � g : B →

A in K consists of 1-cells f : A → B and g : B → A together with 2-cells

η : 1A ⇒ gf and ε : fg ⇒ 1B satisfying (εf) ◦ (fη) = 1f and (gε) ◦ (ηg) = 1g.

30 Preliminaries on fibrations

We write the data for such an adjunction as f � g : B → A via η, ε. η is

called the unit and ε the counit of the adjunction.

The equations between 2-cells are expressible as

1.1.4. Remark. An adjunction f � g : B → A via η, ε in K becomes

g � f : A → B via ε, η in Kco and f � g : A → B via η, ε in Kop.

Clearly, in Cat, this definition yields the standard notion of adjunction

between categories. The case when both η and ε are isomorphisms is the

2-categorical notion of equivalence. Similarly, we may define a map between

adjunctions in a 2-category, as in Cat in [Mac71, p.97].

1.1.5. Definition (Map of adjunctions). Given adjunctions f � g : B → A

and f ′ � g′ : B′ → A′ a map from f � g to f ′ � g′ consists of a pair of 1-cells

(l : A → A′, k : B → B′) such that l ◦ g = g′ ◦ k, k ◦ f = f ′ ◦ l and either of

1.1 2-categorical preliminaries 31

the following two equivalent conditions hold:

lη = η′l (1.0)

kε = ε′k (1.1)

To see that the equations above are equivalent, we use a simple ‘pasting’

argument. We show (1.0) implies (1.1): (1.0) amounts to

Then adjoining ε on the LHS and ε′ on the RHS of both diagrams above and

using the adjunction laws we get

32 Preliminaries on fibrations

and thus (1.1) holds. The other direction of the equivalence is obtained by

duality.

1.1 2-categorical preliminaries 33

Finally, we introduce morphisms between 2-categories, namely 2-functors,

and 2-natural transformations between them.

1.1.6. Definition (2-functor, 2-natural transformation). A 2-functor F :

K → L between 2-categories K and L sends objects of K to objects of L,

1-cells of K to 1-cells of L and 2-cells of K to 2-cells of L, preserving domains,

codomains, compositions and identities.

A 2-natural transformation η : F ⇒ F ′ between 2-functors F, F ′ : K →

L assigns to each object A of K a morphism ηA : FA → F ′A in L, such that

for every f : A → B in K

ηB ◦ Ff = F ′f ◦ ηA

and for every 2-cell α : f ⇒ g in K

The functors cod , dom : Cat→ → Cat taking F : A → B to B and A

respectively, with a similar action on morphisms and 2-cells, are examples of

2-functors. The natural transformation α : dom → cod whose component at

F : A → B is F is then a 2-natural transformation, by definition of 2-cells in

Cat→.

34 Preliminaries on fibrations

Just like a functor between categories preserves commutative diagrams,

a 2-functor preserves commutative diagrams of 1-cells and 2-cells, since it

preserves all kinds of composition and identities. In particular, a 2-functor

F : K → L maps adjunctions and equivalences in K to L.

With the above definitions we have the 2-category 2-Cat of 2-categories,

2-functors and 2-natural transformations. So, it is clear what a 2-adjunction

between 2-categories means. In particular, ()op : Cat → Catco, which sends a

category to its dual, is a 2-isomorphism.

We say a 2-category K′ is a sub-2-category of K if its underlying category

K′
0 is a subcategory of K0, and for every pair of objects A, B of K′, the

hom-category K′(A, B) is a subcategory K(A, B). Of course, horizontal and

vertical composition and identities in K′ are as in K.

Universal constructions in 2-categories have a 2-dimensional aspect. For

instance, consider the following pullback in Cat

Given objects I ∈ |B| and J ∈ |C| such that FI = GJ , there is a unique ob-

ject, written 〈I, J〉 of B ×
F,G

C such that F ∗(G)〈I, J〉 = I and G∗(F)〈I, J〉 =

J . The 2-dimensional aspect is that for morphisms f : I → I ′ in B and

1.2 Basic fibred concepts 35

g : J → J ′ in C with Ff = Gg, there is a unique morphism 〈f, g〉 : 〈I, J〉 →

〈I ′, J ′〉 such that F ∗(G)〈f, g〉 = f and G∗(F)〈f, g〉 = g. This is formulated

2-categorically as follows: for any span of functors B
I← D

J→ C such that

F ◦ I = G ◦ J , there is a unique functor 〈I, J〉 : D → B ×
F,G

C such that

F ∗(G) ◦ 〈I, J〉 = I and G∗(F) ◦ 〈I, J〉 = J . And for 2-cells α : I ⇒ I ′ and

β : J ⇒ J ′ with Fα = Gβ, there is a unique 2-cell 〈α, β〉 : 〈I, I ′〉 → 〈J, J ′〉

such that F ∗(G)〈α, β〉 = α and G∗(F)〈α, β〉 = β. We will use this pairing

notation throughout.

1.2 Basic fibred concepts

This section reviews basic notions about fibrations. Only a few illustrative

examples will be given. Others will appear in the applications and more

can be found in [Jac91a], from where we borrow most of the material in the

remaining of the chapter.

The notion of fibration or fibred category, introduced in [Gro71], cap-

tures the concept of a category varying over, or indexed by, another cate-

gory. Before giving the definition, we recall the analogous situation for sets.

A family {Xi}i∈I of sets indexed by a set I is a function X : I → Set.

We may regard this as a ‘set’ X varying over I. It can be equivalently

presented as a function p : X → I, since such a function gives rise to

the family {Xi = p−1(i)}i∈I and conversely, given a family {Xi}i∈I we get

p :
∐

i∈I Xi → I, where
∐

i∈I Xi is the disjoint union of the Xi’s and p maps

an element in Xi to i. These constructions between morphisms into I and

36 Preliminaries on fibrations

I-indexed families are mutually inverse. We can summarise this situation by

the following isomorphism:

Set/I ∼= SetI

where Set/I denotes the usual slice category of morphisms into I and com-

mutative triangles, and SetI is the category of functors from I, regarded as a

discrete category, to Set. These equivalent views of indexed families of sets

have their categorical counterparts: a function X : I → Set is generalised to

an indexed category, cf. Definition 1.3.1, while a function p : X → I is gen-

eralised to a fibration, cf. Definition 1.2.1. The above isomorphism becomes

an equivalence between fibred and indexed categories, cf. Proposition 1.3.6

below. Despite this equivalence, the notion of fibration is technically more

convenient, as is forcibly argued in [Bén85].

1.2.1. Definition (Fibrations and cofibrations). Consider afunctor p : E →

B.

(i) A morphism f : X → Y in E is (p-)cartesian (over a morphism

u = pf : A → B in B) if for every f ′ : X ′ → Y with pf ′ = u ◦ v in B, there

exists a unique morphism φf ′ , : X ′ → X such that pφf ′ = v and f ′ = f ◦ φf .

Diagrammatically,

1.2 Basic fibred concepts 37

Thus, a cartesian morphism f is a ‘terminal lifting’ of u. We call such f a

cartesian lifting of u. In general, when pf = u we say f is above or over u.

(ii) Dually, a morphism g : X → Y is (p-) cocartesian (over a morphism

u = pg : A → B in B) if for every g′ : X → Y ′ with pg′ = w ◦ u in B, there

exists a unique morphism ψg′ : Y → Y ′ such that pφg′ = w and g′ = ψg′ ◦ g.

(iii) The functor p : E → B is called a fibration if for every X ∈ |E| and

u : A → pX in B, there is a cartesian morphism with codomain X, such that

its image along p is u. B is then called the base of the fibration and E its

total category. Dually, p is a cofibration if pop : Eop → Bop is a fibration, i.e.

for every X ∈ |E| and u : pX → B in B there is a cocartesian morphism with

domain X above u. If p is both a fibration and a cofibration, it is called a

bifibration.

38 Preliminaries on fibrations

(iv) For A ∈ |B|, EA, the fibre over A, denotes the subcategory of E

whose objects are above A and its morphisms, called (p-)vertical , are above

1A.

1.2.2. Examples. We now introduce three important examples of fibrations.

The first motivates terminology concerning fibrations. These examples will

be used throughout to illustrate various concepts.

Family fibration The following standard construction of a fibration over

Set is described in [Bén85]. It provides a simple understanding of some

fibred conepts. Every category C gives rise to a family fibration f(C) :

Fam(C) → Set. Objects of Fam(C) are families {Xi}i∈I of C-objects, I

a set, i.e. a mapping X : I → |C|; morphisms (u, {fi}i∈I) : {Xi}i∈I →

{Yj}j∈J are pairs consisting of a function u : I → J (in Set) and a

family of morphisms such that fi : Xi → Yu(i) in C. f(C) takes a family

of objects to its indexing set and a morphism to its first component.

(u, {fi}i∈I) is cartesian when every fi is an isomorphism. f(C) is then a

fibration since given u : I → J and {Yi}j∈J , (u, {1Yu(i)
}) : {Yu(i)}i∈I →

{Yj}j∈J is cartesian above u.

Codomain fibration For any category C, consider the functor cod : C→ →

C, where C→ is the category of morphisms of C, i.e. C→ is the functor

category [0 → 1, C] and 0 → 1 denotes the category with two objects

and one morphism between them. The functor cod takes f : A → B

to B and (h, k) to k. A cartesian morphism for cod is a pullback

1.2 Basic fibred concepts 39

square. Thus, whenever C has pullbacks, cod is a fibration. Note

that for A ∈ |C|, the fibre over A is simply the slice category C/A.

When there is more than one category under consideration, we write

codC : C→ → C.

Subobject fibration A related example of fibration is the following. Given

a category C, let Sub(C) be the full subcategory of C→ whose objects

are subobjects in C, i.e. equivalence classes of monos. Let ı : Sub(C) →

C be the restriction of cod to Sub(C). Caresian morphisms are as for

cod. When C has pullbacks of monos along arbitrary morphisms, ı is a

fibration. The fibre over A is the preorder category of subobjects of A.

This fibration plays a fundamental role in categorical logic, since it

is the one that determines what the internal logic of the category C

is. That is, the logical connectives, quantifiers and so on which we

can interpret in C, regarding predicates as subobjects, depends on the

structure of the subobject or internal logic fibration. This remark will

become clear when we review some basics of categorical logic in §2.1.

Some concrete examples will be analysed later in §4.3.

As immediate consequence of the definition of cartesian morphisms, we

have the following proposition:

1.2.3. Proposition. Let p : E → B be a fibration. Let f : X → Y

and g : Y → Z be morphisms in E. Then,

• If f and g are cartesian, so is g ◦ f .

40 Preliminaries on fibrations

• If g and g ◦ f are cartesian, so is f .

For p = cod : C→ → C, the above proposition yields the following stan-

dard result about pullbacks.

1.2.4. Corollary. Consider the following commutative diagram in C,

where P and Q name the corresponding squares

• If P and Q are pullbacks, so is the outer rectangle.

• If Q and the outer rectangle are pullbacks, so is P .

1.2.5. Remark. Proposition 1.2.3 allows to give an alternative definition of

fibration: consider a functor p : E → B

• a morphism f : Y → X is v-cartesian if for any h : Z → X with

ph = pf , there exists a unique vertical φ : Z → Y such that f ◦ φ = h

• p is a fibration if for every X ∈ |E| and u : A → pX, there exists a

1.2 Basic fibred concepts 41

v-cartesian morphism f : Y → X, and the composite of two v-cartesian

morphisms is v-cartesian.

If p is a fibration, a morphism is v-cartesian iff it is cartesian. Thus both

definitions of fibration agree.

If a funcor p : E → B is a fibration, we display it as
E
↓p

B
. A choice

of a cartesian morphism for every appropriate morphism in B is called a

cleavage for p which is then a cloven fibration, and denoted by (), so that

for u : I → pX in B, u(X) : u∗(X) → X denotes the chosen cartesian

morphism above u. We occasionally need to add the fibration p as extra

superscript to the cleavage, when there is more than one fibration under

consideration.

Assuming the Axiom of Choice, it is always possible to give a cleavage

for a fibration. We thus implicitly assume that the fibrations we deal with are

cloven. As we see in §3, this assumption allows elegant algebraic formulations

and proofs of properties of fibrations. Most properties we consider admit an

intrinsic formulation using cartesian morphisms, independent of a choice of

cleavage. It is clear in the proofs that the property at hand is independent

of the chosen cleavage.

1.2.6. Definition. Let () be a cleavage for
E
↓p

B
.

• For u : I → J in B, () determines a reindexing functor u∗ : EJ → EI

as follows:

42 Preliminaries on fibrations

– on objects X �→ u∗(X), where u∗(X) denotes the domain of the

cartesian lifting of u with codomain X (given by ())

– on morphisms, for f : X → Y in EJ , u∗(f) is determined as the

unique vertical map making the following diagram commute

using the fact that u(Y) is cartesian. This assignment of mor-

phisms is functorial by the universal property of cartesian mor-

phisms.

• For every I ∈ |B|, there is an isomorphism γI : 1EI
·→1∗pI determined

by the universal property of the morphisms 1I(X). For every pair

of composable maps u : J → K and v : I → J in B, there is an

isomorphism δv,u : v∗ ◦ u∗ ·→ (u ◦ v)∗ determined by the cartesian

morphisms u ◦ v(X).

The above natural isomorphisms satisfy coherence conditions, induced

by the cartesian morphisms. Such conditions occur explicitly in the defini-

tion of an indexed category, Definition 1.3.1 and so we do not repeat them

here. When such isomorphisms are actual identities, the fibration is called

1.2 Basic fibred concepts 43

split and the corresponding cleavage is a splitting . When the γ’s are identi-

ties, the cleavage is normalised. Without loss of generality, we may assume

that cleavages are normalised. For the dual notion of cocleavage for a cofi-

bration we denote by u(Y) : Y → u!(Y) the chosen cocartesian lifting of

u : pY → B, which determines a coreindexing functor u! : EpY → EB. Dif-

ferent cleavages for the same fibration give rise to different, but naturally

isomorphic, reindexing functors.

For a functor p : E → B, given a morphism u : A → B in B, X ∈ |EA|

and Y ∈ |EB|, let

Eu(X, Y) = {f : X → Y in E | pf = u}

1.2.7. Proposition. Let p : E → B be a functor, u : A → B a morphism in

B, X ∈ |EA| and Y ∈ |EB|.

(i) If p is a fibration then Eu(X, Y) ∼= EA(X, u∗(Y))
(naturally in X and Y).

(ii) If p is a cofibration then Eu(X, Y) ∼= EB(u!(X), Y)
(naturally in X and Y).

(iii) If p is a fibration then

p is a cofibration iff for every u : A → B in B, u∗ : EB → EA has a left adjoint

Proof. (i) and (ii) are straightforward consequences of the definition of carte-

sian and cocartesian morphisms respectively. For (iii),

EA(X, u∗(Y)) ∼= Eu(X, Y) ∼= EB(u!(X), Y)

44 Preliminaries on fibrations

which means that the coreindexing functors are left adjoints to the corre-

sponding reindexing functors, i.e. u! � u∗∗ : EB → EA, where u! : EA → EB

is determined dually to u∗. ✷

We now characterise the property of a functor being a fibration in terms

of the existence of a cleavage for it. This is taken from [Gra66], where it is

called the Chevalley criterion.

1.2.8. Proposition. Given a functor p : E → B, consider the pullback

square

Let Ip = 〈codE, p→〉 : E→ → E ×
p,cod

B→ be the unique mediating functor into

the pullback induced by the square

p is a fibration iff Ip has a right-adjoint-right-inverse, i.e. the counit of the

adjunction is the identity.

1.2 Basic fibred concepts 45

Proof. Ip maps f : X → Y in E to (Y, pf). We simply record that a

right-adjoint right-inverse Cl to Ip amounts precisely to a cleavage for p; it

assigns to every pair (X, u : I → pX) a cartesian morphism Cl(Y, u) above

u. ✷

1.2.9. Remark. The above formulation of fibration can be used to give

a 2-categorical notion of fibration, i.e. when a morphism p in a 2-category is

a fibration, generalising the situation in Cat. Of course, the above formula-

tion makes sense in 2-categories with appropriate structure. See [Str73] for

details.

1.2.1 The 2-categories of fibrations

We now define morphisms between fibrations and 2-cells between them.

These notions organise fibrations into 2-categories Fib(B) for fibrations over

a given base B, and Fib for fibrations over arbitrary bases. These 2-categories

give a framework in which we can define structure for fibrations, especially

in terms of adjunctions.

1.2.10. Definition (Fibred 1-cells and 2-cells). Given
E
↓p

B
and

D
↓q

A
, a mor-

phism (K̃, K) : p → q is rven by a commutative square

46 Preliminaries on fibrations

where K̃ preserves cartesian morphisms, meaning that if f is p-cartesian, K̃f

is q-cartesian. (K̃, K) is called a fibred 1-cell and K̃ a fibred functor over

K; it determines a collection of functors {K̃|A : EA → DKA} between the

corresponding fibres. Any pair of cleavages ()p, ()q determines, for every

u : A → B, a natural isomorphism

φu : K̃|A ◦ u∗ p ∼→ (Ku)∗ q ◦ K̃|B

satisfying: for u : A → B, v : B → C

φ1A
◦ K̃|A γA = γKAK̃|A

φv◦u ◦ K̃|A δp
u,v = δq

Ku,KvK̃|C ◦ (Ku)∗ qφv ◦ φuv
∗ p

Given fibred 1-cells (K̃, K), (L̃, L) : p → q, a fibred 2-cell from (K̃, K)

to (L̃, L) is a pair of natural transformations (σ̃ : K̃ ·→L̃, σ : K ·→L) with σ̃

above σ, meaning that qσ̃X = σpX for every X ∈ E. We display such a fibred

2-cell as follows

1.2 Basic fibred concepts 47

and we write it as (σ̃, σ) : (K̃, K) ⇒ (L̃, L).

In this way we have a 2-category Fib, with fibrations as objects, fibred

1-cells and fibred 2-cells, with the evident compositions inherited from Cat.

Dually, we have a 2-category CoFib of cofibrations, cofibred functors and cofi-

bred 2-cells.

1.2.11. Examples.

• A functor F : C → D induces a Set-fibred functor Fam(F) : Fam(C) →

Fam(D) by {Xi}i∈I �→ {FXi}i∈I . Analogously, a natural transfor-

mation α : F ⇒ G induces a Set-fibred 2-cell Fam(α) : Fam(F) ⇒

Fam(G), Fam(α){Xi} = {αXi
}i∈I . We thus have a 2-functor Fam(F) :

Cat → Fib(Set).

• Consider a functor F : C → D such that both C and D have and

F preserves pullbacks. The induced functor between the categories of

morphisms F→ : C→ → D→ is a fibred functor over F between the

respective codomain fibrations of C and D. Thus,

(F→, F) : (codC : C→ → C) → (codD : D→ → D)

48 Preliminaries on fibrations

is a fibred 1-cell. Given another pullback-preserving functor G : C → D,

any natural transformation γ : F ·→G induces a fibred 2-cell (α→, α) :

(F→, F) ⇒ (G→, G), where for h : X → Y ∈ |C→|α→
h is

Instantiating the notion of adjunction in a 2-category (Definition 1.1.3)

in Fib, we obtain the following notion of fibred adjunction.

1.2.12. Definition. Given
E
↓p

B
and

D
↓q

A
, a fibred adjunction between them

is given by pair of fibred 1-cells (F̃ , F) : p → q and (G̃, G) : q → p to-

gether with a pair of fibred 2-cells (η̃, η) : (1E, 1B) ⇒ (G̃ ◦ F̃ , G ◦ F) and

(ε̃, ε) : (F̃ ◦ G̃, F ◦G) ⇒ (1D, 1A) such that

(i) F̃ � G̃ : D → E via η̃, ε̃ (in Cat)

(ii) F � G : A → B via η, ε (in Cat)

(iii) p and q constitute a map of adjunctions between the two above,

i.e. pη̃ = ηp

(or equivalently qε̃ = εq)

Such a fibred adjunction is displayed by

1.2 Basic fibred concepts 49

When the components of η̃ and ε̃ are cartesian and the square (fibred

1-cell) (F̃ , F) : p → q is a pullback, we call it a cartesian fibred adjunction.

This terminology is justified by Theorem 3.2.3.

1.2.13. Remark. For a cartesian fibred adjunction, the adjoint transpose of

a cartesian morphism f : F̃X → Y in D, which is f∨ =� G̃f ◦ η̃X , is again

cartesian. This is equivalent to the cartesianness of the components of η̃.

Although the notion of subfibration does not play a major role in this

thesis, we include its definition to make sense of a few statements below and

in §3.

1.2.14. Definition.

(i) Given a fibration
E
↓p

B
and a subcategory E′, J : E′ → E, p◦J : E′ → B

is a subfibration of p if, for every object X ∈ |E|, if f : Y → JX is cartesian

in E, then f is in E′.

(ii) More generally, given fibrations
E
↓p

B
and

D
↓q

A
, where A is a subcate-

gory of B, J : A → B, we say q is a subfibration of p if q is a subfibration of

50 Preliminaries on fibrations

J∗(p) in the sense of (i).

Since Fib is a sub-2-category of Cat→, we get by restriction of cod :

Cat→ → Cat the 2-functor cod : Fib → Cat, which maps every fibration
E
↓p

B

to its base category B. We know that cod : Cat→ → Cat is a fibration (cf.

Example 1.2.2). The following proposition shows that its restriction to Fib

is still a fibration — a subfibration in fact, since cartesian morphisms for it

are pullback squares.

1.2.15. Proposition. Given a fibration q : D → A and an arbitrary

functor K : B → A, consider a pullback diagram

K∗(q) is a fibration, with a morphism f in K∗(D) being K∗(q)-cartesian iff

q∗(K)(f) is q-cartesian. The above diagram is therefore a morphism of fi-

brations.

Proof. An elegant proof is in [Gra66], using the characterisation of fibra-

tions given in Proposition 1.2.8. In elementary terms, given an object of

K∗(D), determined by a pair of compatible objects 〈I ∈ B, X ∈ D〉, and a

morphism u : J → I in B, its cartesian lifting (u)
K∗(q)

(I, X) is determined

1.2 Basic fibred concepts 51

by u and the cartesian lifting (Ku)
q
(I, X) : Ku∗(X) → X. ✷

We say that K∗(q) is obtained from q by change of base along K. We

assume that the cleavage for K∗(q) is obtained from that of q as in the above

proof. So q∗(K) preserves cleavages. If q has a splitting, so does K∗(q).

The fibre of cod : Fib → Cat over a category A is the 2-category Fib(A),

consisting of fibrations with base A. Morphisms F : p → q are functors

between the total categories of p and q which commute with the fibrations

(qF = p) and preserve cartesian morphisms. Such an F is called a (A)-fibred

functor, in preference to the usual terminology of ‘cartesian functor’. 2-cells

are natural transformations α : F ·→ G : p → q such that qα = p. Such an

α is called a vertical natural transformation or an A-fibred 2-cell. We use the

prefix A- to denote 2-categorical concepts in Fib(A) to distinguish them from

the corresponding ones in Fib. We may thus speak of an A-fibred adjunction.

Usually we drop the prefix when the context makes it clear which 2-category

is meant. We will also refer A-fibred concepts as vertical.

Considering only split fibrations and splitting-preserving morphisms, we

have sub-2-categories Fibsp and Fib(A)sp.

1.2.16. Remark. In view of Proposition 1.2.15, we may regard a fibred

1-cell (K̃, K) : p → q, with K : A → B, as an A-fibred 1-cell K̂ = 〈p, K̃〉 :

p → K∗(q).

Using Proposition 1.2.8, we have the following characterisation of mor-

phisms in Fib(A)

52 Preliminaries on fibrations

1.2.17. Proposition. The data
E
↓p

A
,

D
↓q

A
and F : p → q in Cat/A in-

duces the following commutative square

where cod∗(F) : cod∗(p) → cod∗(q) is uniquely determined by F and the

pullbacks E ×
p,cod

A→ and D ×
p,cod

A→. Given right-adjoint-right-inverses (−)
p

and (−)
q
for Ip and Iq (with units ηp and ηq) respectively, the square above in-

duces a canonical natural transformation γ : F→◦(−)
p ·→ (−)

q◦ cod∗(F), γ =

ηqF
→(−)

p
. Then, F preserves cartesian morphisms iff γ is an isomorphism.

Proof. For an object (Y, u : I → pY) of E ×
q,cod

A→

γ(Y,u:I→pY) : F (u∗p(Y)) → u∗qFY

is the canonical vertical morphism determined by (u)
q
(FY). Hence F pre-

serves Cartesian morphisms iff every such vertical morphism is an isomor-

phism. ✷

When γ in the above proposition is the identity, F preserves cleavages.

1.3 Indexed categories and the Grothenieck construction 53

1.3 Indexed categories and the Grothenieck

construction

We continue our review with indexed categories, which are sometimes more

intuitive than fibrations and help in understanding topics such as fibred ad-

junctions and fibred comonads, as developed in §3 and §5.

Indexed categories are essentially equivalent to fibrations but technically

often less convenient. For instance, it is easy to prove that the composition

of two fibrations is again a fibration, but this cannot be expressed directly

for indexed categories. See [Bén85] for furth er relevant discussion. More

importantly, the notion of fibration makes sense in any 2-category [Str73,

Joh92].

Recalling the analogy between fibrations and families of sets in §1.2, the

isomorphism

Set/I ∼= SetI

leads us to consider another version of a varying category, i.e. a category

varying continuously over another, as a generalisation of SetI as the category

of I-indexed families of sets. Now, the indexing object is not a mere set I

but a category and similarly, the indexed objects Xi are not just sets but

categories.

1.3.1. Definition (Indexed category). Given a category B, a B-indexed

category is a pseudo-functor F : Bop → Cat; it is given by the following data

54 Preliminaries on fibrations

• For every object A ∈ |B|, a category FA.

• For every morphism f : A → B in B, a functor f ∗ : FB → FA, together

with natural isomorphisms γA : 1FA
∼= 1∗A and δf,g : (f ∗ ◦ g∗) ∼= (g ◦ f)∗

satisfying the following coherence conditions: for u : A → B, v : B → C

and w : D → A in B

δu,1B
◦ u∗γB = 1u∗

δ1A,u ◦ γAu∗ = 1u∗

δw,v◦u ◦ w∗δu,v = δu◦w,v ◦ δw,uv
∗ : w∗ ◦ u∗ ◦ v∗ ·→ (v ◦ u ◦ w)∗

1.3.2. Remark. The coherence conditions above express associativity and

identity laws. Their role is clear in Proposition 1.3.6.(iii). Often these iso-

morphisms are identities, in which case we have a strict indexed category,

i.e. a functor F : Bop → Cat.

1.3.3. Examples. The following examples of strict indexed categories are

taken from [BGT91]. They are basic to the area of algebraic specifications.

(i) (Many-sorted sets) Consider the following functor SS : Setop →

Cat

SS(I) = SetI

SS(f : I → J) = (X : J → Set) �→ (X ◦ f : I → Set)

The objects of a, fibre SS(I) are families of sets. The functor SS(f : I → J)

performs reindexing along f . The coherent isomorphisms are identities.

1.3 Indexed categories and the Grothenieck construction 55

(ii) (Many-sorted algebraic signatures) Consider the functor ()+ : Set →

Set, which assigns to a set S the free semigroup it generates, i.e. the

set S+ of all finite non-empty sequences of elements of S. The functor

AS = SS ◦ (()+)op : Setop → Cat is an indexed category; its fibres AS(S)

are S-sorted algebraic signatures, i.e. they consist of, for every non-empty

sequence s1, . . . , sn ∈ S+ regarded as arity or rank s1, . . . , sn−1 → sn, a set

of operation symbols of that rank. A reindexing functor AS(f : S → S ′)

transforms S ′-sorted signatures into S-sorted signatures, renaming sorts ac-

cording to f .

1.3.4. Definition. Let F : Bop → Cat and G : Bop → Cat be indexed

categories.

• An indexed functor H : F→ G consists of:

(i) For every A ∈ |B|, a functor H(A) : F(A) → G(A)

(ii) For every u : A → B, a natural isomorphism

φu : G(u) ◦ G(B) ∼→ H(A) ◦ F(u)

satisfying coherence conditions with the γ’s and δ’s of Definition 1.3.1;

cf. Definition 1.2.10 where these conditions are given for the equivalent

concept, of fibred 1-cells.

• An indexed natural transformation α : H ⇒ H′ : F → G, consists of

a natural transformation αA : (A) ·→ H′(A) for every object A ∈ |B|,

such that for every u : A → B,G(u)αB = αAF(u), modulo the φu’s.

56 Preliminaries on fibrations

Indexed categories over a given category B, indexed functors and in-

dexed natural transformations form a 2-category ICat(B), with the evident

fibrewise notions of composition and identities, inherited from Cat.

1.3.5. Remark. Having defined indexed functors and indexed natural trans-

formations, the notion of indexed adjunction is then analogous to the stan-

dard notion of adjunction between categories. We can give the following

description, which the reader might find intuitive: given indexed functors

H : F→ G and H′ : G → F over B,H is an indexed left adjoint to H′ iff:

• For every A ∈ |B|,HA � H′
A.

• u : A → B, the pair (F(u),G(u)) preserves the adjunctions, i.e. it is a

(pseudo-)map of adjunctions from HB � H′
B to HA � H′

A. The latter

means a map of adjunctions, where the relevant squares commute only

up to a given (coherent) isomorphism.

We now show the correspondence between cloven fibrations and indexed

categories, due to Grothendieck, which amounts to an ‘equivalence’ between

the 2-categories Fib(B) and ICat(B).

1.3,6. Proposition.

(i) Every cloven fibration
E
↓p

B
gives rise to an indexed category Fp : Bop → Cat.

(ii) Every indexed category F : Bop → Cat gives rise to a fibration pF : GF → B.

(iii) The above correspondences set up an ‘equivalence’ of 2-categories

1.3 Indexed categories and the Grothenieck construction 57

ICat(B) � Fib(B)

so that FpF � F and pFp � p.

Proof.

(i) Given a cloven fibration p : E → B, we obtain an indexed category

Fp : Bop → Cat as follows:

• For every A ∈ |B|, FpA = EA.

• For every u : A → B, a cleavage () induces a reindexing functor

u∗ : EB → EA as given in Definition 1.2.6. As we mentioned then, the

universal property of cartesian morphisms uniquely determines natural

isomorphisms δv,u : v∗ ◦ u∗ ∼→ (u ◦ v)∗ and γI : 1EI
∼→ 1∗I , which

satisfy the coherence conditions in Definition 1.3.1.

(ii) Given an indexed category F : Bop → Cat we define the total category

GF , consisting of:

Objects: 〈A, a〉 ∈ |GF| iff A ∈ |B| and a ∈ |FA|. That is (using a hopefully

self-explanatory dependent sum notation)

|GF| = ΣA : B.FA

Morphisms: 〈f, g〉 : 〈A, a〉 → 〈B, b〉 iff f : A → B in B and g : a → f∗(b)

in FA. That is

GF(〈A, a〉, 〈B, b〉) = Σf : B(A, B).FA(a, f ∗(b))

58 Preliminaries on fibrations

Identity: 〈1A, γA(a)〉 : 〈A, a〉 → 〈A, a〉

Composition: Given 〈f, g〉 : 〈A, a〉 → 〈B, b〉 and 〈h, j〉 : 〈B, b〉 → 〈C, c〉,

let

〈h, j〉 ◦ 〈f, g〉 = 〈h ◦ f, δf,h(c) ◦ f ∗(j) ◦ g〉

The coherence conditions of Definition 1.3.1 are required in orcler to show

associativity of composition and the identity laws. The projection functor

pF : GF → B which takes 〈A, a〉 to A (for objects and morphisms) is then a

fibration: for an morphism u : A → B in B and an object X in FB, we can

choose as cartesian lifting ū(X) = 〈u, 1u∗X〉.

(iii) Observe that the fibres of pF are GFB = FB and the action of the

reindexing functors is the same in both fibrations and indexed categories re-

spectively. Any pair of cleavages for a given fibration give rise to equivalent

indexers categories.

1.3.7. Remarks.

• The construction of pF from F in the above proof is known as the

Grothendieck construction.

• Dualising the above proposition, we get an analogous result relating

cofibrations p : E → B and pseudo-functors G : B → Cat.

• The equivalence in the above proposition clearly restricts to one be-

tween split fibrations
E
↓p

B
and functors F : Bop → Cat (strict indexed

1.3 Indexed categories and the Grothenieck construction 59

categories). Splitting-preserving functors between split fibrations cor-

respond under this equivalence to natural transformations.

1.3.8. Remark. The 2-categorical aspect of the equivalence in Proposition

1.3.6.(iii) implies a correspondence between indexed and fibred adjunctions.

Thus, a fibred adjunction F � G : p → q (between
E
↓p

B
and

D
↓q

B
) amounts

to a family of adjunctions {F |B � G|B : EB → DB}B∈|B| such that for every

u : B → B′, (u∗p, u∗q) is a (pseudo-)map of adjunctions from F |B′ � G|B′ , to

F |B � G|B.

For an indexed category F : Bop → Cat and a functor H : A → B,

change-of-base of F along H is given by composition H∗(F) = F ◦ Hop.

Similarly, for a natural transformation α : H ·→ H′ : A → B we have

an indexed natural transformation Fαop : F ◦ (H ′)op ⇒ F ◦ Hop, where

αop : Hop ·→ (H′)op : Aop → Bop has components (αop)A = αop
A .

1.3.9. Definition. The 2-category ICat has indexed categories F : Bop →

Cat (over arbitrary categories) as objects. A morphism from F : Aop → Cat

to G : Bop → Cat is given by a functor H : A → B and an indexed functor

H : F → G ◦ Hop; we write (H, H) for this morphism. A 2-cell (α̃, α) :

(H, H) ⇒ (H′, H ′) : F→ G consists of a natural transformation α : H ⇒ H ′

and an indexed natural transformation α̃ : G ◦ Hop ⇒ (Gαop) ◦ (G ◦ (H ′)op.

Compositions and identities are defined using those in Cat and ICat().

There is a forgetful 2-functor base: ICat → Cat, which takes an indexed

60 Preliminaries on fibrations

category to its base and morphisms and 2-cells to their second components.

base is a split fibration, with splitting given by composition, as noted above.

This observation and Proposition 1.3.6. (iii) yield as immediate consequence

the following equivalence.

1.3.10. Corollary. There is a Cat-fibred 2-equivalence

We regard indexed categories as a convenient means of presenting cloven

fibrations. We are not interested in the indexed category itself but in (the

total category of) the fibration it yields via the Grothendieck construction.

1.3.11. Example. The family fibration f(C) : Fam(C) → Set results

from applying the Grothendieck construction to the (strict) Set-indexed cat-

egory given by

I �→ SetI
u : I → J �→ ◦ u : SetJ → SetI

We close this section defining the groupoid and the opposite of an in-

dexed category.

1.3.12. Definition. Given F : Bop → Cat, its groupoid indexed category

|F| : Bop → Cat is defined by

1.4 Fibred structure, products and sums 61

A �→ the groupoid subcategory of FA,

consisting only of all the isomorphisms

u : A → B �→ the restriction of Fu to the groupoid subcategories

and its opposite indexed category Fνop : Bop → Cat by

A �→ (FA)op

u : A → B �→ (Fu)op : (FB)op → (FA)op

1.4 Fibred structure, products and sums

Given a fibration p : E → B, its groupoid fibration, written |p| : Cart(E) →

B, results from applying the Grothendieck construction to the groupoid in-

dexed category of the B-indexed category it induces. It can also be de-

scribed as the restriction of p to Cart(E), the subcategory of E consisting

of the Cartesian morphisms only. Similarly, the opposite fibration, written

pνop : (E/B)νop → B, is obtained by applying the Grothendieck construc-

tion to the opposite of its associated indexed category. pνop also admits an

intrinsic formulation; see [Jac91a, §1.1.11] for details.

Now we can describe fibred structure for
E
↓p

B
in terms of B-fibred ad-

junctions, as we do in Cat for ordinary categories [Mac71, §V]. The following

definitions are from [Jac92].

1.4.1. Definition. A fibration
E
↓p

B
has

• a fibred terminal object iff p : p → 1B in

62 Preliminaries on fibrations

has a fibred right adjoint 1p : 1B → p, which we call terminal object

functor, usually written as 1.

• fibred binary products iff the diagonal fibred functor ∆p : p → p × p

(where p× p is the product of p with itself in Fib(B)) has a fibred right

adjoint × : p × p → p.

• fibred exponents (assuming fibred binary products) iff the fibred functor

〈π′,×〉 : p×|p| → |p|op×p (products considered in Fib(B)) obtained by

pairing p × |p| ↪→ p × p
×−→ p and p × |p| π′

−→ |p| ∼= |p|op, has a fibred

right adjoint exp : |p|op × p → p × |p|.

A fibration with fibred finite products will be called a fibred-cc and one which

additionally has fibred exponents a fibred-ccc.

1.4.2. Remarks.

• 1B : B → B is a terminal object in Fib(B). The above definition of

fibred terminal object is entirely analogous then to that of a terminal

object for an ordinary category. A similar consideration applies to

fibred products and exponents.

1.4 Fibred structure, products and sums 63

• The above definitions admit an elementary description in terms of fi-

brewise structure, preserved by reindexing functors. A fibration has

a fibred terminal object iff every fibre has a terminal object and rein-

dexing functors preserve these. Similarly for fibred products and expo-

nents. This correspondence is a consequence of the equivalence between

fibrations and indexed categories, Proposition 1.3.6.iii.

• The above notions admit elementary intrinsic definitions, without ref-

erence to a cleavage. For instance,
E
↓p

B
has a fibred terminal object if

every fibre EI has a terminal object 1(I) and for any cartesian mor-

phism f : X → 1(I), X is terminal in EpX .

1.4.3. Examples.

(i) For a category C, f(C) : Fam(C) → Set has fibred finite products

(respectively exponents) iff C has finite products (respectively exponents).

In one direction, the fibred products/exponents are defined pointwise, e.g.

{Xi}i∈I × {Yi}i∈I = {Xi × Yi}i∈I . Conversely, C is the fibre over the one-

element set and hence has products (respectively exponents).

(ii) For C with pullbacks, cod : C→ → C has fibred finite products. For

A ∈ C, 1A is a terminal object in C/A and the product of f : B → A and

g : C → A is given by the diagonal of their pullback, with projections given

by the pullback projections. This is why the pullback is sometimes referred

to as ‘fibred product’. Preservation of such structure under reindexing is

immediate. cod is a fibred-ccc when every slice C/A is a ccc, that is, when

64 Preliminaries on fibrations

C is a so-called locally cartesian closed category (lccc for short).

(iii) ı : Sub(C) → C is a sub-fibred-cc of cod, i.e. the fibred finite

products are as given in cod. If C is an elementary topos, then ı is a fibred-

ccc, since in this case every fibre Sub(C)A is a complete Heyting algebra and

hence is cartesian closed (as a poset). See [LS86, Part 11,§5, Exercise 3]

Next, we introduce some indexed products and sums for a fibration.

Such structure is necessary for the interpretation of first-order quantifiers in

predicate logic, see §2.1.2. The terminology is taken from [Jac91a, §1.5.1,§4.2.1],

where a more general form of quantification relative to an arbitrary so-called

comprehension category is given. For A a category with binary products and
D
↓q

A
, we have the following change-of-base situation for any object I:

where we have written qI for (× I)∗(q).

1.4.4. Definition. Given
E
↓p

B
, B with binary products and I ∈ |B|, p

has ConsI-products (respectively sums) if both

(i) for every J ∈ |B|, the reindexing functor π∗
J,I : EJ → EJ×I induced

by πJ,I : J×I → J has a right adjoint ΠI (respectively a left adjoint ΣI) and

1.4 Fibred structure, products and sums 65

(ii) (Beck-Chevalley condition) for every u : J → J ′ in B, the canonical

natural transformation

u∗ΠI
·→ ΠI(u × 2I)

∗

(respectively ΣI(u × 1I)
∗ ·→ u∗ΣI) is an isomorphism.

p has ConsB-products/sums if it has ConsI-products/sums for every

I ∈ |B|.

Instantiating the general definition of quantification in [Jac91a], we get

the following formulation of ConsI-products/sums in terms of fibred adjunc-

tions:

1.4.5. Proposition. Given
E
↓p

B
, let δI : p → pI in Fib(B) be defined as

follows: for Y ∈ |EJ |,

δIY = π∗
J,IY

Then, p has ConsI-products (respectively sums) iff δI has a fibred right (re-

spectively left) adjoint.

The above proposition explains why we may omit the parameter J in the

definition of ConsI-products/sums; we are simply defining one fibred functor

as an adjoint.

1.4.6. Examples.

(i) For C a category with small products/coproducts, the family fibration

f(C) has ConsSet-products/sums. They are given by ΠI({X(j,i)}(j,i)∈J×I =

66 Preliminaries on fibrations

{Πi∈IX(j,i)}j∈J , with an analogous expression for sums. Conversely, if f(C)

has ConsSet-products/sums, C has small products/sums: for a set A, the

product/sum of an A-indexed family {Xa}a∈A is obtained by applying the

right/left adjoint to reindexing along the projection !A : A → 1.

(ii) cod : C→ → C has ConsC-sums, given by composition: ΣI(f : A →

J × I) = π ◦ f . In case C is a lccc, it also has ConsC-products, since in

this situation it has right adjoints for every reindexing functor. See [BW90,

Theorem 12.4.3].

(iii) Consider ı : Sub(Set) → Set, where we may identify subobjects with

subsets. Thus reindexing corresponds to taking inverse images: u∗(S ⊆ B) =

u−1(S) ⊆ A (for u : A → B). This fibration has ConsSet-products and sums.

They correspond to universal and existential quantification:

ΠI(S ⊆ J × I) = {j ∈ J | ∀i ∈ I. (j, i) ∈ S}

ΣI(S ⊆ J × I) = {j ∈ J | ∃i ∈ I. (j, i) ∈ S}

The Beck-Chevalley condition expresses the interaction between quantifica-

tion and substitution of terms for free variables. Namely, for u : J ′ → J and

S ⊆ J × I,

u−1(ΠI(S)) = u−1{j ∈ J | ∀i ∈ I. (j, i) ∈ S}

= {j′ ∈ J ′ | ∀i ∈ I. (uj′, i) ∈ S}

= {j′ ∈ J ′ | ∀i ∈ I. (j′, i) ∈ (u × I)−1S}

= ΠI((u × I)−1(S))

The following proposition shows how Cons -products are preserved by

1.4 Fibred structure, products and sums 67

change-of-base along a finite product preserving functor.

1.4.7. Proposition. Consider the following change-of-base situation:

Let A and B be categories with finite products and F a finite-product pre-

serving functor. If p admits ConsB-products, F ∗(p) admits ConsA-products,

and the above fibred 1-cell (p∗(F), F) preserves them.

Proof. Observe that for a cartesian projection πX,Y : X × Y → X, π
∗F ∗(p)
X,Y

∼=
π∗p

FX,FY and therefore π
∗F ∗(p)
X,Y � ΠFY . The Beck-Chevalley condition holds

trivially, since F preserves the relevant pullback squares. ✷

The notion of generic object is a key one in the interpretation of im-

predicative λ-calculi, as in §2.1.3. For instance, it allows us to interpret

higher-order impredicative quantification in terms of first-order quantifica-

tion. The notion of generic object is related to that of representability, as

given below.

1.4.8. Definition.

68 Preliminaries on fibrations

(i) For a category B, an object I determines a fibration, written domI :

B/I → B, with action J
f→ I �→ J on objects, being the identity on mor-

phisms. Cartesian liftings are obtained by composition.

(ii) A fibration
E
↓p

B
is representable if it is equivalent in Fib(B) to a fi-

bration of the form domI : B/I → B.

1.4.9. Remark. When a fibration is such that every fibre is discrete (i.e. a

set), we call it a discrete fibration, like domI in the definition above. Note

that the fibre (B/I)J = B(J, I). In view of the correspondence between

fibrations and indexed categories, a discrete fibration
E
↓p

B
corresponds to a

presheaf Fp : Bop → Set. In particular, domI corresponds to the representable

presheaf B(, I), which explains the term ‘representable’ for such fibrations.

Recall that a functor F : A → B is essentially surjective if for every

object Y of B, there is an object X in A such that FX ∼= Y . In particular,

an equivalence between categories is essentially surjective.

1.4.10. Definition.

(i) A fibration
E
↓p

B
has a generic object if there is a representable fibration

domΩ : B/Ω → B and an essentially surjective fibred functor ext : domΩ → p.

(ii) A fibration
E
↓p

B
has a strong generic object if the groupoid fibration

|p| : Cart(E) → B is representable.

1.4.11. Remarks.

1.4 Fibred structure, products and sums 69

• In elementary terms,
E
↓p

B
has a generic object if there is an object

G ∈ |E| such that for every X ∈ |E| there is a cartesian morphism

f : X → G. Given ext : domΩ → p, we can take G to be ext(1Ω) and

given any X ∈ |EI |, we have an object x : I → Ω such that X ∼= ext(x)

and hence there is cartesian morphism f : X ∼= ext(x)
ext(x)→ G, since

x : x → 1Ω is domΩ-cartesian and ext is a fibred functor.

• We refer to G itself as the generic object and write χX : I → Ω for the

underlying morphism pf , so that X ∼= χ∗
X(G) in the above situation.

Notice that χX with this property need not be unique.

• A representable fibration domΩ : B/Ω → B has 1Ω : Ω → Ω as a strong

generic object, as does any small fibration, as defined in §1.5 below.

• If
E
↓p

B
has a strong generic object, then it has a generic object: the in-

clusion J : |p| → p is essentially surjective. Thus, in elementary terms,

having a strong generic object G means that for any object X of EI

there is a unique χX : I → Ω such that X ∼= χ∗
X(G) in EI .

1.4.12. Examples.

• Let B be an elementary topos. The subobject fibration ı : Sub(B) → B

has a strong generic object, namely the subobject classifier true : 1 →

Ω: for any subobject m : X ′ ↪→ X there is a pullback

70 Preliminaries on fibrations

• For a category C, the family fibration f(C) has a generic object pre-

cisely when C has a small set of objects. In this case, the strong generic

object is {x}
x∈|C|.

The following result is standard.

1.4.13. Proposition. Let
E
↓p

B
be a discrete fibration. Let Fp : Bop → Set be

its associated presheaf. The following are equivalent

(i)
E
↓p

B
has a strong generic object.

(ii) Fp is representable.

(iii) E has a terminal object.

Proof: (i) ⇐⇒ (ii) is immediate.

(ii) ⇐⇒ (iii) Since the fibres of E are discrete, every morphism in E is carte-

sian. Let G be the terminal object of E. pG is a representing object for Fp,

since for any object X in EI , there is a unique cartesian morphism f : X → G,

and hence a unique χX = pf : I → pG such that X = χ∗
X(G) = (FpχX)(G).

Conversely, if Fp is representable, γ : Fp
∼= B(, Ω), γ−1(1Ω) is a terminal

object in E. ✷

1.5 Internal categories 71

1.5 Internal categories

We end our preliminaries on fibrations by introducing the basic notions of

internal categories, which give yet another way of dealing with variable cate-

gories. Although internal categories make sense independently of fibrations,

the description of some internal concepts is more conveniently expressed in

the fibred setting. Besides, it is possible to ‘externalise’ internal categories to

obtain a fibration, and every fibration can be internalised (under certain size

conditions) within a presheaf topos, as we show below. Internal categories

will not be used in this thesis, but they provide further insight into the way

fibrations may arise.

Throughout this subsection B is assumed to be a category with pull-

backs.

1.5.1. Definition (Internal category, functor, natural transformation).

(i) An internal category C in B is given by the following data:

• an object of objects C0 ∈ |B|;

• an object of arrows C1 ∈ |B|;

• domain and codomain morphisms δ0, δ1 : C1 → C0 respectively;

• an identity morphism i : C0 → C1 such that

δ0 ◦ i = 1C0 = δ1 ◦ i

72 Preliminaries on fibrations

• a composition morphism c : C2 → C1 satisfying

δ0 ◦ c = δ0 ◦ π0 : C2 → C0

δ1 ◦ c = δ1 ◦ π1 : C2 → C0

c ◦ (i ×
1,δ0

1C1) = π1 : C0 ×
1,δ0

C1 → C1

c ◦ (1C1 ×
δ1,1

i) = π0 : C1 ×
δ1,1

C0 → C1)

c ◦ (c ×
δ1,π1,δ0

1C1 = c ◦ (1C1 ×
δ1,π1,δ0

c) : C3 → C1

where

(ii) An internal functor F between two internal categories C and C ′

consists of a pair of morphisms F0 : C0 → C ′
0 and F1 : C1 → C ′

1 in B

satisfying

F0 ◦ δ0 = δ′0 ◦ F1

F0 ◦ δ1 = δ′1 ◦ F1

F1 ◦ i = i′ ◦ F0

F1 ◦ c = c′ ◦ (F1 ×
δ1,δ0

F1)

1.5 Internal categories 73

(iii) An internal natural transformation σ : F ·→G between internal func-

tors is a morphism σ : C0 → C ′
1 such that

The definitions above give the defining data for the 2-category Cat(B)

of internal categories in B. Note that Cat(Set) = Cat that is, an internal

category in Set is simply a small category, the correspondence extending to

internal functors and internal natural transformations. Next, we consider

some structure pertinent to internal categories.

Let B be cartesian closed. For C ∈ Cat(B) and A ∈ |B| we have an

internal category CA = (CA
0 , CA

1 , δA
0 , δA

1 , iA, cA), since ()A : C → C is a right

adjoint, it preserves the relevant pullbacks in the definition of an internal

category; it maps internal categories to internal categories. There is an ob-

vious internal diagonal functor ∆ : C → CA, given by the adjoint transposes

of the projections π : Ci × A → Ci (i = 0, 1). The following definition is

taken from [Jac91a, §1.5, 1.5.4].

1.5.2. Definition. C admits internal ConsA-products (respectively sums)

if ∆ : C → CA has an internal right (respectively left) adjoint. Internal

74 Preliminaries on fibrations

ConsB-products/ sums are given by internal ConsA-products/sums for ev-

ery A ∈ |B|.

Further structure, such as an internal category having finite products

and exponents, an internal ccc, are expressed by rephrasing the definitions

for ordinary categories; we just couch them in terms of the 2-category Cat(B)

instead of Cat.

Now we show how to obtain a fibration from an internal category by a

process of externalisation. A fibration obtained in this way is called small.

1.5.3. Definition (Externalisation).

Given an internal category C ∈ Cat(B), let Σ(C) be the cate-

gory with objects (A, X), where A ∈ |B| and X : A → C0, and

morphisms (u, f) : (A, X) → (B, Y) where u : A → B in B and

f : A → C1 satisfying δ0 ◦ f = X and δ1 ◦ f = Y ◦ u. Composi-

tion and identities in Σ(C) are defined from those of B and the

internal ones of C, The first projection [C] : Σ(C) → B is a split

fibration, with cleavage given by composition.

• For F : C → D in Cat(B), [F] : Σ(C) → Σ(D) is given by

(A, X) �→ (A, F0 ◦X) and (u, f) �→ (u, F1 ◦ f).

• For σ : F ·→G in Cat(B), [σ] : [F] ·→ [G] has components [σ](A,X) =

(1A, σ ◦X).

1.5 Internal categories 75

With the above definitions we get a (2-)full and faithful externalisation 2-

functor [] : Cat(B) → Fib(B). Such a functor gives a correspondence between

internal and fibred 2-categorical concepts, such as those of adjunction and

comonad for instance.

Finally, we quote another standard result, [Jac91a, Proposition 1.4.8],

which shows that a fibration can be turned into an internal category.

1.5.4. Proposition (Internalisation). Let
E
↓p

B
be a split fibration, where

B is locally small and all fibres are small. Then there is an internal category

p̄ in SetB
op

and a change-of-base situation

where Y is the Yoneda embedding. H is full and faithful. Furthermore,

p is a split fibred ccc iff p̄ is an internal ccc.

76 Preliminaries on fibrations

Chapter 2

Preliminaries on categorical
logic

This chapter continues the review of preliminary material. We review the

categorical interpretation of some type theories which we consider in sub-

sequent chapters. Specifically, we review the interpretation of simply typed

λ-calculus and first-order intuitionistic logic in §2.1.1 and §2.1.2 respectively,

since we will require them for the categorical account of logical predicates

in §4. We also recall the interpretation of polymorphic λ-calculi, used in §6,

where we will consider indeterminate elements for the corresponding fibra-

tions.

In §2.2 we recall the definition of logical predicates for applicative struc-

tures. The latter are used to give a set-theoretic semantics to simply typed

λ-calculus.

In §2.3 we show two simple properties about reflective and coreflective

categories, concerning cartesian closure. These are applied in §4.3 to analyse

78 Preliminaries on categorical logic

cartesian closed structure in some examples.

2.1 Review of propositional and first-order

categorical logic

Categorical logic interprets logics in categories, providing a syntax-free de-

scription We recall the basic facts. We review the interpretation of intu-

itionistic propositional calculus, whose proof-language is the simply typed

λ-calculus, and of first-order intuitionistic predicate logic. [LS86] is the basic

reference for the former, while for the latter we follow Lawvere’s approach

[Law70, See83]. With regard to their categorical interpretation, the intuition

is that propositions correspond to objects, proofs, or rather proof terms,

to morphisms, and the logical connectives conjunction and implication to

products and exponentials respectively. As for predicate logic, predicates are

indexed propositions and hence objects of a fibred category. In this context,

quantifiers are interpreted as adjoints to appropriate reindexing functors.

Summing up, for the propositional calculus we need cartesian closed cat-

egories while for the predicate calculus we need fibrations with structure,

called first-order hyperdoctrines as in [Pit91].

We use a type theoretic formulation of these logics, according to the

proposition-as-types paradigm. We present them as type systems, giving the

inference rules for the derivation of the corresponding judgements. In both

systems, the disjunctive part, {∨,⊥}, is left out for simplicity. It can be

handled dually to {∧,&}, using binary coproducts + and an initial object 0.

2.1 Review of propositional and first-order categorical logic 79

We also recall the categorical interpretation of polymorphic lambda cal-

culi, following [Jac91a]. These calculi extend the simply typed one by al-

lowing type variables. These variables index the types and terms in which

they occur. A categorical setting to interpret these calculi is a fibration with

structure.

2.1.1 Intuitionistic propositional calculus - Simply typed
λ-calculus

Within the proposition-as-types approach, propositions correspond to types.

Proofs of a given proposition from a given set of hypotheses correspond to

terms of the respective type, relative to a context corresponding to the hy-

potheses.

The calculus has three kinds of judgements:

P Prop Γ ' t : P Γ ' t = t′ : P

which respectively assert that P is a proposition, t is a proof-term of propo-

sition P in context Γ and that t and t′ are equal proofs of the same propo-

sition, in the same context. A context is a finite assignment of propositions

to variables [x1 : P1, . . . , xn : Pn], where all the xi’s are different. Γ in the

judgements above provides types for the free variables occurring in the terms

t and t′. We regard ' as entailment: the Pi’s are the assumptions and P is

the conclusion of the sequent. The empty context is omitted from the lhs of

'.

There are three groups of inference rules, corresponding to the three

80 Preliminaries on categorical logic

kinds of judgements above. The first group deals with the formation of propo-

sitions; it ensures that the set of propositions contains a ‘true’ proposition

(unit type) and is closed under conjunction (binary product type constructor)

and implication (arrow type constructor):

P Prop Q Prop P Prop Q Prop

& Prop P ×Q Prop P −→ Q Prop

The second group deals with the formation of terms for structured proposi-

tions

Γ '!Γ : &
Γ ' t : P Γ ' t′ : Q Γ ' t : P ×Q Γ ' t : P ×Q
Γ ' 〈t, t′〉 : P ×Q Γ ' πt : P Γ ' π′t : Q

Γ, x : P ' t : Q Γ ' t : P −→ Q Γ ' t′ : P

Γ ' λx : P.t : P −→ Q Γ ' tt′ : Q

The third group deals with equality of terms of structured propositions

Γ ' t : &
Γ '!Γ : &

Γ ' t : P ×Q Γ ' t : P Γ ' t′ : Q Γ ' t : P Γ ' t′ : Q

Γ ' t = 〈πt, π′t〉 : P ×Q Γ ' π〈t, t′〉 = t : P Γ ' π′〈t, t′〉 = t′ : Q

Γ, x : P ' t : Q Γ ' t : P −→ Q

Γ, x : P ' (λx : P.t)x = t : Q Γ ' (λx : P.tx) = t : P −→ Q

A judgement which can be obtained using the inference rules is called deriv-

able. The interpretation of this system in a cartesian closed category C goes

as follows:

2.1 Review of propositional and first-order categorical logic 81

Derivable judgement Interpretation in C

P Prop [[P]] ∈ |C|

Γ ' t : P [[t]] : [[Γ]] → [[P]]

Γ ' t = t′ : P [[t]] = [[t′]]

and Γ = [x1 : P1, . . . , xn : Pn] is interpreted as [[Γ]] = [[P1]] × . . . × [[Pn]]. We

outline the interpretation of several inference rules:

• The formation rules for propositions are interpreted by:

& Prop �→ 1(terminal object)

P ×Q �→ [[P]] × [[Q]]

P −→ Q �→ [[P]] ⇒ [[Q]]

• The formation rules for terms are interpreted using the hom-set iso-

morphisms of the relevant adjunctions, e.g.

Γ, x : P ' t : Q [[Γ]] × [[P]]
[[t]]→ [[Q]]�→

Γ ' λx : P.t : P → Q [[Γ]]
Λ([[t]])−→ [[P]] ⇒ [[Q]]

where Λ : C(A × B, C) ∼→ C(A, B ⇒ C) is the isomorphism of the

exponential adjunction.

• The equalities between terms are seen to hold for their interpretations,

using the pertinent adjunction laws. This means that the interpretation

in a cartesian closed category C is sound with respect to the equational

theory of the calculus.

82 Preliminaries on categorical logic

A few examples of cartesian closed categories occur in §4.3.

2.1.2 First-order intuitionistic predicate calculus

In the previous calculus there were two main kinds of entities involved: propo-

sitions (or types) and terms. The language of the predicate calculus has three

kinds of entities: types, predicates and terms. More specifically, we have the

following kinds of judgements: the first three correspond to a many-sorted

algebraic theory T

T Type Θ ' t : T Θ ' t = t′ : T

where Type is closed under finite products, just like Prop in intuitionistic

propositional calculus. In addition, we have the following judgements, corre-

sponding to an intuitionistic predicate logic over the given algebraic theory

(predicates ≡ indexed propositions relative to a context)

Θ ' P Prop Θ|Γ ' p : P Θ|Γ ' p = p′ : P

Γ in the judgements above is a context of propositions [x1 : P1, . . . , xn :

Pn], each one relative to context Θ, i.e. Θ ' Pi Prop. Thus for a type A,

if [x : A] ' P Prop then P is simply a predicate with a (potentially) free

variable of type A. Sometimes we write P (x) to emphasise the dependence

of P on x. P [x := t], sometimes written P (t), denotes the substitution of

the term t for x in P .

The inference rules come in three groups. The first group deals with

the algebraic theory T ; the rules assert that the class of types is closed

2.1 Review of propositional and first-order categorical logic 83

under finite products and provide the corresponding pairing and projec-

tion operations with their associated equations, as done for simply typed

λ-calculus. Thus, a function symbol f with arity T1, . . . , Tn, T is a term

[x1 : T1, . . . , xn : Tn] ' f : T . We may write f(x1, . . . , xn) for f to empha-

sise the dependence on the free variables. The second group of rules deals

with predicates and proofs relative to a context. They form an intuitionistic

propositional calculus and thus we have the same rules as in §2.1.1 with a

type context Θ| prefixed everywhere, e.g.

Θ|Γ, x : P ' p : Q

Θ|Γ ' λx : P.p : P −→ Q

Θ|Γ ' p : P −→ Q Θ|Γ ' p′ : P

Θ|Γ ' pp′ : Q

The third group accounts for the interaction between the theory T and the

predicates. This involves substitution and quantification. For substitution

we have

Θ ' t : T [x : T] ' P Prop

Θ ' P [x := t]Prop

plus rules which express the fact that substitution preserves the propositional

connectives and proofs. The formation rules for quantified predicates are

Θ, x : T ' P Prop Θ, x : T ' P Prop
Θ ' ∀x : T.P Prop Θ ' ∃x : T.P Prop

The rules handling proofs of such quantified predicates are easily given in

‘adjoint’ style: we have the following bidirectional rules

84 Preliminaries on categorical logic

Θ, x : T |Γ ' p : P

Θ|Γ ' Λx : T.p : ∀x : T.P

Θ, x : T |Γ, h : P ' p : Q

Θ|Γ, h′ : ∃x : T.P ' p[〈x, h〉 := h′]Q

The rule for ∃ uses a pseudo-substitution notation for the elimination which

should not be confused with the usual one for substitution of terms for vari-

ables. The associated equations between proof-terms of quantified formulae

are such that the above rules yield bijections between the corresponding sets

of proof-terms.

For the categorical interpretation of this calculus we need a category B

with finite products to interpret T (types ≡ objects, terms ≡ morphisms), in

the same way as with simply typed λ-calculus in a cartesian closed category.

As for predicates, for each context Θ, which corresponds to an object A of B,

we need a cartesian closed category HA to interpret predicates (Θ ' P Prop)

and proofs (Θ | Γ ' p : P) in such context as objects and morphisms respec-

tively, as in §2.1.1. Furthermore, we need for every term in T , corresponding

to a morphism t : C → D in B, a substitution functor t∗ : HD → HC which

preserves the cartesian closed structure. Finally, the ‘adjoint’ style formu-

lation of the rules for ∀ and ∃ suggest that quantifiers must be interpreted

by functors adjoint to substitution along projections. If Θ, x : T ' P Prop,

Θ ' ∀x : T.P is interpreted as ΠT ([[P]]). Here π∗
A,[[T]] � ΠT : HA×[[T]] → HA.

Dually Θ ' ∃x : T.P is interpreted as ΣT (P), with ΣT � π∗
A,[[T]]. As we

mentioned in Example 1.4.6.(iii), the interaction between substitution and

quantification imply that such right and left adjoints have to satisfy Beck-

2.1 Review of propositional and first-order categorical logic 85

Chevalley conditions. Hence, universal and existential quantifiers correspond

to ConsB-products and sums respectively.

The substitution functors give rise then to a B-indexed category, which

we can turn into a fibration over B as shown in §1.3. To sum up, the structure

needed to interpret first-order intuitionistic predicate calculus, or rather, the

fragment of it we have presented, is the following

2.1.1. Definition. A first-order hyperdoctrine is a fibred-ccc p : H → B,

where B has finite products, which has ConsB-products and sums.

This definition is a fibred reformulation of Lawvere’s hyperdoctrines

[Law70], tailored to model first-order rather than higher-order predicate cal-

culus.

2.1.2. Example (Classical set-theoretic models). We have seen in Ex-

amples 1.4.3.(iii) and 1.4.6.(iii) that the fibration ı : Sub(Set) → Set is a

first-order hyperdoctrine. The interpretation of first-order intuitionistic logic

in it is the classical one: types are sets, terms are functions, predicates are

subsets, and connectives and quantifiers have their usual set-theoretic mean-

ing.

Further examples occur in §4.3.

[Pav90] gives a thorough account of higher-order constructive predicate

logic in terms of fibrations.

86 Preliminaries on categorical logic

2.1.3 Polymorphic lambda calculi

We review the categorical interpretation of impredicative polymorphic lambda

calculi. These calculi generalise the simply typed one by allowing type vari-

ables. In addition, type variables may be quantified. They provide a basis

for polymorphic programming languages, like ML [MTH90]. We recall three

systems: λ →, λ2 and λω. In these calculi there are three sorts of entities:

kinds κ, types τ and terms t. There is a distinguished kind Ω which classifies

types. Types in turn classify terms, as in simply typed λ-calculus. There

are two levels of contexts: Θ = [X1 : κ1, . . . , Xn : κn] for kind variables and

Γ = [x1 : τ1, . . . , xn : τn] for term variables.

The judgements areκ Kind

κ Kind Θ ' τ : κ Θ | Γ ' t : τ
Θ ' τ = τ ′ : κ Θ | Γ ' t = t′ : τ

In Θ|Γ ' . . . , the types in Γ must be defined with respect to Θ i.e. if xi : τi is

in Γ, then Θ ' τi : Ω. Instead of giving the whole set of rules for the calculi,

we mention their salient features and illustrate them with representative

instances of the rules. A detailed presentation is in [PDM89, Jac91a].

λ → : Ω is the only kind. The judgements Θ ' τ : Ω and Θ ' τ = τ ′ : Ω,

which introduce types and equate them respectively, correspond to a

single-sorted algebraic theory. Ω is closed under finite products and

exponentials, like Prop in 2.1.1. ' τ : Ω are (given) closed types. For

instance, we have the following derivable judgement

X; Ω, Y : Ω ' X −→ U : Ω

2.1 Review of propositional and first-order categorical logic 87

for type variables X and Y .

For every kind context Θ, judgements Θ|Γ ' t : τ and Θ|Γ ' t =

t′ : τ correspond to a simply typed λ-calculus, with the type variables

declared in Θ among the types, in addition to the closed types, e.g.

X : Ω|y : X, x : X ' x : X

X : Ω|y : X ' λx : X.x : X

There is a substitution of types for type variables in both types and

term, i.e.

Θ ' τ : Ω X : Ω|x : X ' t : τ ′

Θ|x : τ ' t[X := τ] : τ ′[X := τ]

A term X : Ω|Γ ' t : τ is polymorphic, since it can instantiated at every

type ' τ : Ω.

λ2 : Also known as system F [Gir86]. It extends λ → by allowing quantifi-

cation on types:

Θ, X : Ω ' τ : Ω

Ω ' ΠX : Ω.τ : Ω

At the term level, there is type abstraction:

Θ, X : Ω|Γ ' t : τ

Θ|Γ ' ΛX : Ω.t : ΠX : Ω.τ

where it is implicit that X does not occur free in the types of Γ. The

term ΛX : Ω.t is explicitly polymorphic: it can be applied to (instan-

tiated at) different types, e.g.

Θ|Γ ' ΛX : Ω.t : ΠX : Ω.X → X Θ ' τ : Ω

Θ|Γ ' ((ΛX : Ω.t)(τ −→ τ))((ΛX : Ω.t)τ) : τ → τ

There are β and η rules for type abstraction and application.

88 Preliminaries on categorical logic

λω : Extends λ2 by closing Kind under finite products and exponentials. So,

kinds and kind terms Θ ' τ : κ (which include the types) form a simply

typed λ-calculus, e.g.

Θ, X : κ ' τ : κ′

Θ ' λX : κ.τ : κ −→ κ′

Now, Ω is closed under quantification over all kinds:

Θ, X : κ ' τ : Ω

Θ ' ΠX : κ.τ : Ω

and there is kind abstraction and application for terms, with β, η rules.

See [PDM89] for programming examples in the above calculi. These

calculi are also logical systems: just as simply typed λ-calculus is the proof

language of intuitionistic propositional logic, λ2 and λω are the proof lan-

guages of second and higher-order intuitionistic propositional logic [Gir86].

Ω is then the kind of proposition, closed under impredicative quantification.

Categorically, the above calculi are interpreted in fibrations with struc-

ture. We follow [Jac91a, §3.3.2]. Kinds κ correspond to objects [[κ]] in the

base category of a fibration
E
↓p

B
. B has a distinguished object Ω, which in-

terprets the kind Ω, and has finite products. Types and terms in context

Θ = [X1 : κ1, . . . , Xn : κn] correspond to objects and morphisms respec-

tively of a cartesian closed category E[[Θ]]. This ccc is the fibre of p over the

object [[Θ]] = [κ1]] × · · · × [[κn]]. The type X : Ω ' X : Ω is generic, in the

sense that every type Θ ' τ : Ω is obtained from it by substitution. Hence

X : Ω ' X : Ω must be an object G in EΩ, which is a generic object for

2.1 Review of propositional and first-order categorical logic 89

p, as in Definition 1.4.10. Thus, every type Θ ' τ : Ω determines a ‘clas-

sifying’ morphism *T + : [[Θ]] → Ω in B such that [[T]] � *T +∗(G) in E[[Θ]].

The reindexing functor *T + : EΩ → E[[Θ]] performs type substitution in the

types X : Ω ' τ : Ω and terms X : Ω|Γt : τ , which have a type variable

X. So, reindexing functors preserve cartesian closed structure. Type quan-

tification Θ, X : κ ' τ : Ω �→ Θ ' ΠX : κ.τ : Ω is interpreted by a functor

Π : E[[Θ]]×[[κ]] → E[[Θ]] such that π∗
[[Θ]],[[κ]] � Π. Type abstraction and applica-

tion are then interpreted using the hom-set isomorphisms of this adjunction,

analogously to exponentials in simply typed λ-calculus. For a proper inter-

action of quantification and substitution, the functors Π must satisfy the

Beck-Chevalley condition.

2.1.3. Definition.

(i) A λ → fibration is a fibred-ccc
E
↓p

B
with a generic object G and B

has finite products.

(ii) A λ2-fibration is a λ →-fibration with ConsΩ-products, where Ω =

pG.

(iii) A λω-fibration is a λ →-fibration, with B cartesian closed and which

has ConsB-products.

2.1.4. Example. Let C be a small cartesian closed category.

• f(C) : Fam(C) → Set is a λ →-fibration. The cartesian closed struc-

ture in every fibre is given pointwise. Closed types correspond to ob-

90 Preliminaries on categorical logic

jects of (Fam(C)){∗} ∼= C. Ω = |C| and T = {X}
X∈|C|.

• If C is complete, f(C) is a λω-fibration, see Example 1.4.6.(i). By

an argument of Freyd [Mac71, §V.2, Proposition 3] C must be a pre-

order. Hence every ‘type’ has at most one element. Remarkably, there

are internal complete categories in realisability toposes which are not

preorders [Hyl89, Pho92].

2.2 Logical predicates over applicative struc-

tures

The material in this section is from [Mit90]. Applicative structures – satis-

fying some conditions – provide a general notion of set-theoretic model for

a simply typed λ-calculus. Let Σ be an algebraic signature providing basic

types and terms for simply typed λ-calculus.

2.2.1. Definition. A typed applicative structure A for signature Σ is a

tuple

〈{Aσ}, {Appσ,τ},Const〉

of families of sets and functions indexed by type expressions σ, τ over the

type constants from Σ, such that

• Aσ is a set.

• Appσ,τ is a set-theoretic map Appσ,τ : Aσ−→τ → (Aσ ⇒ Aτ).

2.2 Logical predicates over applicative structures 91

• Const is a mapping from term constants of Σ to elements of the ap-

propriate Aσ’s, i.e. Const(c) ∈ Aσ for every c : σ in Σ.

If we want to consider ×-types, we may add an explicit interpretation for

them, or simply assume they are interpreted as the cartesian product of the

carriers of the corresponding types. An applicative structure is extensional

if it satisfies the condition

∀f, g ∈ Aσ−→τ .(∀d ∈ Aσ. Appσ,τfd = Appσ,τgd) =⇒ f = g

An environment model is an extensional applicative structure which can

interpret all the terms of λ-calculus over Σ according to the obvious mean-

ing function defined by structural induction on terms. Specifically, given a

context Γ — a finite mapping of variables to type expressions over Σ — an

environment ρ for it assigns to every x : σ in Γ an element of Aσ. Define

ρ |= Γ =� ∀x : σ ∈ Γ.ρ(x) ∈ Aσ

If ρ |= Γ,A[[Γ ' t : σ]]ρ denotes the A-value, in Aσ, of the term t of type σ

in environment ρ. The interpretation of a lambda abstraction

[[Γ ' λx : σ.t : σ −→ τ]]ρ

is the unique f ∈ Aσ−→τ such that

∀a ∈ Aσ. Appσ,τfa = [[Γ, x : σ ' t : τ]]ρ[a/x]

where ρ[a/x] is the environment ρ extended by the assignment x �→ a. The

environment model condition requires the existence of such f , whose unique-

ness is guaranteed by extensionality. When Aσ−→τ
∼= Aσ ⇒ Aτ we refer to

92 Preliminaries on categorical logic

the model as a full type hierarchy ; the environment model condition is satis-

fied in this case.

2.2.2. Remark. There is a relation between environment models for simply

typed λ-calculus and cartesian closed categories. For simplicity of presenta-

tion, we identify a type σ with the object which interprets it in a ccc, as in

§2.1.1

• A ccc C gives rise to an applicative structureA : Aσ = C(1, σ), Appσ,τ =

C(1, evσ,τ ◦ 〈 , 〉) : C(1, σ ⇒ τ)× C(1, σ) → C(1, τ), with the interpre-

tations of constants as given for C, e.g. a constant C : σ is interpreted

in C as a morphism c : 1 → σ ∈ Aσ. This structure is extensional

when C(1,) : C → Set is faithful. The environment model condi-

tion is satisfied because, given an environment ρ, the interpretation

A[[Γ ' t : σ]]ρ is obtained from that in C as [[Γ ' t : σ]] ◦ ρΓ. Here, for

Γ = [x1 : τ1, . . . , xn : τn], ρΓ ∈ C(1, τ1 × . . . τn) is obtained by tupling

the ρ(xi).

• An environment model A, which interprets ×-types, generates a carte-

sian closed category C as follows: its objects are the types σ and

C(σ, τ) = {f : Aσ → Aτ ∈ Set|∃t.x : σ ' t : τ and

f(a) = [[x : σ ' t : τ]][a/x]}

That is, we consider only those functions definable by terms of the

calculus. The cartesian closed structure is easily obtained using the

operations of the calculus on the terms defining the morphisms. The

2.2 Logical predicates over applicative structures 93

restriction to definable functions is not necessary for full type hierar-

chies, which are sub-ccc’s of Set.

Full details of the above relationship between the two notions of models for

simply typed λ-calculus and generalisations to weaker calculi are given in

[Mar92]. See also [Jac91b], where this relationship is extended to second-

order λ-calculus.

We now recall the definition of a logical predicate over an applicative

structure, as given in [Mit90].

2.2.3. Definition. Let A = 〈{Aσ}, {Appσ,τ},Const〉 be an applicative

structure for signature Σ. A logical predicate P = {Pσ} over A is a family of

predicates indexed by type expressions over Σ such that

• Pσ ⊆ Aσ

• for all f ∈ Aσ−→τPσ−→τ (f) iff ∀x ∈ Aσ. Pσ(x) =⇒ Pτ (Appσ,τfx)

• Pσ(Const(c)) for every constant c : σ in Σ.

If we consider ×-types, we should add the following condition: for all z ∈

Aσ×τ ,

Pσ×τ (z) iff Pσ(πσ,τ (z)) ∧ Pτ (π
′
σ,τ (z))

where πσ,τ : Aσ×τ → Aσ, π
′
σ,τ : Aσ×τ → A denote the corresponding projec-

tions for the ×-type.

94 Preliminaries on categorical logic

The notion of n-ary logical relation over n applicative structures corre-

sponds then to a logical predicate over the product of the structures, which

is again an applicative structure with the evident componentwise operations

and interpretations of constants.

For an A-environment ρ and a logical predicate P over A, we define

P(ρ) =� ∀x : σ ∈ dom(rho). Pσ(ρ(x))

On the presence of ×-types, if dom(ρ) = x1 : τ1, . . . , xn : τn,P(ρ) amounts

to Pτ1×···×τn(ρ(x1), . . . , ρ(xn)).

2.2.4. Lemma (Basic Lemma, for models). Let A be an environment model

for Σ and P be a logical predicate over A. For all A-environments ρ and

Σ-typing contexts Γ, if ρ |= Γ then

P(ρ) =⇒ Pσ(A[[Γ ' t : σ]]ρ)

for every term Γ ' t : σ.

For a closed term ' t : σ, the above lemma implies that Pσ(t) holds. The

Basic Lemma is the fundamental property of logical predicates, which makes

them a useful technical tool in proving properties about terms of simply

typed λ-calculus. Given a property Q on terms, e.g. Q(t) = t is strongly

normalising, if we want to prove that it holds for every term, we just have to

find suitable logical predicate P which entails Q; the desired result follows

then from the Basic Lemma.

This situation is similar to the usual method of proving properties about

the natural numbers by induction, where we must find a suitable inductive

2.3 Reflective and coreflective cartesian closed categories 95

property which entails the desired one. For a precise analogy between logical

predicates and induction, see §4.2 and §4.5.

Several applications of logical predicates are in [Mit90], including the

following ones:

• extensional collapse of an applicative structure by a logical partial

equivalence relation, i.e. symmetric and transitive on every type, which

yields an extensional applicative structure.

• proofs of normalisation and confluence properties for λ-calculus,

• representation independence results for simply typed programming lan-

guages, stating that programs do not depend on the way data types

are represented but only on the behaviour of data types with respect

to the operations provided. This is formulated by requiring that if two

interpretations A and B of the language are related in a ‘certain way’,

then the meanings A[[' p : σ]] and B[[' p : σ]] of a program, i.e. a

closed term, ' p : σ are also related in the same ‘certain way’. The

precise way in which the interpretations must be related is via logical

relations, which guarantee the desired property by the Basic Lemma.

2.3 Reflective and coreflective cartesian closed

categories

We conclude our prelimary material with two propositions which allow to

infer cartesian closed structure for reflective and coreflective categories. We

96 Preliminaries on categorical logic

will apply these propositions in §4.3 to infer the cartesian closure of some

categories in the context of logical predicates.

2.3.1. Proposition. Given a coreflection of categories with finite prod-

ucts

where J is a full and faithful finite-product preserving functor, if D is carte-

sian closed, so is C.

Proof. For X, Y ∈ |C|, let

X ⇒C Y =� G(JX ⇒D JY)

where we use superscripts to differentiate between exponentials in C and D.

Then,

C(Z, X ⇒C Y) ∼= C(Z, G(JX ⇒D JY))

∼= D(JZ, JX ⇒D JY)

∼= D(JZ ×D JX, JY)

∼= D(J(Z ×C X), JY)

since J preserves products

∼= C(Z ×C X, Y)

since J is full and faithful ✷

2.3 Reflective and coreflective cartesian closed categories 97

2.3.2. Proposition. Let

be a reflection, i.e. J is full and faithful, with (⇒D ◦J × Jop) a natural

isomorphism. If D is cartesian closed, so is C.

Proof. Let X ⇒C Y =� L(JX ⇒D JY). For a brief argument, observe

J(X ⇒C Y) = JL(JX ⇒D JY)

∼= JX ⇒D JY

where the isomorphism is obtained using η(⇒D ◦J × Jop)(X,Y). This is the

hypothesis of Lemma 4 of [Ehr89], which yields the desired conclusion. A

direct calculation is just as simple and we leave it to the reader. ✷

2.3.3. Remark. The hypothesis of Proposition 3.3.11 means that the reflec-

tion does not affect exponential objects of the form JX ⇒D JY . Indeed we

could extend the above proposition to show that C is an exponential ideal of

D, meaning that for objects X, Y ∈ |D| if Y is in C, so is X ⇒D Y . This ap-

plies to categories of sets with structure, where the structure on exponentials

is given pointwise.

98 Preliminaries on categorical logic

Chapter 3

Fibred adjunctions and change
of base

In this chapter we examine the relationship between change-of-base and fi-

bred adjunctions. The main result, Theorem 3.2.3, shows that by performing

change-of-base along a left adjoint functor we can factorise a fibred adjunc-

tion into a standard adjunction in Cat and a vertical fibred adjunction. Such a

factorisation has two immediate important corollaries: Corollary 3.3.6, which

characterises fibred limits for a fibration in terms of limits for its total and

base categories and Corollary 3.3.11, which proves the Cartesian closed prop-

erty of the total category of a fibred-ccc with products. This second corollary

will be applied in §4.2 to give a category-theoretic account of logical pred-

icates for the simply typed λ-calculus. A further important application of

Theorem 3.2.3 occurs in §5, in the construction of the Kieisli fibration of a

comonad in Fib.

In order to prove the abovementioned result we present in the first

100 Fibred adjunctions and change of base

section several properties of change-of-base, which essentially rephrase the

elementary formulation of cartesian morphisms in terms of 2-cells. These

properties allow us to deal with adjunctions in an algebraic way, using the

2-categorical definition 1.1.3. Not only does this give an elegant proof but it

also shows that the argument can be carried over to fibred 2-categories. See

§7 for further considerations on this topic.

3.1 Change-of-base and 2-categorical struc-

ture

In this section we collect together some 2-categorical aspects of the change-

of-base construction. First, there is a change-of-base 2-functor induced by a

[Jac91a, Lemma 1.1.7].

3.1.1. Lemma. Every functor K : B → A induces a change-of-base 2-functor

K∗ : Fib(A) → Fib(B), which preserves finite products.

This 2-functor restricts to K∗ : Fibsp(A) → Fibsp(B).

3.1 Change-of-base and 2-categorical structure 101

The following lemma expresses the cartesian-lifting property of fibra-

tions in terms of 2-cells (i.e. natural transformations). The first item is

[Jac91a, Lemma 1.1.8].

3.1.2. Lemma.

(i) Given
D
↓q

A
and a natural transformation (σ : K ·→ L) : B → A.

There is B-fibred 1-cell 〈σ〉q : L∗(q) → K∗(q) and a 2-cell σ′
q : qast(K) ◦

〈σ〉q ⇒ q∗(L),

such that (σ′
q, σ) : (q∗(K) ◦ 〈σ〉, K) ⇒ (q∗(L), L) : L∗(q) → q is a fibred

2-cell and σ′
q has cartesian components.

(ii) Given
E
↓p

B
and

D
↓q

A
, a natural transformation σ : K ·→ L : B → A

and two 1-cells (K̃, K), (L̃, L) : p → q in Cat→, change-of-base induces a

one-to-one correspondence between vertical 2-cells (that is, 2-cells in Cat/B)

σ̂ : K̂ ⇒ 〈σ〉q ◦ L̂ : p → K∗(q)

and 2-cells (σ̃, σ) : (K̃, K) ⇒ (L̃, L) : p → q.

102 Fibred adjunctions and change of base

Proof. During the proof we omit the subscripts q to simplify notation.

(i) For X ∈ |L∗(D)|, σ′
X is the unique morphism f such that q∗(L)f =

σL∗(q)X
q(q∗(L)X) and 〈σ〉qX is the unique object Y of K∗(D) such that

q∗(K)Y = σ∗q
L∗(q)X(q∗(L)X); the morphism part of 〈σ〉q is similarly deter-

mined by the universal property of cartesian morphisms. 〈σ〉p preserves

Cartesian morphisms by Proposition 1.2.3.

(ii) By (i), we get σ′ : q∗(K) ◦ 〈σ〉 ⇒ q∗(L). So, given σ̂ : K̂ ⇒ 〈σ〉 ◦ L̂,

we get σ̃ : K̃ ⇒ L̃ over σ by composition:

σ̃ = σ′L̂ ◦ q∗(K)σ̂

Conversely, given σ̃ : K̃ ⇒ L̃, we get σ̂ : K̂ ⇒ 〈σ〉 ◦ L̂ as follows: σ′ is

cartesian over σ and therefore, for X ∈ |E| we have

3.1 Change-of-base and 2-categorical structure 103

σ̂X : K̂X → 〈σ〉L̂X is the unique morphism in K∗(D) such that

q∗(K)σ̂X = φσ̃X

K∗(q)σ̂X = 1pX

obtained using the 2-dimensional property of pullbacks in Cat, see §1.1. Nat-

urality of σ̂ follows readily from the universality of Cartesian liftings. The

constructions of σ̂ and σ̃ are mutually inverse. ✷

We say that σ̂ above is obtained by factoring σ̃ through σ. We call the

2-cell (σ′, σ) in (i) a cartesian fibred 2-cell . The notation σ̂, 〈σ〉q and σ′
q will

be used in q the remaining of the thesis.

3.1.3. Remark. Statement (i) above asserts the existence of a cartesian

lifting for natural transformations. (ii) asserts its universal property.

104 Fibred adjunctions and change of base

Using Lemma 3.1.2 we obtain the following condition for a functor

F : p → q in Cat/B, p, q fibrations over B, to be a B-fibred 1-cell. First

we need an auxiliary definition.

3.1.4. Definition. Given fibrations p : E → B and q : D → B, F : p → q

and a natural transformation σ : K ·→ H : A → B let 〈σ〉p : H∗(p) → K∗(p)

and σ′ : p∗(K) ◦ 〈σ〉p ⇒ p∗(H) be the fibred 1-cell and 2-cell obtained by

applying Lemma 3.1.2.(i) to σ and p. Similarly, let 〈σ〉q : H∗(q) → K∗(q)

and σ′
q : q∗(K)◦〈σ〉q ⇒ q∗(H) be the corresponding ones for σ with q. Then,

considering

Fσ′
p : q∗(K) ◦K∗(F) ◦ 〈σ〉p ⇒ F ◦ p∗(H)(= q∗(H) ◦ H∗(F))

we have a 2-cell

(Fσ′
p, σ) : (q∗(K) ◦K∗(F) ◦ 〈σ〉pK, K) ⇒ (q∗(H) ◦ H∗(F), H)

in Cat→, which induces by Lemma 3.1.2.(ii) a vertical 1-cell

φF
σ : K∗(F) ◦ 〈σ〉p ⇒ 〈σ〉q ◦H∗(F)

φF
σ is the canonical comparison 2-cell .

From the proof of Lemma 3.1.2.(ii), the component at an object (I, X) ∈

|A ×
K,q

E| of the canonical comparison 2-cell φF
σ is the canonical morphism

(I, Fσ∗p
I (X)) → (I, σ∗q(FX)) in A ×

f,g

E, induced by the cartesian morphism

(σI)
q
(FX) : σ∗q(FX) → FX. Hence, F preserves cartesian morphisms

precisely when every component of φF
σ is an isomorphism, as stated in the

3.1 Change-of-base and 2-categorical structure 105

following proposition.

3.1.5. Proposition. Given
E
↓p

B
,

D
↓p

B
F : p → q in Cat/B, F is a B-fibred

1-cell (i.e. preserves cartesian morphisms) iff for every natural transforma-

tion σ : K ·→ H : A → B (for arbitrary A), the canonical comparison 2-cell

φF
σ is an isomorphism. Further, F preserves cleavages (strictly) iff φF

σ is the

identity.

3.1.1 Algebra of fibred 2-cells

In this section we state some equational laws for fibred 2-cells. They follow

from the universal property of Cartesian 2-cells, as stated in Lemma 3.1.2.

These laws will be used in §3.2 to prove properties about adjunctions in Fib

and in §5.4.2, where we present Kleisli fibrations for comonads in Fib.

Given functors K : A → B and H : B → C, we have by Lemma 3.1.1 2-

functors K∗ ◦H∗ : Fib(C) → Fib(A) and (HK)∗ : Fib(C) → Fib(A), given by

pullbacks. Since the composite of two pullbacks squares is again a pullback,

by Corollary 1.2.4, there is a 2-natural isomorphism JK,H : K∗◦H∗ ⇒ (HK)∗.

Further, we assume that 1∗
A

= 1Fib(A) We thus have a normalised cleavage for

the fibration cod : Fib → Cat. These J ’s satisfy coherence conditions as for

the δ’s in Definition 1.3.1.

The following two propositions summarise the algebraic laws concerning

fibred 2-cells. They essentially give an ‘external’ formulation of the elemen-

tary properties of cartesian and vertical morphisms of a fibred category. They

106 Fibred adjunctions and change of base

show a 2-dimensional aspect of the fibration cod : Fib → Cat. They can be

verified using the elementary definition of the natural transformations in-

volved and universality of Cartesian morphisms. An equivalent and simpler

way to prove them is by ‘pasting’ of 2-cells and Lemma 3.1.2.(ii). We prove

one of them, Lemma 3.1.7, for illustration.

Since the objects of Fib are fibrations, their Cartesian lifting property

determines vertical comparison 2-cells, as given by Lemma 3.1.2.(ii) . In

detail, for
E
↓p

B
,

• given a functor F : A → B, p induces a 2-cell γp
F : 1F ∗(p) ⇒ 〈1F 〉p, whose

component at an object 〈I, X〉 ∈ |A ×
F,P

E| is 〈1I , γI : X → 1∗I(X)〉,

induced by 1I(X);

• given 2-cells A

H−→J⇓α−→
K⇓β−→

B, p induces a 2-cell δp
α,β : 〈α〉p ◦ 〈β〉p ⇒ 〈β ◦ α〉p,

whose component at 〈I, X〉 ∈ |A ×
K,p

E| is 〈1I , δαI ,βI
: α∗

I(β
∗
I (X)) →

(βI ◦ αI)
∗(X)〈 induced by βI ◦ αI(X)

γ’s and δ’s are uniquely characterised by the following properties:

• (1F)′p ◦ p∗(F)γp
F = 1p∗(F)

• (β ◦ α)′p ◦ p∗(H)δp
α,β = β′

p ◦ α′
p〈β〉p

These 2-cells satisfy the coherence conditions of Definition 1.3.1. When

the γ’s are identities, we have a normalised cleavage for p. If additionally the

δ’s are identities, we a have a splitting. The comparison 2-cells are preserved

3.1 Change-of-base and 2-categorical structure 107

by change-of-base, as stated in the following lemma.

3.1.6. Lemma. Given
E
↓p

B
and C

−→
L A

H−→J⇓α−→
K⇓β−→

B,

• JK,F (p)L∗(γp
H) = γp

HLJL,H(p)

• JL,H(p)L∗(δp
α,β) = δp

αL,βLJL,K(p)

The comparison 2-cells are also preserved by fibred functors, as follows:

3.1.7. Lemma. Given a B-fibred 1-cell F : p → q and 2-cells A

H−→J⇓α−→
K⇓β−→

B,

• i.e. φF
1H

◦H∗(F)γp
H = γq

HH∗(F)

108 Fibred adjunctions and change of base

• i.e. φF
β◦α ◦H∗(F)δp

α,β = δq
α,βK∗(F) ◦ 〈α〉qφF

β ◦ φF
α 〈β〉q

Proof. We prove the second statement. We show both 2-cells are equal when

composed with (β ◦ α)′q:

(β ◦ α)′qK
∗(F) ◦ q∗(H)(φF

β◦α ◦H∗(F)δp
α,β)

= (β ◦ α)′p ◦ q∗(H) ◦H∗(F)δp
α,β)

= β′
p ◦ α′

p〈β〉p

= β′
qK

∗(F) ◦ q∗(J)φF
β ◦ alpha′

qJ
∗(F)〈β〉p ◦ q∗(H)φF

α 〈β〉p

= β′
qK

∗(F) ◦ α′
p(J)〈β〉qK∗F ◦ q∗(H)(〈α〉qφF

β ◦ φF
α 〈β〉p)

= (β ◦ α)′q ◦ q∗(H)(δq
α,βK∗(F) ◦ 〈α〉qφF

β ◦ φF
α 〈β〉p)

using the defining properties of the δ and φ isomorphisms. The result follows

by Lemma 3.1.2.(ii).

3.1.8. Lemma. Consider the following data

3.1 Change-of-base and 2-categorical structure 109

i.e. γ̃ : F ⇒ G : p → p′ in Fib(B) and (α̃, α) : (H̃, H) ⇒ (J̃ , J) : q → p

in Fib. Then

(i) F̂ α̃ = φF
α Ĵ ◦H∗(F)α̂

(ii) 〈α〉p′ ◦ J∗(γ̃) ◦ φF
α = φG

α ◦H∗(γ̃) ◦ 〈α〉p

3.1.9. Lemma. Consider the following data.

i.e. fibrations r, q, p, s, fibred 1-cells (L̃, L) : r → q, (H̃, H), (J̃ , J), (K̃, K) :

q → p and (M̃, M) : p → s and fibred 2-cells (α̃, α) : (H̃, H) ⇒ (J̃ , J) and

(β̃, β) : (J̃ , J) ⇒ (K̃, K).

110 Fibred adjunctions and change of base

(i) (β ◦ α)′p = β′
p ◦ α′

p〈β〉p ◦ p∗(H)(δp
α,β)−1

(ii) ̂̃βα̃ = δα,β ◦ 〈α〉β̃ ◦ α̃

(iii) L∗(α̃) = α̃q̂∗(L)

(iv) ̂̃αL̃ = L∗(α̃)L̂

(v) ̂̃Mα̃ = φαĴ ◦H∗(M̂)α̃

3.1.10. Lemma. Given
E
↓p

C
,

E′
↓q

B
and D

L−→ A H−→J⇓α−→
B

K−→ C

(i) 〈Kα〉p = JH.K(p)〈α〉K∗(p)J
−1
J,K(p)

(ii) (Kα)′p = p∗(K)(α)′K∗(p)J
−1
J,K(p)

(iii) 〈αL〉q = JL,H(q)L∗(〈α〉q)J−1
L,J(q)

(iv) (αL)′q = (α)′q(J
∗(q))∗(L)J−1

L,J(q)

3.2 Lifting and factorisation of adjunctions

We now have enough machinery to study the interaction between change-of-

base and fibred adjunctions. The following lemma establishes one important

aspect of the change-of-base 2-functors with respect to adjunctions between

the base categories. We present two proofs for it to illustrate the difference

between an intrinsic yet elementary reasoning, ‘looking inside the categories’

and a 2-categorical one, using the algebraic laws for fibred 2-cells in §3.1.1.

The latter is more involved, but shows the argument in its natural context.

In the proofs we will assume without loss of generality that the chosen cleav-

ages are normalised.

3.2.1. Lemma. Given
E
↓q

B
and an adjunction F � G : B → A via η, ε,

3.2 Lifting and factorisation of adjunctions 111

change-of-base along F yields a cartesian fibred adjunction

First Proof. Let X be an object of EI We must show there is a cofree

object for 〈I, X〉 with respect to F ′, i.e, terminal in the comma category

F ′ ↓ 〈I, X〉. It is G〈I, X〉 = 〈GI, ε∗I(X))〉 ∈ |F ∗(E)GI | with counit compo-

nent εI(X) : ε∗I(X) → X in F ∗(E). Here εI is any cartesian morphism over

εI with codomain X. As for universality, let 〈J, Y 〉 ∈ |F ∗(E)| and f : Y → X

in E. By universality of εI there exists a unique f ′ : J → GI such that

εI ◦ Ff ′ = qf . εI(X) is cartesian and hence there is a unique h : Y → ε∗I(X)

with εI(X) ◦h = f and thus a unique 〈f ′, h〉 : 〈J, Y 〉 → 〈GI, ε∗I(X)〉 with the

required property, as shown in the diagram below

over

112 Fibred adjunctions and change of base

The construction given above is such that the counit of q∗(F) � overlineG

is cartesian over that of F � G, as required for a cartesian fibred adjunction.

We could verify directly that the resulting functor G preserves cartesian mor-

phisms, but this follows from Lemma 3.3.3.(ii) below. ✷

Second Proof. We use the following abbreviations

q′ = F ∗(q), F ′ = q∗(F), G′′ = (q′)∗(G)

We have

The right adjoint G is G′′ ◦ J−1
G,F (q) ◦ 〈ε〉q : q → F ∗(q), with counit ε = ε′q :

F ′G ⇒ 1q, since F ′ ◦ G′′ ◦ J−1
G,F (q) = q∗(FG), by universality of pullbacks.

The unit is η = (η′
qJ

−1
GF,F (q)〈εF 〉q)δ−1

Fη,εF
. The unit has the appropriate do-

main, that δ−1
Fη,εF

and codomain (q′)∗(GF)J−1
GF,F (q)〈εF 〉q = GF ′ using Lemma

3.2 Lifting and factorisation of adjunctions 113

3.1.10.(iii) f and coherence conditions on J ’s. The triangular laws are ob-

tained as follows:

• εF ′◦F ′η = 1F ′ because εF ′ = (εF)′q : q∗(FGF)〈εF 〉q ⇒ 1F ′ , by Lemma

3.1.10.(iv) and F ′η = (Fη)′q〈εF 〉q ◦ F ′δ−1
Fη,εF by Lemma 3.1.10.(ii). The

result follows by Lemma 3.1.9.(i) and the adjunction laws for F � G.

• To show Gε ◦ ηG = 1G it suffices to show F ′(Gε ◦ ηG = 1F ′G and

q′(Gε ◦ ηG = 1G(FG)∗(q) by the universal property of pullbacks. The

latter is trivial. For the former

F ′Gε = (FGε)′q〈ε〉qq∗(FGFG)(δ−1
FGε,ε ◦ δεFG,ε)

using Lemmas 3.1.8.(i) and 3.1.10.(iv), and coherence for J ’s,

F ′ηG = (FηF)′q〈εFG〉q〈ε〉q ◦ q∗(FG)(〈FηG〉q(δ−1
εFG,ε ◦ δFGε,ε) ◦ δ−1

FetaG,FGε)〈ε〉q

using Lemmas 3.1.10.(iv), 3.1.8.(ii) and 3.1.2.(ii). The result follows

using the interchange law, cancelling opposite isomorphisms, and ap-

plying Lemma 3.1.9.(i) and the adjunction laws for F � G.

✷

Theorem 3.2.3 below characterises fibred left adjoints in terms of vertical

fibred ones or, more precisely, adjunctions in Fib in terms of adjunctions in

Fib() and Cat. For a concise statement, we introduce the following auxiliary

definition

3.2.2. Definition. For a 2-category K, let KIadj be the sub-2-category of

114 Fibred adjunctions and change of base

K, with the same objects and 2-cells but with only those 1-cells f : A → B

which have a right adjoint f � g. Since the composite of two such 1-cells

has a right adjoint, namely the composite of the given right adjoints, Kladj

is indeed a sub-2-category. Similarly, we have Kradj with morphisms those

1-cells which have a left adjoint.

3.2.3. Theorem. cod : Fibladj → Catladj is a subfibration of cod : Fib → Cat.

In more detail, given
E
↓p

B
,

D
↓q

A
, F � G : A → B via η, ε and a fibred 1-cell

(F̃ , F) : p → q as shown below

let F̂ : p → F ∗(q) in Fib(B) be the unique mediating functor in

Then, the following are equivalent

3.2 Lifting and factorisation of adjunctions 115

(i) ∃G̃ : D → E.F̃ � G̃(in Cat) s.t. (F̃ , F) � (G̃, G) : q → p(inFib).

(ii) ∃Ĝ : F ∗(q) → p.F � Ĝ(in Fib(B)).

Proof. (ii) =⇒ (i) This implication means that it is possible to define a

‘global’ fibred right adjoint G̃ given a vertical one Ĝ and a base one G. This

is achieved by composition of adjoints.

By Lemma 3.2.1, we get a fibred right adjoint to F ′, F ′ � Ḡ : q → F ∗(q)

via η, ε, and therefore G̃ = Ĝ ◦ Ḡ is a right adjoint to F̃ . It only remains to

verify that the unit η̃ = ĜηF̂ ◦ η̂ of this adjunction, where η̂ is the unit for

F̂ � Ĝ, is over η:

pη̃ = pĜηF̂ ◦ pη̂ = F ∗(q)ηF̂ = qF ∗(q)F̂ = ηp

(i) =⇒ (ii) We first give the intrinsic argument, and then outline the 2-

categorical one, as in the proof of Lemma 3.2.1.

Given (I, X) ∈ |F ∗(D)|, i.e. qX = FI, let

Ĝ(I, X) = η∗p
I (G̃X)

It is the domain of an arbitrary cartesian lifting of ηI : I → GFI at G̃X.

The instance of the counit ε̂(I,X) : F̂ Ĝ(I, X) → (I, X) is given by

ε̂(I,X) = ε̃X ◦ F̃ ((ηI)
p
(G̃X))

as shown in the following diagram

116 Fibred adjunctions and change of base

To verify its couniversality, for Y ∈ |EI | a vertical morphism f : F̂ Y →

(I, X) induces a unique morphism f ′ : Y → G̃X by the adjunction F̃ � G̃,

such that ε̃ ◦ F̃ (f ′) = f and pf ′ = ηI , because the adjoint transpose of f

across F̃ � G̃ is over the adjoint transpose of 1FI across F̃ � G̃ by the

definition of fibred adjunction. So, f ′ factors through (ηI)
p
(G̃X), giving a

unique vertical morphism f̂ : Y → η∗p
I (G̃X) with

ε̃X ◦ F̂ ((ηI)
p
(G̃X)) ◦ F̂ (f̂) = ε̃X ◦ F̃ (f ′) = f

as required.

The 2-categorical argument goes as follows: η : 1B ⇒ GF induces

〈η〉p : (GF)∗(p) → p by Lemma 3.1.2.(i). Consider the following diagram

where G′ = 〈q, G̃〉. Then Ĝ = 〈η〉p ◦ F ∗(G′) is the desired right adjoint. The

unit η̂ : 1p ⇒ ĜF̂ is obtained applying Lemma 3.1.2.(ii) to the fibred 2-cell

3.2 Lifting and factorisation of adjunctions 117

(η̃, η). The counit ε̂ : F̂ Ĝ ⇒ 1F ∗(p) is obtained applying Lemma 3.1.2.(ii) to

the fibred 2-cell

(ε̃q∗(F) ◦ F̃ η′
pF

∗(G′), εF ◦ Fη) : (F̃ Ĝ, F) ⇒ (q∗(F), F)

The triangular laws are verified using the algebraic laws for 2-cells of ¶3.1.1,

as in the proof of Lemma 3.2.1. ✷

3.2.4. Remarks.

• (ii) =⇒ (i) above does not require that p be a fibration. Similarly, (i)

=⇒ (ii) does not require that q be a fibration.

• Cartesian fibred adjunctions are precisely the Cartesian morphisms for

the fibration cod : FibladjrightarrowCatladj, which justifies the termi-

nology. Lemma 3.2.1 asserts that pullbacks in Cat provide a cleavage

for this fibration.

By mere duality, we get the following results concerning lifting and fac-

torisation of cofibred adjunctions for cofibrations. Recall that op : Cat →

Catco turns right adjoints into left adjoints and vice versa.

3.2.5. Corollary. Given a cofibration q : D → B and an adjunction

F � G : A → B via η, ε, change-of-base along G yields a cartesian cofibred

adjunction

Proof. Apply Lemma 3.2.1 to the fibration qop and the adjunction Gop � F op.

118 Fibred adjunctions and change of base

✷

3.2.6. Corollary. cod : CoFibradj → Catradj is a subfibration of cod :

CoFib → Cat.

Proof. From Theorem 3.2.3, by a duality argument as in Corollary 3.2.5.

See Remark 1.1.4. ✷

In the following section we show two important consequences of Theorem

3.2.3 dealing with co)limits and cartesian closure for fibred categories.

3.3 Fibred limits and cartesian closure

We will apply Theorem 3.2.3 to give a characterisation of the completeness

of the total category of a fibration in terms of that of the fibres and of the

base category. In order to do so, we shall make use of the following simple

property of the exponential 2-functor ()I (for I a small category) in Cat, i.e.

the 2-functor such that AI is the functor category.

3.3 Fibred limits and cartesian closure 119

3.3.1. Proposition. Given a fibration p : E → B and a small category

I, pI : EI → BI is a fibration.

Proof. A natural transformation α : F ·→G : I → E is pI-cartesian iff ev-

ery component is p-cartesian. Thus a pI-cartesian lifting is obtained from

p-cartesian liftings, pointwise. ✷

3.3.2. Remark. The above proposition actually shows that Fib has coten-

sors, as in Cat, in the sense of [Kel89]. This means that we have the following

isomorphism of categories

Fib(q, pI) ∼= Cat(I,F(q, p))

2-natural in q and p.

We shall also use the following property of right adjoints in Cat/A and

C→. It turns out that such right adjoints preserve cartesian morphisms.

3.3.3. Lemma.

(i) ([Win90, Lemma 4.5]) Given
E
↓p

B
,

D
↓q

B
, a 1-cell G : q → p in Cat/B,

if there is F : p → q such that F � G in Cat/B then G is a B-fibred 1-cell.

(ii) Given
E
↓p

B
,

D
↓q

A
, a 1-cell (G̃, G) : q → p in Cal→, if there is (F̃ , F) :

p → q such that (F̃ , F) � (G̃, G) in Cat then (G̃, G) is a fibred 2-cell.

Proof.

120 Fibred adjunctions and change of base

(i) We simply have to show that G preserves cartesian morphisms. Using

Proposition 1.2.17, this amounts to

G→ ◦ ()
∧q ∼= ()

∧p ◦ cod∗(G)

which holds because they have a common left adjoint:

G→ ◦ ()
∧q � Ip ◦ F→ = cod∗(F) ◦ Iq � ()

∧p ◦ cod∗(G)

(ii) Similar argument in Cat→ instead of Cat/B.

✷

The following definition of fibred I-limits is due to Bénabou.

3.3.4. Definition. For any small category I, a fibration p : E → B has

fibred I-limits (respectively colimits) iff the fibred functor ∆̂I : p → ∆∗
I
(pI),

uniquely determined in the diagram below, has a fibred right (respectively

left) adjoint ∆̂I � L̂imI

where ∆I : B → BI and ∆̃I : E → EI are the diagonal functors taking objects

A to constant functors (I �→ A).

3.3 Fibred limits and cartesian closure 121

Dually, we speak of fibred I-colimits, and of cofibred I-limits/colimits

for a cofibration.

3.3.5. Remarks.

• Similarly to Remark 3.3.2, the fibration ∆∗
I
(pI) is a cotensor in Fib(B),

as we have

Fib(B)(q, ∆∗
I
(pI)) ∼= Cat(I,Fib(B)(q, p))

Hence, the above definition of fibred I-limits for a fibration is analogous

to the definition of I-limits for an ordinary category. Remember that a

category C has I-limits if the diagonal ∆I : C → CI has a right adjoint.

• Using the indexed view of fibred adjunctions, a fibration
E
↓p

B
has fibred

I limits if every fibre has I-limits, in their usual sense in Cat, and the

reindexing functors are I-continuous, i.e. preserve I-limits.

Now we can characterise fibred limits as follows:

3.3.6. Corollary. Let I be a small category and
E
↓p

B
be a fibration such

that B has I-limits. Then p has fibred I-limits iff E has and p strictly pre-

serves I-limits.

Proof. Apply Theorem 3.2.3 to the following data (where pI : EI → BI

is a fibration by Proposition 3.3.1)

E has and p strictly preserves I-limits means precisely that the above diagram

122 Fibred adjunctions and change of base

can be completed to an adjunction (∆̃I, ∆I) � (˜LimI, LimI) in Cat→, which

by Lemma 3.3.3.(ii) is an adjunction in Fib. ✷

3.3.7. Collary. Let r : D → A be a cofibration such that A has I-colimits.

Then r has cofibred I-colimits iff D has and r strictly preserves I-colimits.

3.3.8. Remarks.

• Corollary 3.3.6 yields a stronger version of [BGT91, Theorem 1].

• Recall that a fibration is a bifibration (i.e. its dual is a fibration as

well) iff every reindexing functor has a left adjoint, cf. Proposition

1.2.7.(iii). Thus Theorem 2 in ibid. is a consequence of Corollary 3.3.7.

• ibid. applies these results about fibred limits and colimits to prove

(co)completeness of several categories of relevance in the area of alge-

braic specifications, such as those in Examples 1.3.3.

We make explicit the expressions for finite products in E obtained by

lifting (‘only if’ direction of Corollary 3.3.6) in the following definition. We

3.3 Fibred limits and cartesian closure 123

shall make use of this description in Corollary 3.3.11 below and in §4, which

will justify the terminology to be introduced.

3.3.9. Definition (logical finite products). Given
E
↓p

B
fibred-cc, where B

has finite products. Then, by Corollary 3.3.6 E has

(i) logical terminal object 1̃ ∼= 1(1) (the terminal object of E1). For X

in EA, !̃X ∼= !A(1(1))◦!(1)X : X → 1(1), where !A is the unique morphism

A → 1 in B and !(1)X is the unique morphism X → 1(A) ∼= (!A)∗(1(1)).

(ii) logical binary products: for X ∈ |EA|, Y ∈ |EB|,

X×̃Y ∼= (πA,B)∗(X) ×A×B (π′
A,B)∗(Y)

where ×A×B is the product in the fibre EA×B. Projections:

π̃X,Y = πA,B(X) ◦ ππ∗(X),(π′)∗(Y) : X × Y → X

(where the second projection is taken in the fibre EA×B), and a similar ex-

pression for π̃′
X,Y .

3.3.10. Definition (logical finite coproducts). Dually, assume that
E
↓p

B
has

fibred finite coproducts and cocartesian liftings along coproduct injections.

By Corollary 3.3.7, E has

(i) logical initial object 0̃ ∼= 0(0) (the initial object of E0).

(ii) logical binary coproducts : for X ∈ |EA| and Y ∈ |EB|,

X+̃Y ∼= (ι′A,B)!Y

124 Fibred adjunctions and change of base

with injections

ιX,Y = ι(ιA,B)!
X,(ι′

A,B)!
Y ◦ ιA,B((ιA,B)!X)

where the first injection is in the fibre EA+B, and a similar expression

for ι̃′X,Y .

Logical products and coproducts will be used in §4.5 to formulate the

induction principle for inductive data types in a distributive category.

Another useful consequence of Theorem 3.2.3 is the following sufficient

condition to lift cartesian closed structure. This result can be seen as a cat-

egorical version of logical predicates. This will be explained in detail in §4.2.

3.3.11. Corollary. Given
E
↓p

B
such that p is a fibred-ccc with ConsB -

products, if B is a ccc then E is a ccc and p strictly preserves the cartesian

closed structure.

Proof. From Corollary 3.3.6 we know E has finite products. Then, for every

X ∈ EA, we must supply X⇒̃ : E → E such that the following is a fibred

adjunction:

3.3 Fibred limits and cartesian closure 125

By Theorem 3.2.3, it is sufficient to define a fibred right adjoint G to

×̃X, as displayed below

If we examine the action of ×̃X on a particular fibre EC (cf. Definition

3.3.9), we see that it can be factored in the following way:

Then, we have (×C×A (π′)∗X) � ((π′)∗X ⇒C×A) and π∗
C,A so, we have a

126 Fibred adjunctions and change of base

family of right adjoints GC = ΠA ◦ ((π′)∗X ⇒C×A); since p is a fibred ccc

and ΠA is a ConsA-product, such a family underlies a fibred right adjoint

×̃X �f G as desired (using [Jac91a, Lemma 1.2.2] and Proposition 1.4.5).

✷

We spell out the expression for exponentials and evaluation morphisms

in the following definition. The terminology will be justified in §4.2.

3.3.12. Definition. Given
E
↓p

B
satisfying the hypothesis of Corollary 3.3.11,

E has logical exponents: for X ∈ |E|A, Y ∈ |E|B,

X⇒̃Y ∼= ΠA((π′
A⇒B,A)∗(X) ⇒A⇒B×A ev∗

A,B(Y))

where ⇒A⇒B×A is the exponential functor in the fibre EA⇒B×A and evA,B :

A ⇒ B × A → B is the B-component of the counit of () × A � A ⇒ ().

The logical evaluation morphism is

ẽvX,Y
∼= evA⇒B,A(Y) ◦ ev((π′)∗(X)⇒ev∗(Y),(π′)∗(X)) ◦ ε(π′)∗(X)⇒evast(Y) :

X⇒̃Y ×̃X → Y

where ε is the counit of (π′
A⇒B,A) � ΠA.

We end this chapter with a concrete simple example of Corollary 3.3.11.

The concrete description of the ‘logical’ cartesian closed structure in this

example has a suggestive shape, which hints at the connection with logical

predicates which we will make explicit in §4.2.

3.3.13. Example. Consider ι : Sub(Set) → Set. Set is cartesian closed

3.3 Fibred limits and cartesian closure 127

and ι is a fibred-ccc as mentioned in Ex. 1.4.3.(iii): products in a fibre

Sub(Set)X
∼= 195X are given by intersections, while exponentials are given

by

(S ⊆ X) ⇒ (S ′ ⊆ X) ∼= {x ∈ X | x ∈ s =⇒ x ∈ S ′}

It also has ConsSet-products, cf Example 1.4.6.(iii).

Products and exponentials in Sub(Set) can be described as follows. Given

SA ⊆ A and SB ⊆ B, we have

SA×̃SB
∼= {(x, y) ∈ A ×B | x ∈ SA ∧ y ∈ SB}

SA⇒̃SB
∼= {f : A → B | ∀x ∈ A.x ∈ SA ⇒ fx ∈ SB}

because

(π′
A⇒B,A)∗(SA) ∼= {(f, x) ∈ (A ⇒ B) × A | x ∈ SA}

ev∗
A,B(SB

∼= {(f, x) ∈ (A ⇒ B) × A | fx ∈ SB}

128 Fibred adjunctions and change of base

Chapter 4

Logical predicates for simply
typed λ-calculus

The material about fibrations of §3, notably Corollary 3.3.11, is a basis for a

category-theoretic account of logical predicates for simply typed λ-calculus,

based on the correspondence between λ-calculus and cartesian closed cate-

gories as in §2.1.1.

In §4.1 we introduce the internal language of a fibration
E
↓p

B
satisfy-

ing the hypothesis of Corollary 3.3.11. By expressing the ‘logical’ cartesian

closed structure of E, as detailed in Definitions 3.3.9 and 3.3.12, in this lan-

guage, we obtain the formulas corresponding to logical predicates for simply

typed λ-calculus. We also show how the essential property of logical predi-

cates, namely the Basic Lemma 2.2.4, results from expressing in the internal

language the soundness of typing for the interpretation of λ-calculus in E.

In §4.3 we present several examples of fibred-ccc’s with products. First,

we consider the injective scone of a category as given in [MS92], which cap-

130 Logical predicates for simply typed λ-calculus

tures logical predicates for applicative structures as in §2.2. In a similar way,

we get admissible logical predicates for ωCpo. A further example of logical

predicates is that of Kripke logical predicates, as in [MM91]. A different kind

of example is provided by the category of first-order deliverables, introduced

in [BM91] to structure program development in type theory; its cartesian

closed structure follows from Corollary 3.3.11. As a final example, we show

how to infer the cartesian closed structure of ω-Set and PER from the above

Corollary and the properties of reflective and coreflective categories in §2.3.

In §4.4, we comment on the relationship between our approach to logical

predicates and that in [MR91].

In §4.5, we give a categorical formulation of the induction principle for

inductive data types in a distributive category. The approach follows that of

logical predicates, namely exploiting the logical meaning of the structure of

the total category of a fibration via its internal language.

4.1 Internal language for a fibred-ccc with

products

Let
H
↓p

B
be a fibred-ccc with ConsB-products and B a ccc. For instance,

every first-order hyperdoctrine, cf. Definition 2.1.1, is such. We will define

its iternal language in the usual categorical-logic style, as in [LS86, Part I,

§10.6]. For instance, the internal language of a ccc C is the simply typed

λ-calculus whose types are objects of C, terms are morphisms of C and

equations between them reflect the equality of morphisms in C.

4.1 Internal language for a fibred-ccc with products 131

The internal language of
H
↓p

B
is the {∀, =⇒,∧,&}-fragment of first-order

intuitionistic predicate calculus as outlined in §2.1.2, whose types, proposi-

tions, terms and equations are determined by
H
↓p

B
. In more detail, the theory

T has a type, ' A Type, for every object A of B and a term

x : A ' u : B

for every morphism u : A → B in B, with the appropriate equations between

terms corresponding to the equality of morphisms in B. Since B is a ccc,

such equations include those of the simply typed λ-calculus. We have the

following correspondence between substitution of terms for variables in the

language and composition of morphisms in B:

x : B ' u : A Θ ' v : B
Θ ' u[x := v] = u ◦ v : A

Propositions in context, or predicates, correspond to objects of H; for

every P ∈ |HA| there is a judgement

x : A ' P (x)Prop

That is, objects of HA correspond to propositions in context x : A in the

internal language. So, in every context Θ we have the simply typed λ-

calculus of propositions and proofs in such context, corresponding to the

internal language of HΘ, which is a ccc. Thus, there are rules relating the

logical connectives with operations on the fibres:

x : A ' 1A ↔ & x : A ' P Prop x : A ' QProp
x : A ' P ×A Q ↔ P ∧Q

132 Logical predicates for simply typed λ-calculus

x : A ' P Prop x : A ' QProp
x : A ' P ⇒A Q ↔ P =⇒ Q

where, in general, Θ ' P ↔ Q indicates that there is a canonical isomorphism

between P and Q in context Θ, which we leave implicit to avoid notational

clutter. The subscript A indicates that the operations are those of the fibre

HA.

Additionally, since we are dealing with a fibration, there are rules for

changing contexts. There are two operations we can perform: reindexing,

which corresponds to substitution of terms for variables in predicates and

proofs, and the ConsB-products, which correspond to universal quantifica-

tion. For u : A → B, u∗ : HB → HA corresponds to substitution in the

internal language:

x : A ' u : B y : B ' P (y)Prop

x : A ' u∗(P) ↔ P (u)

Likewise, the correspondence between the ConsB-products and universal

quantification is expressed by

Θ, x : A ' P Prop
Θ ' ΠAP ↔ ∀x : A.P

A morphism f : P → Q in H, with pf = u : A → B, can be identified

with its vertical factor f̂ : P → u∗(Q) in HA. Hence, in the internal language

f corresponds to

x : A | h : P ' f̂ : Q(u)

f̂ corresponds to a proof that the hypothesis P entails Q(u). The above cor-

respondence amounts to considering the equivalent fibration resulting from

4.2 Logical predicates for cartesian closed categories 133

the Grothendieck construction applied to the indexed category induced by

the chosen cleavage for p, whereby we identify f with (f̂ , u), cf. Proposition

1.3.6.

4.2 Logical predicates for cartesian closed cat-

egories

In §2.2, we presented logical predicates for set-theoretic models of simply

typed λ-calculus. We now present them for categorical models, i.e. cartesian

closed categories. We first show precisely how logical predicates for simply

typed λ-calculus arise by interpreting the logical finite products and expo-

nentials of Definitions 3.3.9 and 3.3.12 respectively, in the internal language

of a fibration with suitable structure, as presented in §4.1.

Let B be a ccc, regarded as a model of a simply typed λ-calculus. A

fibration
H
↓p

B
, which is a fibred-ccc and has ConsB-products, can be regarded,

via its internal language, as a first order logic over B, with {∀, =⇒,∧,&} as

logical symbols, as outlined in the previous section. The cartesian closed

structure of H is expressed in this language as follows:

Terminal object in H:

1̃ =� x : 1 ' &Prop

Binary product in H : For P ∈ HA and Q ∈ HB,

P ×̃Q =� z : A ×B ' P (πz) ∧Q(π′z)Prop

134 Logical predicates for simply typed λ-calculus

and the projections P
π̃← P ×̃Q

π̃′
→ Q, which are over A

π← A×B
π′
→ B

correspond to proofs

z : A ×B | p : P (πz) ∧Q(π′z) ' π̂ : P (πz)

and

z : A×B | p : P (πz) ∧Q(π′z) ' π̂′ : Q(π′z)

respectively.

Exponentials in H: For P ∈ HA and Q ∈ HB,

P ⇒ Q =� f : A ⇒ B ' ∀x : A.(P (x) =⇒ Q(evA,B〈f, x〉))

because, for a predicate f : A ⇒ B, x : A ' QProp

f : A ⇒ B ' (ΠAQ)(f) ↔ ∀x : A.Q(f, x)

and

f : A ⇒ B, x : A '
((π′

A⇒B,A)∗(P) ⇒A⇒B×A ev∗
A,B(Q))(f, x) ↔ P (x) =⇒ Q(evA,B(f, x))

The evaluation morphism ẽv : P⇒̃Q × P → Q, over evA,B : A ⇒

B × A → B, corresponds to a proof (given by its vertical factor, as

explained at the end of the previous section)

f : A ⇒ B, y : A | p : ∀x :
A.(P (x) =⇒ Q(ev〈f, x〉)) ∧ P (y) ' êv : Q(ev〈f, y〉))

Just for illustration, let us show how logical predicates for +-types can

be obtained in this setting. Assume that B has binary coproducts. In the

internal language of B, they correspond to +-types, with rules

A Type B Type
A + B Type

4.2 Logical predicates for cartesian closed categories 135

and term forming operators

Θ ' t : A

Θ ' ιA,Bt : A + B

Θ ' t : B

Θ ' ι′A,Bt : A + B
Θ, x : A ' t : C Θ, y : B ' t′ : C

Θ, Z : A + B ' [t, t′] : C

Assume
H
↓p

B
has fibred coproducts and cocartesian liftings for the coproduct

injections A
ι→ A + B

ι′← B. By Corollary 3.3.7, H has coproducts. To spell

them out neatly in the internal language of p, we will assume some further

conditions on p.

Recall from Proposition 1.2.7.(iii), that the cocartesian liftings for the

injections amount to the existence of left adjoints, ι! � ι∗ : HA+B → HA and

ι′! � (ι′)∗ : HA+B → HB. Following [Law70], we express these left adjoints

in the internal language of p, assuming an equality predicate at type A + B,

written =A+B or simply =, and ConsB-sums, which correspond to existential

quantifiers, cf. §2.1.2. We then have

x : A ' P

z : A + B ' ι!(P) ↔ ∃x : A.(ιx = z ∧ P (z))

with an analogous expression for ι′!.

Recall from Definition 3.3.10 that binary logical coproducts in H are

given as follows: for P ∈ HA and Q ∈ HB,

P +̃Q ∼= ι!(P) +A+B ι′!(Q)

which expressed in the internal language of
H
↓p

B
become

P +̃Q =� z : A + B ' (∃x : A.(ιx = z) ∧ P (x)) ∨ (∃y : B.(ι′y = z) ∧Q(y))Prop

136 Logical predicates for simply typed λ-calculus

This is just the expected definition by cases of a logical predicate for a +-type.

4.2.1. Remark. The above mentioned equality predicate for a type
H
↓p

B

at a type A ∈ |B| amounts, in categorical terms, to the existence of cocarte-

sian liftings for the diagonal δA : A → A×A, satisfying appropriate stability

conditions. See [Law70] for details.

The above considerations show how certain categorical structure in H,

cartesian closure for instance, can be expressed by logical formulas which cor-

respond to logical predicates for the relevant type constructor, i.e. products

and exponentials. The neat connection between the logical expression, i.e.

in the internal language, of categorical structure in H and logical predicates

arises because H is fibred and thus we can regard its objects as predicates,

and its morphisms and terms and proofs, as we did above.

We recall from [LS86, Part I,§11] that a simply typed λ-calculus L,

specified by t its types, terms and equations, generates a cartesian closed

category C(L). It is a term-model construction. Then, an interpretation [[]]

of L in a ccc B corresponds to a functor [[]] : C(L) → B which preserves

cartesian closed structure.

Given
H
↓p

B
, with H a ccc and p strictly preserving the cartesian closed

structure, for instance when p satisfies the hypothesis of Corollary 3.3.11, an

interpretation [[̃]] : C(L) → H of L in H yields an interpretation [[]] in B,

[[]] = p ◦ [[̃]] : C(L) → B. Regarding H as a ‘category of predicates’ over B,

4.2 Logical predicates for cartesian closed categories 137

the interpretation [[̃]] assigns to a type τ a predicate [[τ̃]] over [[τ]], i.e. in the

internal language

x : τ ' Px(x)Prop

Then, the type-indexed collection {Pτ} is a logical predicate over {[[τ]]}. This

leads us to the following definition:

4.2.2. Definition. Let
H
↓p

B
be a fibration with H and B ccc, and p

strictly preserving the cartesian closed structure. Given an interpretation

A : C(L) → B, a ccc-logical predicate P on A w.r.t. p is a functor P :

C(L) → H which preserves cartesian closed structure and p ◦ P = A

4.2.3. Remarks.

• The above definition is the categorical version of Definition 2.2.3; we

used A for interpretations and P for logical predicates to make the

correspondence more evident. Note that the fibration p, which is the

logic under consideration is a parameter in the above definition. Indeed,

it is possible to have several logics over the same base category, see

§4.3.2 for instance.

• Although the set-theoretic definition considers only the object part of

P : C(L) → H as a logical predicate, the considerations in §4.2.1 below

will show that the morphism part of such a functor should be part of

the logical predicate as well.

138 Logical predicates for simply typed λ-calculus

• Notice that the ccc structure is also a parameter in the above definition.

As stated, the definition is suitable for simply typed λ-calculus, but we

can adapt it to the particular theory under consideration, e.g. finite

products for algebraic theories, distributivity for inductive data types

(cf. §4.5).

4.2.1 Basic lemma for categorical logical predicates

The essential property of a (set-theoretic) logical predicate is the so-called

Basic Lemma 2.2.4. We will show that for logical predicates for cartesian

closed categories, as in Definition 4.2.2, this is an immediate consequence

of the soundness of typing for the interpretation of simply typed λ-calculus

in cartesian closed categories. By soundness of typing we mean that for a

term x : σ ' t : τ , its interpretation in a ccc is a morphism with appropriate

domain and codomain, i.e. [[t]] : [[σ]] → [[τ]].

Thus, given a logical predicate P : C(L) → H over A : C(L) → B a

term x : σ ' t : τ corresponds under P to a morphism P(t) : Pσ → Qτ

over A(t) : Aσ → Aτ . As we mentioned at the end of §4.1, we may identify

P(t) with its vertical factor. We then have as an immediate consequence of

Definition 4.2.2.

4.2.4. Corollary (Basic Lemma for categorical logical predicates). Given

a ccc-logical predicate P : C(L) → H over A : C(L) → B, for any term

4.2 Logical predicates for cartesian closed categories 139

x : σ ' t : τ , there is a proof t̂

x : σ | h : Pσ(x) ' t̂ : Pτ (A(t))

where t̂ is given by the vertical factor of P(t).

This shows the role of the morphism part of a (categorical) logical pred-

icate: it amounts to a proof of the Basic Lemma for the predicate. We

mean proof in a constructive sense, whereby we identify proofs with vertical

morphisms, as indicated at the end of §4.1. Of course, in a proof-irrelevant

setting, there is at most one such proof and only its existence matters. This

is the case for set-theoretic logical predicates, as in §2.2 and §4.3.1. In this

case, a logical predicate is determined by the object part of the functor

P : C(L) → H, as considered in [MS92]. Thus, in the case of logical pred-

icates over applicative structures, §2.2, just like a choice of values for con-

stants determines the interpretation of a term in an environment (provided

the theory is freely generated), the conditions on Definition 2.2.3 determine

the interpretation of a term in the category of predicates. The latter corre-

sponds then to a proof (the unique one in this case) of the basic lemma for

models, Lemma 2.2.4.

Notice that Corollary 4.2.4 relies only on the fact that
H
↓p

B
is a fibration

and is independent of the structure of H and B. It therefore applies to other

kind of logical predicates and not only those for simply typed λ-calculus, cf.

Remarks 4.2.3.

Finally, let us remark that the approach to logical predicates we pre-

sented above can deal with n-ary relations as well, by considering fibrations

140 Logical predicates for simply typed λ-calculus

over an n-ary product of categories p : E → B1 × . . . × Bn; in the internal

language of p, the objects of E correspond to n-ary relations x1 : A1, . . . , xn :

An ' R(x1, . . . , xn) Prop. In particular, to consider n-ary relations over a

given category B with finite products, given
E
↓p

B
, we consider the fibration p′

obtained by change-of-base

where ×n : Bn → B is the n-ary product functor. Thus, objects of E′ corre-

spond to predicates on n variables, or equivalently, n-ary relations on B.

4.3 Some examples

We present examples of fibrations in which Corollary 3.3.11 can be applied.

These examples have appeared in the literature, although not explicitly recog-

nised as instances of the abovementioned corollary. They show how diverse

categories have cartesian closed structure for the same abstract reason and

shows the applicability of our constructions. Further examples of this kind

of fibrations are in [Jac92, Jac91a].

4.3 Some examples 141

4.3.1 Sconing

The fibration ı : Sub(Set) → Set has the appropriate structure to interpret

firstorder predicate calculus, cf. Example 2.1.2. Given a category C with a

terminal object 1, we obtain a fibration over it by change-of-base along the

global sections functor C(1,) : C → Set :

C̃ is called the injective scone of C in [MS92].

We thus interpret logical formulas in c̃od classically, because predicates

are interpreted as subsets. c̃od is a fibred-ccc, since C(1,)∗ : FibSet →

FibC is a 2-functor which preserves finite products, by Lemma 3.1.1, and

hence preserves the relevant adjunctions. It also has ConsC products by

Proposition 1.4.7. Thus, when C is a ccc, so is C̃ and c̃od preserves such

structure, by Corollary 3.3.11.

The expression of the logical cartesian closed structure in such a fibration

then corresponds to classical logical predicates on C, as in [MS92], or rather,

to logical predicates on the applicative structure generated by C, cf. Remark

2.2.2. Specifically, given objects A, B ∈ |C| and subsets R ⊆ C(1, A) and

S ⊆ C(1, B), their exponential in C̃ is: for f : 1 → A ⇒ B

f ∈ (R⇒̃S) ⇔ ∀x : 1 → A.x ∈ R =⇒ evA,B〈f, x〉 ∈ S

142 Logical predicates for simply typed λ-calculus

In certain cases we may transfer structure from the injective scone of a cat-

egory to its category of subobjects (or rather, from the classical logic over it

to its internal logic). This is the case with ωCpo which we analyse below.

4.3.2 Logical predicates for complete partial orders

Let ωCpo be the category of ω-complete posets (not necessarily with a bot-

tom element) and continuous functions between them. It is a standard

tool in denotational semantics, see e.g. [LS81]. Consider the fibration

ı : Sub′(ωCpo) → ωCpo, where an object in Sub′(ωCpo)C is a subset of C

closed under sups of ω-chains, a so-called admissible subset , and morphisms

are commutative squares. Thus, every fibre (Sub′(ωCpo))C is small complete,

with limits given by intersection. But the fibres are not cartesian closed. For

a counterexample, consider the cpo

Consider the admissible subset {0, a,&} and the family of admissible subsets

{0, . . . , i}, for i ∈ ω. Then

{0, a,&} ∩ (
∨
i∈ω

{0, . . . , i}) = {0,&} 4= {0} =
∨
i∈ω

({0, a,&} ∩ {0, . . . , i})

4.3 Some examples 143

This shows that {0, a,&}∩ does not preserve colimits and therefore cannot

have a right adjoint.

So, we cannot apply Corollary 3.3.11 directly to this fibration in order to

get logical predicates for this logic over ωCpo. However, we can use sconing

to get around them.

Consider the following change-of-base diagram

where U is the forgetful or global sections functor ωCpo(1,). As we have seen

in §4.3.1, ı′ is a fibred-ccc with ConsωCpo-products. So we can make sense of

logical predicates for ωCpo using classical logic, i.e. the internal logic of Set.

There is a reflection R � J : Sub(ωCpo) → κCpo (via η, 1κCpo), where J

is the inclusion and R simply closes a subset S ⊆ C (C a cpo) under sups of

ω-chains.

More precisely

R(S) =
⋂
{S ′ admissible subset of C | S ⊆ S ′}

Note that the existence of a reflection at every fibre is guaranteed by Freyd’s

adjoint functor theorem [Mac71, p.116]; the existence of R then follows from

Theorem 3 in [BGT91]. It is easy to verify that η satisfies the hypothesis of

144 Logical predicates for simply typed λ-calculus

Proposition 2.3.2 since the cpo structure on exponentials is given pointwise.

Thus Sub′(ωCpo) is a ccc and we can interpret logical predicates in it.

The expression for exponents is then the same as for Set:

(S ⊆ C) ⇒ (S ′ ⊆ D) ∼= {f : C → D in ωCpo | ∀x : C. x ∈ S =⇒ f x ∈ S ′}

which is an admissible subset of C ⇒ D.

4.3.1 Remarks.

• There are other ways of showing that Sub′(ωCpo) is a ccc, as in [MR91,

MS92]. The method used here reflects better the logical nature of the

constructions involved: since the logic of admissible subsets over ωCpo

is not rich enough to interpret the fragment of predicate logic required

to express logical exponents, we interpret them classically (that is, in

Set and reflect them back into the above logic. So we are using the

logic/fibration relation in an essential way.

• For the category ωCpo⊥, consisting of ω-complete posets with a bottom

element and continuous functions, consider the functor ı : Sub′(ωCpo⊥) →

ωCpo⊥, where the objects of Sub′(ωCpo⊥) are admissible subsets, i.e.

subsets closed under suprema of ω-chains and bottom element. The

functor ı admits cartesian liftings along strict functions, via inverse

images as before. We can thus infer the cartesian closed structure of

Sub′(ωCpo⊥) because the base morphisms involved in the construction

of exponentials, namely projections and evaluation, are strict. So, the

4.3 Some examples 145

above construction can then be carried out in this setting. Anyway,

logics for categories like Sub′(ωCpo⊥) should be studied in the con-

text of fibrations for categories of partial maps. See [KN93] for some

preliminary considerations on this topic, using indexed categories.

• Note that the internal logics of ωCpo and SωCpo⊥ allow any subset, with

the discrete or flat ordering respectively, as a predicate. The restriction

to admissible subsets is necessary if we want Scott’s induction principle

to reason about least fixed points.

4.3.3 Kipke logical predicates

Kripke lambda models were introduced in [MM87] to give Kripke-style se-

mantics for the simply typed λ-calculus. Kripke models are complete for the

usual proof system of simply typed λ-calculus, unlike Henkin models. By a

Kripke lambda model here we mean a model of simply typed λ-calculus in

the presheaf topos SetW , with W the poset of ‘possible worlds’ regarded as a

category in the usual way. Thus a Kripke lambda model is simply a sub-ccc

of SetW .

Consequently, Kripke logical predicates, as given in [Mit90, MM87] arise

by carrying out the constructions of logical products and exponentials in the

internal logic of SetW , i.e. in the fibration
Sub(SetW)

↓ı

SetW
This fibration, like

the internal logic of any topos, is a fibred-ccc with ConsSetW -products. For a

description of the internal logic of toposes, and presheaf toposes in particular,

see [LS86, Bel88, Gol79]. We only review those aspects relevant to the present

146 Logical predicates for simply typed λ-calculus

application. Kripke logical predicates are used to show completeness results

for a special kind of Kripke models in [MM87].

An object A in SetW consists of a W -indexed family of sets Aw and

transition functions Aw,w′ for w ≤ w′ ∈ W , satisfying the evident compo-

sition and identity laws. The translation functors of the fibration perform

substitution (regarding an object in the fibre Sub(SetW)A as a W -indexed

family of subsets/predicates Pw ⊆ Aw):

((f : B → A)∗(P ↪→ A))w = {x ∈ Bw|Pw(fwx)}

The cartesian closed structure of the fibre Sub(SetW)A can be described as

follows:

Terminal object: 1w = Aw

Binary products:

(P ×A Q)w = {x ∈ Aw|Pw(x) ∧Qw(x)}

Exponentials:

(P ⇒A Q)w = {x ∈ Aw|∀w′ ≥ w.Pw′
(Aw,w′x) =⇒ Qw′

(Aw,w′ , x)}

The corresponding transition functions are induced by those of A, e.g.

(P ⇒A Q)w,w′ = Aw,w′ .

ConsSetW -products ΠA : Sub(SetW)B×A → Sub(SetW)A are given by

(ΠA(P))w = {x ∈ Bw | ∀w′ ≥ w.∀a ∈ Aw′
.Pw′

(Bw,w′x, a)}

4.3 Some examples 147

with transition functions induced by those of B.

The cartesian closed structure of Sub(SetW) is given as follows:

Terminal object: 1w(x) = &

Binary products: for P ↪→ A, Q ↪→ B

(P ×Q)w = {〈x, y〉 ∈ Aw ×Bw|Pw(x) ∧Qw(y)}

Exponentials: for P ↪→ A, Q ↪→ B

(P ⇒ Q)w = {f ∈ (A ⇒ B)w|∀w′ ≥ w.∀a ∈ Aw′
.

(∀w′′ ≥ w′.

Pw′′
(Aw′,w′′a) =⇒ Qw′′

(evw′′
A,B〈(A ⇒ B)w,wt′′f,

Aw′,w′′a〉))}

= {f ∈ (A ⇒ B)w | ∀w′ ≥ w.∀a ∈ Aw′
.

Pw′
(a) =⇒ Qw′

(evw′
A,B〈(A ⇒ B)w,w′f, a〉)}

This is precisely the definition of Kripke logical predicates in [MM87],

where the authors notice that such predicates are obtained by interpreting

the usual first-order formulas for logical predicates over applicative structures

in the internal logic of a topos, although the connection to cartesian closure

is not mentioned.

4.3.4 Deliverables

The examples presented so far have dealt with internal logics. Recalling the

interpretation of first-order predicate calculus in a first-order hyperdoctrine,

148 Logical predicates for simply typed λ-calculus

we see that for internal logics (i.e. subobject fibrations) there is at most one

proof for a sequent. This aspect is called proof-irrelevance, since any two

proofs of a derivable sequent are identified. However, in a ‘term’ hyperdoc-

trine, the fibres will not be preorders. The category of deliverables which we

analyse next uses such a syntactic hyperdoctrine built from Coquand-Huet’s

Calculus of Constructions [CH88]. Actually, first-order intuitionistic predi-

cate calculus over a simply typed λ-calculus as object language will suffice

for the present example.

The category Del of first-order deliverables has

Objects A type s, together with a predicate S over s, S : s → Prop; a

predicate over s is simply an s-indexed proposition.

Morphisms Pairs (f, p) : (s, S) → (t, T), such that f : s → t and x : s '

p(x) : Sx =⇒ T (fx). Such a pair is called a deliverable.

Identity (1s, (λr : Sx.r)) : (s, S) → (s, S)

Composition For (f, p) : (s, S) → (t, T), (g, q) : (t, T) → (u, U),

(g, q) ◦ (f, p) = (g ◦ f, (λr : Sx.q(fx)(pr)))

This category was introduced in [BM91], as the basis of an approach to

program development within the Calculus of Constructions. This approach

integrates the classical ‘Hoare-triples’ assertions of partial correctness with

the synthetic approach to programming which extracts a program from a

constructive proof of its specification. The idea is that a morphism (f, p)

4.3 Some examples 149

corresponds to a ‘program’ f and a ‘proof of correctness’ p w.r.t. to the input-

output specification S-T . In ibid., the authors show that the category of

deliverables is cartesian closed, a fact which is exploited to structure program

development. This assumes mild variations to the Calculus of Constructions,

namely, the existence of unit types and η-conversion. Here, we show that

cartesian closure is an immediate consequence of Corollary 3.3.11.

Let B be the (cartesian closed) category of types and terms of Calculus of

Constructions, underlying the category of deliverables. Define the B-indexed

category Del : Bop → Cat as follows: for a type s,Del(s) has predicates

S : s → Prop as objects; a morphism p : S → T is a proof x : s ' p(x) :

Sx =⇒ Tx. For a morphism (term) f : s → t, the reindexing functor

f ∗ : Del(t) → Del(s) performs substitution:

f ∗(T : t →Prop) = λx : s.T (fx)

f ∗(p : S → T) = x : s ' p(fx) : S(fx) =⇒ T (fx)

The category Del is the fibred category over B obtained from Del via

the Grothendieck construction. It is a fibred-ccc, with the evident ‘pointwise’

structure, e.g.

(S : s →Prop) ⇒s (S ′ : s →Prop) = λx : s.Sx =⇒ S ′x

and it has ConsB-products, given by Π-types:

Πs(S : t× s →Prop) = λy : t.Πx : s.S(x, y)

Πs(p : S → S ′) = λp′ : Πx : s.S(x, y).λx : s.p(x, y)(p′x)

150 Logical predicates for simply typed λ-calculus

By Corollary 3.3.11, Del is cartesian closed, with cartesian closed struc-

ture given by logical predicates, essentially as in [BM91]. Note that a carte-

sian lifting for a ‘program’ p : s → t and a predicate T : t → Prop yields

a weakest precondition for p and T . Therefore, the notion of fibration is

at the basis of the original work on the axiomatic approach to sequential

program verification using Hoare-triples. The expression of such triples in a

type-theoretic setting leads to the abovementioned deliverables. In a later

version [BM92], the authors refined the structure of the category of deliv-

erables to reflect more closely the Calculus of Constructions, which does

not have η-conversion, in terms of semi-cartesian closed categories. Further,

they introduced a category of second-order deliverables to allow the input

and output of a program to be related in an specification. Such construction

amounts to a polynomial fibration over Del. The general construction of

such polynomial fibrations is given in §6.

4.3.5 Categories derived from realisability

As a final example of a fibred-ccc with products, we take a brief look at

categories defined in terms of Kleene’s realisability interpretation of intu-

itionistic logic. Specifically, we show how the cartesian closed structure of

ω−Set and PER can be inferred from Corollary 3.3.11 and Propositions 2.3.1

and 2.3.2. The fact that these categories are cartesian closed, follows from

topos-theoretic considerations. However, we include this material as an il-

lustration; there is no claim of originality. The basic material concerning the

above categories and their applications in the interpretation of polymorphic

4.3 Some examples 151

λ-calculi can be found in [Pho92].

Let ω denote the set of natural numbers and ℘ω its powerset. For any

set X, we define the following preorder on X ⇒ ℘ω:

p ≤ q =� ∃r ∈ ω.∀x ∈ X, n ∈ ω.n ∈ p(x) =⇒ r · n ↓ ∧r · n ∈ q(x)

where r ·n denotes Kleene’s application and ↓ is the ‘definedness’ predicate.

Let R : Setop → Cat be the following Set-indexed category:

R(X) = (X ⇒ ℘ω,≤)
R(f : X → Y) = ◦ f

This indexed category is a so-called tripos . See [HJP80], where it is called

the recursive reahabdity tripos. Consequently every R(X) is a Heyting (pre-

)algebra, with operations:

Top element: &X : X → ℘ω =� (x ∈ X �→ ω)

Binary meet: Let 〈 , 〉 : ω×ω → ω be a recursive pairing function. Then,

p ×X q =� (x ∈ X �→ {〈n, m〉 | n ∈ p(x) ∧m ∈ q(x)})

Heyting implication: Let A, B ⊆ ω and

A −→ B =� {n ∈ ω | ∀m ∈ ω.m ∈ A =⇒ n ·m ↓ ∧n ·m ∈ B}

Then,

p ⇒X q =� (x ∈ X �→ p(x) −→ q(x))

152 Logical predicates for simply typed λ-calculus

Let
R
↓p

Set
be the fibration associated to R. From the above, we already know

that p is a fibred-ccc. It also has ConsSet-indexed products: for x, x′ ∈ X,

let

δX(x, x′) =

{
ω if x = x′

∅ otherwise

Then,

ΠX(p : Y ×X → ω)(y) =� {n | ∀(y′, x) ∈ Y ×X.n ∈ (δY (y, y′) −→ p(y′, x))}

By Corollary 3.3.11, R is a ccc. Denoting the objects of R as A =

〈|A|, pA〉, the cartesian closed structure is given by

Terminal object: 〈{∗},&{∗}〉

Binary products:

A ×B = 〈|A| × |B|, pA×B〉

where

pA×B(a, b) = {〈n, m〉 | n ∈ pA(a) ∧m ∈ pB(b)}

Exponentials:

A ⇒ C = 〈|A| ⇒ |B|, pA⇒B〉

where

pA⇒B = {n| ∀a ∈ A.∀m ∈ ωn ·m ↓ ∧
(∀r ∈ ω.r ∈ pA(a) =⇒ n ·m · r ↓ ∧n ·m · r ∈ pB(f(a)))}

4.3 Some examples 153

There are interesting subcategories of R with rich structure. One well-

known example is the category of ω-sets [Pho92], which we now describe.

Given an object A = 〈|A|, pA〉 of R, an element a ∈ |A| is said to be

realisable iff pA(a) 4= ∅. ω-Set is isomorphic to the full subcategory of R with

objects A = 〈|A|, pA〉 such that every a ∈ |A| is realisable. Here is the more

conventional scription of ω-Set:

Objects: pairs 〈|A|,'A〉, where |A| is a set and 'A⊆ ω × |A| such that

∀a ∈ |A|.∃n ∈ ω.n 'A a

The pair (|A|,'A) is an ω-set.

Morphisms: f : 〈|A|,'A〉 → 〈|B|,'B〉 is a function f : |A| → |B| in Set

such that

∃r ∈ ω. ∀a ∈ |A|. ∀n ∈ ω.n 'A a =⇒ r · n ↓ ∧r · n 'B f(a)

As mentioned before ω-Set is cartesian closed:

Terminal object: 〈{∗}, {(n, ∗) | n ∈ ω}〉

Binary products:

〈|A|,'A〉 × 〈|B|,'B〉 = 〈|A| × |B|,'A×B〉

where

〈n, m〉 'A×B 〈a, b〉 ⇔ n 'A a ∧m 'B b

154 Logical predicates for simply typed λ-calculus

Exponentials: 〈|A|,'A〉 ⇒ 〈|B|,'B〉 = 〈ω-Set(〈|A|,'A〉, 〈|B|,'B〉),'A⇒B〉

where

n 'A⇒B f ⇔ ∀a ∈ |A|.∀m ∈ ω.m 'A a =⇒ n ·m ↓ ∧n ·m 'B f(a)

The finite products are as in R, module the obvious change of notation

n 'A a ↔ n ∈ pA(a) that construes relations in ω × |A| as functions |A| →

℘ω and vice versa. But exponentials in ω-Set do not agree with those in

R. However, if we consider the realisable elements of the exponential of two

ω-sets in R they correspond to the elements of the exponential in ω-Set.

This follows from Proposition 2.3.1 and the proposition below which sets up

a suitable coreflection between ω-Set and R.

We can obtain an ω-set from any object of R by discarding the non-

realisable elements of the underlying set. This leads to the following

4.3.2. Proposition. There is a coreflection

where J : ω-Set → R is the full and faithful, finite-product preserving functor

J(〈|A|,'A〉) = 〈|A|, (a ∈ |A| �→ {n ∈ ω | n 'A a})〉

J(f) = f

4.3 Some examples 155

Proof. Let Re : R → ω-Set be the functor defined by

Re(〈|A|, pA〉) = 〈{a | pA(a) 4= ∅}, {(n, a) | n ∈ pA(a)}〉

Re(f) = f

The corresponding hom-set isomorphism

θA,B : R(J(〈|A|,'A〉), 〈|B|, pB〉) ∼→ ω-Set(〈|A|,'A〉, Re(〈|B|, pB〉))

is given by

θA,B(f : J(〈|A|,'A〉) → 〈|B|, pB〉) = f̂ : |A| → {b ∈ |B| | pB(b) 4= ∅}

where f̂(a) = f(a) with the same realiser as f ; f must take values in {b ∈

|B| | pB(b) 4= ∅} since otherwise it will not be realisable. Conversely,

θ−1
A,B(g : 〈|A|,'A〉 → Re(〈|B|, pB〉)) = ι ◦ g

with the same realiser as g and ι : {b ∈ |B| | pB(b) 4= ∅} ↪→ |B| is the

inclusion. It is clear that the non-realisable objects of |B| have no effect

in the realisability of functions with codomain |B|. Naturality of θA,B is

immediate. ✷

Note that applying Corollary 2.3.1, exponentials in ω-Set are given by

〈|A|,'A〉 ⇒ω−Set 〈|B|,'B〉 ∼= Re(J〈|A|,'A〉) ⇒R J(〈|B|,'B〉))

which agree with the previously given description.

Another interesting category arising from realisability is PER [Pho92].

Its objects are the symmetric and transitive relations on ω. For R, S two such

156 Logical predicates for simply typed λ-calculus

relations, a morphism f : R → S in PER is a function f : Q(R) → Q(S),

where Q(R) = {[n]R | n ∈ dom(R)} is the set of equivalence classes of R,

such that there is a realiser n ∈ ω satisfying

∀m ∈ dom(R).f [m]R = [n ·m]R

We say that n realises f . PER is equivalent to the category Mod of so-called

“modest ω-sets”, ibid. This is the full subcategory of ω-Set with objects

〈|A|,'A〉 satisfying

∀a, a′ ∈ |A|.∀n ∈ ω.(n 'A a ∧ n 'A a′) =⇒ a = a′

The equivalence with PER is given by

with

Φ〈|A|,'A〉 = {(n, m) | ∃a ∈ |A|.n 'A a ∧m 'A a}

Ψ(R) = 〈Q(R),∈〉

PER is cartesian closed. Exponentials are given as follows: for R, S in

PER

R ⇒S
PER= {(n, n′) | ∃f : R → S.n realises f ∧ n′ realises f}

We can infer this from the fact that Mod is a reflective subcategory of ω-

Set, applying Proposition 2.3.2. The reflection Θ : ω-Set →Mod is given as

4.3 Some examples 157

follows: for an ω-set 〈|A|,'A〉, define a relation K on |A| by

a K a′ =� ∃n ∈ ω.n 'A a ∧ n 'A a′

Let ∼ denote the transitive closure of K. Then ΘA = 〈|A|\∼,'ΘA〉, with

n 'ΘA [a]∼ =� ∃a′ ∈ [a]∼.n 'A a′

To verify that this reflection satisfies the hypothesis of Proposition 2.3.2,

observe that its unit is ηA = []∼ : 〈|A|,'A〉 → 〈|A|\∼,'ΘA〉, realised by *I+,

a code for the identity function. Any modest set is isomorphic to ΨR for

some R ∈ |PER| because of the abovementioned equivalence. Therefore the

exponential of two modest sets in ω-Set is

〈Q(R),∈〉 ⇒ 〈Q(S),∈〉 = 〈{f : Q(R) → Q(S) | f in ω-Set},'ΨR⇒ΨS〉

In the modest set Θ(〈Q(R),∈〉) ⇒ 〈Q(S),∈〉) , we must identify the f ’s in

(the transitive closure of) the relation

f K f ′ ≡ ∃r ∈ ω.r realises f ∧ r realises f ′

But then the definition of ‘r realises f ’ implies that

f K f ≡ f = f ′

Therefore, the function part of the unit ηΨR⇒ΨS is f �→ {f}, which is an

isomorphism. It is easy to verify that

R ⇒PER S = ΦΘ(Ψ(R) ⇒ω−Set Ψ(S))

We have thus shown how Corollary 3.3.11 and the fairly general properties

of reflections and coreflections given in Propositions 2.3.1 and 2.3.2 allows us

to infer the cartesian closed structure of R, ω-Set and PER.

158 Logical predicates for simply typed λ-calculus

4.4 A related categorical approach to logical

predicates

A categorical approach to logical predicates has been proposed in [MR91]. It

seems appropriate to make a few comparisons between this approach and the

one we have presented in §4.2. In ibid. a category of relations is defined to

study parametricity issues arising in first and second order lambda calculus.

For this purpose, the authors define for given categories K and B and a

functor F : K → B, the category of relations over K, Rel(K, B, F), as follows:

Objects: 〈K, B, m〉 ∈ |REL(K, B, F) | iff K ∈ |K|, B ∈ |B| and m : B ↪→

FK monic

Morphisms:

〈f, g〉 : 〈K, B, m〉 → 〈K ′, B′, m′〉 iff f : K → K ′, g : B → B′

and

commutes in B.

4.4 A related categorical approach to logical predicates 159

Composition and identities are defined componentwise. There is a forgetful

functor U : Rel(K, B, F) → K such that

U〈K, B, m〉 = K U〈f, g〉 = f

This category, which is intended as a direct generalisation of the category of

set-theoretic predicates Rel(Set,Set, 1Set), can easily be expressed in terms

of fibrations. From the subobject fibration ı : Sub(B) → B we obtain by

change of base along F Rel(K, B, F) ∼= F ∗(Sub(B)), and the functor U is the

projection from the pullback to K. This definition makes sense regardless of

whether ı is a fibration; in case it is, Rel(K, B, F) is fibred over K, via U .

In [MR91], Ma and Reynolds go on to analyse some properties of Rel(K,

B, F). They show that if K is a ccc, B is a ccc with finite limits and F

preserves finite products then Rel(K, B, F) is a ccc and the projection functor

into K preserves this structure. Such proposition is in the same spirit as our

Corollary 3.3.11, although the hypotheses are different. However ibid. does

not provide an explicit connection between such property of Rel(K, B, F)

and logical predicates, although in some particular cases such a relationship

exists, e,g. when B is Set, or any topos, the expression of the construction

in ibid. in the internal language of U yields logical predicates.

[MR91] continues with the statement of the ‘Identity Extension Lemma’.

For this purpose, the authors define the functor J : K → Rel(K, B, F) as

160 Logical predicates for simply typed λ-calculus

follows:

J(K) = 〈K, FK, 1FK〉

J(f : K → K ′) = 〈f, Ff〉

That is, J takes an object to the identity relation over it, via F . The Identity

Extension Lemma asserts that, under certain hypotheses, J is a cc-functor,

i.e. preserves the cartesian closed structure.

The unary case of this lemma is immediate in our framework, since in

this case J amounts to the fibred terminal object functor. This functor yields

then a full cc-embedding of the base category in the ‘category of predicates’.

The case of binary relations requires the existence of equality predicates in

the fibration
Rel(K, B,F)

↓U

K
to define J . Equality predicates for fibrations have

been characterised in [Law70]. For a fibration
E
↓p

B
, regarded as a logic over

B, the equality predicate on a type A ∈ |B| is given by the coreindexing,

or direct image, δ!(1A), where δ : A → A × A is the diagonal morphism

and 1A is the terminal object over A, cf. Remark 4.2.1. This means that the

equality predicate on A is characterised as the least reflexive relation on A. A

similar approach applies to n-ary relations. Thus, we can express the Identity

Extension Lemma for p. When formulated in the internal language of p, it

amounts to the requirement that the equality predicate on an exponential

type A ⇒ B be given pointwise:

f, g : A −→ B ' f =A−→B g ↔ ∀x, y : A.x =A y =⇒ ev〈f, x〉 =B ev〈g, y〉

4.5 Induction principle for data types in a fibration 161

Ma and Reynolds extend their analysis of categories of relations to deal

with logical relations for system F in terms of PL-categories [See87], although

they make no explicit connection between the categorical constructions they

present and second-order logical relations. To give an abstract account of

these further research is required. We comment on a possible direction to

follow in §7.

4.5 Induction principle for data types in a

fibration

We have seen in §4.2 that for
E
↓p

B
the expression of certain structure of E in

the internal language of p allows us to obtain certain logical concepts, namely

logical predicates, from categorical ones, namely cartesian closure. We have

also seen in §4.4 how this ‘logical structure’ of E can be used to assert the

validity of certain logical principles, like pointwise equality for −→-types, by

requiring certain functors to preserve such structure. In this section we give

another instance of this, providing a categorical interpretation of structural

induction for data types.

Following [CS91, Jac93], we will consider inductive data types in a dis-

tributive category B. We only review the concepts required to formulate the

abovementioned induction principles for such types. The material on dis-

tributive categories and inductive datatypes in them is taken from [Jac93].

4.5.1. Definition.

162 Logical predicates for simply typed λ-calculus

• A category B with finite products and finite coproducts is distributive if,

for every I ∈ |B|, the functor I × : B → B preserves finite coproducts.

• A functor F : B → C between distributive categories B and C is dis-

tributive if it preserves finite products and coproducts.

4.5.2. Example. Any cartesian closed category C with finite coproducts is

distributive: for any I ∈ |C|, I× preserves coproducts because it has a right

adjoint. Thus, Set, ωCpo and PER are distributive categories.

Inductive data types in a distributive category are specified by means

of endofunctors, which give the signature of the type. To formulate a precise

definition of models for such specifications, we consider the category of alge-

bras for an endofunctor:

4.5.3. Definition. Given a functor T : B → B, the category T -Alg has:

Objects: pairs (X, x : TX → X), called T -algebras.

Morphisms: f : (X, x) → (Y, y) is a morphism f : X → Y in B, such that

f ◦ x = y ◦ Tf .

Composition and identities are inherited from B.

4.5.4. Definition. Let B be a distributive category, S a finite set and

M : S → B be a functor, regarding S as a discrete category.

(i) Let TM ⊆ |Cat(B, B| be the least class of endofunctors on B such that

4.5 Induction principle for data types in a fibration 163

• The identity functor is in T .

• For any I ∈ S, the constant functor X �→ I is in T .

• If T1 and T2 are in T , so are T2 ◦ T1, T1 × T2 and T1 + T2.

(ii) An inductive data type specification in B, idts for short, is given by

a functor M : S → B and a functor (T : B → B) ∈ TM . We write TM for

such idts.

(iii) An model for an idts TM is a T -algebra.

(iv) The initial model for an idts TM is the initial T -algebra (if it exists).

The set S in the above definition is called a parameter set. Its role

is to specify, via the functor M : S → B, those objects of B which are

parameters for the data type specified. The examples below will make this

clear. See [Jac93] for a more general and elegant formulation of data types

in distributive categories. The initial T -algebra of a functor T : B → B need

not exist. But it is possible to guarantee the existence of initial T -algebras

under suitable cocompleteness conditions on B and T . As shown in [LS81],

an initial T -algebra can be obtained as the colimit of an ω-chain, when T

preserves such colimits. An ω-chain is a functor ω → B, where ω is the poset

category of natural numbers with their usual ordering. The initial T -algebra

is the colimit of the following ω-chain:

0
ι−−−→ T0

Tι−−−→ T 20 · · ·

164 Logical predicates for simply typed λ-calculus

where ι : 0 → T0 is the unique morphism from the initial object. For B = Set,

and T ∈ T preserves colimits of ω-chains and therefore any idts in Set has

an initial model.

An important observation, due to Lambek [LS81], is that for an initial

T - algebra (D, constr : TD → D), constr is an isomorphism. Thus, we can

regard D as the ‘least fixed point’ of T , as illustrated by the above ω-chain.

The isomorphism constr provides the ‘constructors’ of the data type, as the

following familiar examples illustrate.

4.5.5. Examples. Let B be a distributive category.

(i) Natural numbers object: Consider the idts TX = 1 + X, with

parameter set ∅. A T -algebra (A, [c, f] : TA → A) is given by an object

A, the ‘carrier’ of the type, and morphisms c : 1 → A and f : A → A.

An initial model for T is precisely a natural numbers object (N, [z, s]) in

Lawvere’s sense, see [LS86, Part I,§9]. In Set, it is the set of natural numbers

ω, with the usual 0 and successor operations. Initiality means that there is

an ‘iterator’, which given c and f as above produces a morphism h : N → A

such that h ◦ z = c and h ◦ s = f ◦ h. In Set, h corresponds to the function

defined from c and f by primitive recursion. We write it(c, f) for h above.

(ii) Lists: For an object A ∈ |B|, consider the idts TAX = 1 + A × X,

for a singleton parameter set, i.e. A : {∗} → B. A T -algebra is given

by an object B and morphisms c : 1 → B and t : A × B → B. An

4.5 Induction principle for data types in a fibration 165

initial model in Set is precisely the set List(A) of finite lists of elements

of A, with the usual operations nil : 1 → List(A), the empty list, and

cons : A × List(A) → List(A), which given a ∈ A and a list l, returns this

list with the element a appended to its head.

The example of lists above shows the role of the parameter S and the

functor M : S → B in the specification of a data type; the type of lists

List(A) is parameterised by the type A of the elements of the list.

Consider now
E
↓p

B
, with B a distributive category. We will use Corollaries

3.3.6 and 3.3.7 to impose sufficient conditions on p to make E a distributive

category. We will then consider the idts on E induced by a given idts on

B to assert an induction principle for the latter. We will need the following

Frobenius condition [Law70] on coreindexing functors for p:

4.5.6. Definition. Let
E
↓p

B
be a fibration with fibred binary products,

and let u : I → J be a morphism in B for which a coreindexing functor,

given by cocartesian liftings, u! : EI → EJ exists. u! satisfies Frobenius if, for

every X ∈ |EJ | and every Y ∈ |EI |, the canonical morphism

〈εX ◦ u!π, u!π
′) : u!(u

∗(X) × Y) → X × u!(Y)

is an isomorphism, where ε : u!u
∗ ·→1EJ

is the counit of u! � u∗, cf. Proposi-

tion 1.2.7.

4.5.7. Remark. When p is a fibred-ccc, coreindexing functors for p sat-

isfy Frobenius [Pit91].

166 Logical predicates for simply typed λ-calculus

4.5.8. Proposition. Given
E
↓p

B
with

• B a distributive category,

• p a fibred distributive category, i.e. every fibre is a distributive category

and reindexing functors are distributive,

• p has coreindexing functors along coproduct injections, I
ι→ I +J

ι′← J ,

for every I, J ∈ |B|. Such coreindexing functors satisfy Frobenius and

Beck-Chevalle condition.

Then, E is a distributive category and p strictly preserves finite products and

coproducts.

Proof. By Corollaries 3.3.6 and 3.3.7, E has finite products, ×̃ and 1̃, and

finite coproducts, +̃ and 0̃, and p strictly preserves them. It only remains to

verify that for any X ∈ |E|, X×̃ : E → E preserves finite coproducts: given

Y ∈ |EJ | and Z ∈ |EK |, let pX = I and ζ : (I ×J)+ (I ×K) ∼→ I × (J +K)

be the canonical isomorphism. Also, let

I
ι→ J + K

ι′← K

and

I × J
κ→ (I × J) + (I ×K)

ι′← I ×K

be the corresponding coproduct diagrams. Note that

I × ι = ζ ◦ κ I × ι′ = ζ ◦ κ′

4.5 Induction principle for data types in a fibration 167

by distributivity of B. Then,

X×̃(Y +̃Z)
∼= π∗

I,J+Z(X) ×I×(J+K) (π′
I,J+Z)∗(ι!(Y) +J+K ι′!(Z))

∼= π∗
I,J+Z(X) ×I×(J+K) (π′

I,J+Z)∗(ι!(Y))

+I×(J+K) (π∗
I,J+Z(X) ×I×(J+K) (π′

I,J+Z)∗ι′!(Z)

by fibred distributivity
∼= π∗

I,J+Z(X) ×I×(J+K) (I × ι)!(π
′
I,J)∗(Y))

+I×(J+K) (π∗
I,J+Z(X) ×I×(J+K) (I × ι′)!(π

′
I,K)∗(Z))

by Beck-Chevalley condition
∼= ([πI,J , πI,K]∗(X) ×I×J κ!(π

′
I,J)∗(Y))

+(I×J)+(I×K) ([πI,J , πI,K]∗(X) ×I×K κ′
!(π

′
I,K)∗(Z))

by reindexing along ζ
∼= κ!(π

∗
I,J(X) ×I×J (π′

I,J)∗(Y)) +(I×J)+(I×K) κ′
!(π

∗
I,J(X) ×I×K (π′

I,K)∗(Z))

by Frobenius
∼= (X×̃Y)+̃(X×̃Z)

✷

4.5.9. Remark. The Beck-Chevalley condition required for coreindexing

functors in the above proposition implies that for a coproduct injection

ι : J → J + K and objects I ∈ |B| and X ∈ |EJ |, (π
′
I,J+K)∗(ι!(X)) ∼=

(I × ι)!((π
∗
I,J(X)). This is an instance of the Beck-Chevalley condition over

the pullback square

168 Logical predicates for simply typed λ-calculus

See [Law70, Pav90] for further details.

4.5.10. Example. The internal logic fibration
Sub(Set)

↓ι

Set
satisfies the hy-

potheses of Proposition 4.5.8. Hence Sub(Set) is a distributive category.

For
E
↓p

B
satisfying the hypotheses of Proposition 4.5.8, given a set of

parameters S and functors M : S → B and M̃ : S → E such that pM̃ = M ,

an idts TM : B → B induces an idts T̃M̃ : E → E fibred over T , using

the distributive structure of E. The formal definition of T̃M̃ proceeds by

induction on the construction of T ∈ TM . For instance, given H ∈ |EA|,

TAX = 1+A×X induces T̃ Y = 1̃+̃H×̃Y . We can then consider T̃ -algebras

and initial models in E.

4.5.11. Lemma. Given
E
↓p

B
and a fibred 1-cell (T̃ , T) : p → p, T̃ -Alg

is added over T -Alg via the functor p-Alg : T̃ -Alg → T -Alg, with action

(X, x) �→ (pX, px).

Proof. Given (X, x) in T̃ -Alg and u : (J, j) → pX, px, a cartesian lift-

ing for u is given as indicated by the following diagram

4.5 Induction principle for data types in a fibration 169

where the dashed morphism above is the unique morphism making the dia-

gram commute with pu(x) = j. ✷

In the spirit of Definition 4.2.2, given
E
↓p

B
satisfying the hypotheses of

Proposition 4.5.8, we could consider ‘logical predicates’ for a T -algebra (A, a)

to be those T̃ -algebras (Ã, ã) over (A, a). Note that when T involves constant

functors, given by an object I ∈ |B| say, a choice of an object H over I for

the corresponding T̃ -algebra corresponds logically, via the internal language

of p, to a predicate over I.

When a fibration
E
↓p

B
has a fibred terminal object 1 : B → E, it in-

duces a functor 1-Alg : T -Alg → T̃ -Alg, for (T̃ , T) : p → p, by (A, a) �→

(1(A), a(1(A))◦!T̃1(A), using the fact that a∗(1(A)) is terminal in ETA, and

therefore there is a unique morphism !T̃1(A) : T̃1(A) → a∗(1(A)). We will

use the functor 1-Alg to relate initial models in E and B in the following

proposition, and to formulate the induction principle in Definition 4.5.13.

4.5.12 Proposition. Let
E
↓p

B
have a fibred terminal object 1 : B → E

and let (T̃ , T) : p → p be a fibred 1-cell. If (D̃, d̃) is an initial T̃ -algebra,

170 Logical predicates for simply typed λ-calculus

(pD̃, pd̃) is an initial T-algebra.

Proof. Let (D, d) = (pD̃, pd̃). Given a T -algebra (A, a), we get a T̃ -

algebra 1-Alg(A, a) = (1(A), a(1(A))◦!T̃1(A)), as noted above. Hence, there

is a unique morphism h : (D̃, d̃) → 1-Alg(A, a), which induces a mor-

phism ph : (D, d) → (A, a) of T -algebras. Given any other morphism

u : (D, d) → (A, a), it induces a morphism l(u)◦!D̃ : (D̃, d̃) → 1-Alg(A, a).

Thus 1(u)◦!D̃ = h by initiality of (D̃, d̃) and so u = ph, which shows (D, d)

is initial. ✷

Thus, given the data in the above proposition and an initial T -algebra

(D, d) we may look for an initial T̃ -algebra over it. For
E
↓p

B
as in Proposi-

tion 4.5.8, given a parameter set S, a functor M : S → B induces a functor

1M : S → E, with p1M = M , via the terminal object functor 1 : B → E.

Hence an idts TM : B → B induces an idts T = T̃1M : E → E. We can

now express what it means for
E
↓p

B
regarded as a logic over B, to satisfy an

induction principle for an idts TM in terms of the induced idts T .

4.5.13. Definition. Let
E
↓p

B
satisfy the hypotheses of Proposition 4.5.8, and

let TM : B → B be an idts, for a parameter set S and a functor M : S → B.
E
↓p

B
satisfies the induction principle w.r.t. T if 1-Alg : T -Alg → T -Alg

preserves initial models, i.e. whenever (D, constr) is an initial T -model, 1-

Alg(D, constr) is an initial T̃ -model.

This definition means that for an object H in E, to give a global element

4.5 Induction principle for data types in a fibration 171

p : 1(D) → H amounts to giving a T̃ -algebra on H, (H, h : T̃H → H). We

illustrate the logical import of the above definition with the idts of natural

numbers and lists below. The internal language of p in this case includes

the logical connectives {∧,&,∨,⊥} and the coreindexing functors along co-

product injections. To simplify the presentation, we consider only the en-

tailment relation ' in the internal language, disregarding the proof terms.

Note that for ι : I → I + J in B, given predicates Q =� x : I ' Q(x)Prop

and P =� y : I + J ' P (x)Prop a morphism f : ι!Q → P corresponds under

the adjunction ι! � ι∗ to a morphism f
∧

: Q → ι∗(P), which amounts to an

entailment x : I|Q(x) ' P (ιx).

4.5.14. Examples. Let
E
↓p

B
be as in Proposition 4.5.8.

(i) For the idts TX = 1 + X in B, the corresponding T idts in E is

TH = 1̃+̃H. Let P ∈ |EI | and let (N, [z, s]) be the initial T -model in B.

To give a global element of P , we must give a T̃ -algebra (P, f : T̃P →

P). This amounts to giving a T -algebra (I, [a, m] : TI → I) — which

induces a morphism it(a, m) : N → I— and a vertical morphism f̂ : TP →

[a, m]∗(P). Let us examine this vertical morphism in the internal language

of p: it amounts to a sequent

x : 1 + I | ι!(&) ∨ ι′!(P) ' P ([a, m]x)

which can be decomposed into two sequents

x : 1 + I | ι!(&) ' P ([a, m]x) x : 1 + I | ι′!(P) ' P ([a, m]x)

172 Logical predicates for simply typed λ-calculus

which in turn correspond to sequents

x′ : 1 | & ' P (a) y : I | P (y) ' P (my)

which corresponds to the usual induction principle on the natural numbers:

to prove P (x) for the elements x : I generated by a and m, we must prove

P (a) and P (y) =⇒ P (my).

(ii) For the idts TAX = 1 + A × X, for some A ∈ |B|, we get the idts

TY = 1̃+̃1(A)×̃Y . Let (L[nil , cons]) be the initial T -model and let P ∈ |EL|.

Note that modulo the isomorphism [nil , cons] : 1+A×L → L, the predicate

P corresponds to a predicate P ′ on 1 + A × L, i.e. x : 1 + A × L ' P ′(x).

P ′ is therefore given by two predicates S and Q, with x′ : 1 ' S ↔ P ′(nil)

and a : A, l : L ' Q(a, l) ↔ P ′(cons(a, l)). To give a vertical global element

h : l(L) → P , a proof of the property P for all lists, amounts to giving a

morphism k : T̃P → P over [nil , cons] : 1 + A × L → L. It corresponds to a

sequent

l : 1 + A× L | ι!(&) ∨ ι′!(&× P) ' P ′([nil , cons]l)

which can be decomposed into two sequents

x : 1 | & ' S

and

a : A, l′ : L | P (l′) ' Q(a, l′)

where we have simplified the antecedent of the second sequent by &∧P (l′) ≡

P (l′). We thus get the usual structural induction principle for finite lists.

4.5 Induction principle for data types in a fibration 173

We have thus given the categorical counterpart of the logical principle of

structural induction by requiring the functor 1 : B → E to preserve a suitable

categorical property, i.e. initiality of algebras. Note that this is only possible

if we consider the ‘global’ structure of the fibred category E rather than its

fibred structure. This illustrates the value of working with fibrations rather

than indexed categories.

It follows from [LS81, §5.2,Theorem 1] that when
E
↓p

B
is the internal logic

fibration
SubB

↓ι

B
logic fibration

SubB
↓ι

B
it satisfies the induction principle for

any idts. We illustrate the argument for the case of natural numbers object.

4.5.15 Proposition. Given a category B with pullbacks and a natural num-

bers object (N, [z, s]),
SubB

↓ι

B
satisfies the induction principle for natural

numbers.

Proof. Recall that the idts for natural numbers is TX = 1 + X. For ι,

an T -algebra

induces a T -algebra 1
c̃−−−→ P

f̃−−−→ P · · · and hence a unique morphism

174 Logical predicates for simply typed λ-calculus

it(c̃, f̃) : N → P . Further

commutes, by initiality of (N, [z, s]). This shows (1N , ([z, s], [z, s]) : 1N → 1N

is the initial T -algebra. ✷

In [Jac93, CS91] models of idts are required to satisfy a parameterisation

property. A consequent requirement of parameterisation on the induction

principle must be imposed. This requirement can be captured using the

fibrations with indeterminates in §6.3. Details will appear elsewhere.

Chapter 5

Comonads and Kleisli fibration

5.1 Introduction

Categories with an indeterminate or generic element, also called polynomial

categories, play an important role in the categorical interpretation of simply

typed λ-calculus, as in [LS86]. Among other applications, they are used to

express functional completeness properties of cartesian closed categories, cf.

ibid. We set about doing a similar analysis for certain polymorphic λ-calculi

in §6. In this chapter we develop the basic technical background necessary

for this analysis. Specifically, we need a definition of Cartesian objects with

an indeterminate element in a 2-category, generalising the formulation for

ordinary categories with finite products, or cartesian categories, in [LS86].

We thus seek to instantiate such formulation in the 2-categories Fib(B) and

Fib, the ‘universes’ of models for polymorphic cal-culi. As we will show below,

Kleisli objects for comonads play an important role in the construction of

cartesian objects with an indeterminate. Thus, we are led to consider fibred

176 Comonads and Kleisli fibration

comonads and Kleisli fibrations for them. These will be used in §6 to study

so-called contextual and functional completeness of λ →- and λω-fibrations,

the categorical versions of the polymorphic calculi λ → and λω, along other

applications of polynomial fibrations.

The structure of the chapter is as follows: in §5.2 we recall the defini-

tion of cartesian category with an indeterminate element and its presenta-

tion as a Kleisli category for a suitable comonad, primarily as a motivation

for the technical developments in the rest of the chapter. §5.3 gives the 2-

categorical version of Lambek’s presentation of cartesian categories with an

indeterminate element as Kleisli categories [LS86, Part I, Proposition 7.1].

This involves the reformulation, within a 2-category, of the usual operations

on a cartesian category, §5.3.2. In §5.3.3 and §5.3.4 we carry out the refor-

mulation in this general setting of the abovementioned result about objects

with an indeterminate and Kleisli objects, Proposition 5.3.12. The more

involved result is Lemma 5.3.11, which shows that the Kleisli object for a

comonad on a cartesian object is again cartesian; although trivial in Cat, the

2-categorical version requires a special property ‘pck’ of Cat, introduced in

Definition 5.3.9, which holds in the 2-categories of fibrations as well.

In the remaining of the chapter, we deal with the existence of Kleisli

objects for fibred comonads. In §5.4 we specialise the notion of comonad

and resolution to the fibred case. In §5.4.1 we present Kleisli fibrations for

comonads in Fib(B), which agree, both globally and fibrewise, with those in

Cat. In §5.4.2 we consider resolutions for comonads in Fib, which are not as

simple as those for Fib: we present a construction which ‘factors’ a fibred

5.2 Categories with an indeterminate element 177

comonad through a resolution for its base comonad, based on the factorisa-

tion of fibred adjunctions of Theorem 3.2.3; this construction combined with

the above construction in Fib(B) yields the required Kleisli fibrations. We

make heavy use of the algebraic laws of fibred 2-cells, presented in §3.1.1.

The basic material on comonads in Cat is taken from [Mac71, §VI] and

[LS86, Part 0].

5.2 Categories with an indeterminate element

In this section we recall what it means for a category to have a generic global

element or indeterminate element. More precisely, given a category B (with a

terminal object 1) and an object I ∈ B, we describe the so-called polynomial

category B[x : I] obtained by freely adjoining a morphism x : 1 → I to B

and characterise it in terms of a universal property. We follow [LS86, Part

I, §5]. In §5.3.4 we will reformulate this universal property in an elementary

2-categorical way in order to apply the same formulation to fibrations in §6.2

and §6.3.

Assume B is a category with finite products and let I ∈ |B|. We want

a category with finite products B[x : I], with the objects and morphisms of

B and an additional morphism x : 1 → I, 1 the terminal object. We can

construct B[x : I] as follows:

(i) Add an edge x : 1 → I to the underlying graph G(B) of B, obtaining

a graph G(B)[x : I].

178 Comonads and Kleisli fibration

(ii) Form the free category with finite products F(G(B)[x : I]) on this

graph.

(iii) Make a suitable quotient, identifying morphisms, of F(G(B)[x : I])

so that the inclusion G(B) ↪→ G(B)[x : I] becomes a finite product preserving

functor η : B → B[x : I].

We think of the new morphism x : 1 → I above as a ‘parameter of

type I’. This means that x can be ‘instantiated’ by actual global elements.

This is expressed categorically by the following universal property of B[x : I]:

for each category with finite products C and each finite product preserving

functor F : B → C together with a morphism F1
a→ FI there is a unique

finite product preserving functor (F, a) : B[x : I] → C with (F, a)η = F and

(F, a)x = a in

The functor (F, a) can be understood as performing ‘substitution’ of x by a.

We will sometimes write ηI for η above, to make explicit the dependence on

I. In [LS86, Part I,§6] this polynomial category is used to express a so-called

functional completeness property of cartesian and cartesian closed categories,

or simply typed λ-calculus. We will refine this notion and the corresponding

generalisation to polymorphic λ-calculus in §6.1.

5.2 Categories with an indeterminate element 179

For a category B with finite products, an object I induces a comonad

× I : B → B, with counit at J given by πI,J : J × I → J and comul-

tiplication given by 〈1, π′
J,I〉 : J × I → (J × I) × I. As shown in [LS86,

Part I, Proposition 7.1], B[x : I] is the Kleisli category B ×I induced by

this comonad. Furthermore, the functor η : B → B[x : I] corresponds to

U ×I : B → B ×I , the right adjoint of the Kleisli resolution of ×I, and hence

has a left adjoint. Also, when B is cartesian closed, we find in ibid. that

B[x : I] ∼= BI⇒ , for the monad I ⇒ : B → B with unit at J given by

A(πJ,I) : J → I ⇒ J (the adjoint transpose of the projection πJ,I) and mul-

tiplication Λ(evI,J ◦ (evI,I⇒J × I) ◦ 〈1, π′
I⇒(I⇒J),I〉) : I ⇒ (I ⇒ J) → I ⇒ J .

In this case, η : B → B[x : I] corresponds to FI⇒ : B → BI⇒ , the left

adjoint of the Kleisli resolution of I ⇒ , and hence has a right adjoint. The

existence of a left (respectively right) adjoint to η corresponds to so-called

contextual (respectively functional) completeness of B as explained in §6.1.

We have the following result underlying the ones above; it is a variation of

[BW85, §3.7,Theorem 5].

5.2.1. Proposition. Given a comonad G : C → C, consider its asso-

ciated Kleisli resolution FG � UG : C → CG. The following are equivalent:

(i) G has a right adjoint G � T : C → C

(ii) UG has a right adjoint UG � R : CG → C

Under either of the above equivalent hypotheses, T (= RUG) is the functor

part of a monad and the corresponding Kleisli category CT is isomorphic to

180 Comonads and Kleisli fibration

CG.

Proof. The equivalence is easily established, in view of the fact that T is

part of a monad and hence induces a right adjoint R via its Kleisli resolu-

tion. The monad structure on T is induced as follows: let ε and δ be the

counit and comultiplication respectively of the comonad G and let η′ and ε′

be the unit and counit of G � T . The unit of the monad is Tε ◦ η′ and the

multiplication is T (ε′ ◦ Gε′T ◦ δT 2) ◦ η′T 2. The isomorphism between the

Kleisli categories CG and CT follows readily from

CG(X, Y) ∼= C(GX, Y) ∼= C(X, TY) ∼= CT (X, Y)

✷

5.2.2. Remark. The above proposition applies to any 2-category K which

admits the construction of Kleisli objects for monads and comonads. The

adjunction G � T establishes a one-to-one correspondence between oplax

cocones for G and lax cocones for T .

5.3 Comonads and Kleisli objects in a 2-ca-

tegory

In this section we recall the concepts of comonad and its associated Kleisli

object in a 2-category, following [Str72]. The purpose is to reformulate Lam-

bek’s presentation of the polynomial category B[x : I] — when B has finite

products — as the Kleisli category of the comonad × I : B → B, cf. §5.2,

5.3 Comonads and Kleisli objects in a 2-category 181

in a 2-category with suitable structure.

5.3.1. Definition. Given a 2-category K, a comonad in it is a triple

〈g : A → A, ε, δ〉

where ε : g ⇒ 1A and δ : g ⇒ g ◦ g are called the counit and the comultipli-

cation respectively. The data must satisfy

gε ◦ δ = 1g = εg ◦ δ δg ◦ δ = gδ ◦ δ

When K = Cat, we get the usual notion of comonad. An adjunction f �

u : A → B via η, ε in K generates a comonad 〈fu : A → A, ε, fηu〉. In this

case, f � u is a resolution for the comonad so generated, according to the

following definition.

5.3.2. Definition. Given a comonad 〈g : A → A, ε, δ〉 in K, a resolution for

it is an adjunction f � u via η′, ε′ such that

g = fu ε′ = ε δ = fη′u

In [LS86, Part 0], resolutions for a comonad in Cat are organised into a cate-

gory; a morphism between f � u : A → B and f ′ � u′ : A → B′ is a morphism

h : B → B′ such that (h, 1A) is a map of adjunctions, as in Definition 1.1.5.

Every comonad in Cat has an initial resolution with respect to that category.

This resolution is given by the Kleisli category of the comonad, as in ibid.

The corresponding notion of Kleisli object for a comonad in a 2-category is

formulated in [Str72]. It amounts to an oplax colimit [Kel89]. We only give

182 Comonads and Kleisli fibration

the definition of oplax colimit for a comonad, since this is the only instance

we need.

5.3.3. Definition. Let 〈g : A → A, ε, δ〉 be a comonad in K.

(i) An oplax cocone (l, σ) consists of a morphism l : A → B and a 2-cell

σ : l ⇒ lg, satisfying

lε ◦ σ = 1l σg ◦ σ = lδ ◦ σ

B is called the vertex of the cocone.

(ii) Given oplax cocones (l, σ) and (l′, σ′) with the same vertex, l, l′ :

A → B, a morphism from (l, σ) to (l′, σ′) is a 2-cell γ : l ⇒ l′ satisfying

γg ◦ σ = σ′ ◦ γ. We write γ : (l, σ) ⇒ (l′, σ′) for such a morphism.

(iii) The above notion of morphism sets up a category OpLax(g, B) of

oplax cocones with vertex B . A morphism h : B → C induces a functor

h ◦ : OpLax(g, B) → OpLax(g, C). A 2-cell α : h ⇒ h′ induces a natural

transformation α ◦ : h ◦ ·→ h′ ◦ : OpLax(g, B) → OpLax(g, C).

(iv) An oplax colimit is an oplax cocone (U : A → Ag, λ) with the

following universal property: there is an isomorphism

K(Ag, B) ∼= OpLax(g, B)

2-natural in B.

The oplax colimit of a comonad is called its Kleisli object. When such

objects exist for every comonad, we say that K admits Kleisli objects for

comonads.

5.3 Comonads and Kleisli objects in a 2-category 183

We refer to the object Ag itself as the Kleisli object.

5.3.4. Remarks.

• The above isomorphism means in elementary terms that, given an oplax

cocone (l : A → B, σ), there is a unique morphism (l, σ) : Ag → B such

that (l, σ) ◦ u = l and (l, σ)λ = σ. The 2-dimensional aspect means

that given a morphism γ : (l, σ) ⇒ (l′, σ′), there is a unique 2-cell

γ : (l, σ) ⇒ (l′, σ′) such that γu = γ.

• Any resolution f � u : A → B for the comonad g induces an oplax

cocone (u, ηu). As a partial converse, the oplax colimit (u, λ) is such

that u has a left adjoint f and the adjunction f � u generates the

comonad. See [Str72] for details.

Recall that in Cat the Kleisli category AG for a comonad G on A has

the same objects as A and has hom-sets AG(X, Y) = A(GX, Y). Identities

are given by instances of ε. For f : GX → Y and g : GY → Z, their

composite is g ◦Gf ◦ δX . There is an adjunction, written FG � UG : A → AG

(via η, ε) which generates G. The induced oplax cocone (UG, ηUG) is an

oplax colimit: given an oplax cocone (L : A → B, σ), (L, σ) : AG → B is

given by (L, σ)(f : GX → Y) = Lf ◦ σX : LX → LY , and a morphism

γ : (L, σ) → (L′, σ′), induces γX = γX : (L, σ)X → (L′, σ′)X.

184 Comonads and Kleisli fibration

5.3.1 Products in a 2-category

In order to state that a category has binary products and terminal object

in terms of adjunctions, we use the fact that the 2-category Cat itself has

finite products. Their definition in an arbitrary 2-category, from [Kel89], is

as follows

5.3.5. Definition.

• A 2-category K has a terminal object if there is an object 1 such that

for every object A, there is an isomorphism

K(A,1) ∼= {∗}, the one-object one-morphism category

2-natural in A.

• K has binary products if for any two objects A and B, there is an object

A ×B such that, for any object C there is an isomorphism

K(C, A×B) ∼= K(C, A) ×K(C, B)

2-natural in C.

We say that K has finite products if it has binary ones and a terminal

object. The above isomorphisms mean that the underlying category K0, has

finite products as an ordinary category, and that they have a 2-dimensional

universal property. Specifically, 1 is such that for every object A, there is

a unique 1-cell !A : A → 1 and a unique 2-cell α :!A ⇒!A, whence α = 1!A .

5.3 Comonads and Kleisli objects in a 2-category 185

Similarly, for objects A and B, the projections A
π← A × B

π′
→ B are such

that for any span A
f← C

g→ B there is a unique 〈f, g〉 : C → A × B with

π ◦ 〈f, g〉 = f and π′ ◦ 〈f, g〉 = g. And for any two 2-cells α : f ⇒ f ′ : C → A

and β : g ⇒ g′ : C → B there is a unique 2-cell 〈α, β〉 : 〈f, g〉 ⇒ 〈f ′, g′〉 with

π〈α, β〉 = α and π′〈α, β〉 = β.

The non-elementary definition of products in K is given in terms of 2-

adjoints: K has a terminal object if !K : K → {∗} has a right 2-adjoint; it

has binary products if the diagonal 2-functor ∆ : K → K × K has a right

2-adjoint.

5.3.2 Cartesian objects in a 2-category with products

Rephrasing the definition of a category with finite products in Cat in terms of

adjoints, we get the following definition of cartesian objects in a 2-category

with finite products [CKW90].

5.3.6. Definition. Let K be a 2-category with finite products. An ob-

ject A is cartesian if both

• the unique morphism !A : A → 1 has a right adjoint 1 : 1 → A, and

• the diagonal morphism δA : A → A×A has a right adjoint ⊗ : A×A →

A.

Note that the counit of !A � 1 must be the identity. If τ : 1A ⇒ 1◦!A is

the unit, the adjunction laws reduce to τ1 = 11.

186 Comonads and Kleisli fibration

A cartesian object in Cat is a category with assigned finite products. A

cartesian object in Fib(B) a fibration with assigned fibred finite products,

while a cartesian object in Fib is a fibration
E
↓p

B
such that both E and B

have assigned finite products and p preserves them strictly.

For the developments in §5.3.3 and §5.3.4, we need to spell out how the

usual operations of pairing and projection in a category with finite products,

as in [LS86, Part I], are obtained in this abstract setting.

In Cat, the projections associated to the binary product functor × : A×

A → A are natural transformations π , : × ·→ : A×A → A and π′
, : × ·→ π′.

Then, for objects X, Y of A, πX,Y : X × Y → X is the first projection. The

projections are the components of the counit ε′ : δA× ·→ 1A × A

Let A with δA � ⊗ : A × A → A via η′, ε′ be a cartesian object in K.

The associated projections are p = πε′ : ⊗ ⇒ π and q = π′ε′ : ⊗ ⇒ π′.

As for pairing, recall that objects of a category A correspond to functors

1 → A, where 1 is the terminal category, and morphisms of A correspond to

natural transformations between the respective functors. Given morphisms

f : Z ⇒ I : 1 → A and g : Z ⇒ J : 1 → A, their pairing 〈f, g〉 = (f×g)◦δZ .

The diagonal morphism δZ is the component at Z of the unit η′ : 1A
·→ ×δA.

Generalising to K, given ‘objects’ f, g : B → A of A, their product is

⊗〈f, g〉 : B → A. For ‘morphisms’ α : f ⇒ g : B → A and β : f ⇒

h : B → A, their pairing is 〈〈α, β〉〉 = ⊗〈α, β〉 ◦ η′f : f ⇒ ⊗〈g, h〉. Let

pg,h = p〈g, h〉 : ⊗〈g, h〉 ⇒ g and qg,h = q〈g, h〉 : ⊗〈g, h〉 ⇒ h. Then,

pg,h ◦ 〈〈α, β〉〉 = α qg,h ◦ 〈〈α, β〉〉 = β 〈〈pg,h, qg,h〉〉 = 1⊗〈g,h〉

5.3 Comonads and Kleisli objects in a 2-category 187

Given cartesian objects A and B, with products ⊗ and ⊗̂ respectively, a

morphism f : A → B induces a 2-cell πf = 〈〈fp, fq〉〉 : f⊗ ⇒ ⊗′(f × f) (the

pairing is that of B). Then, f preserves finite products if φ is an isomorphism.

This agrees in Cat with the usual definition.

5.3.3 Comonad induced by a global element of a carte-
sian object

As we have seen, an object I of a category A with finite products induces a

comonad × I on it. This generalises 2-categorically as follows:

5.3.7. Definition. Let A be a cartesian object in K, with δA � ⊗ via

η′, ε′. A global element i : 1 → A induces a comonad 〈gi : A → A, ε, δ〉,

where

• gi = ⊗〈1A, i!A〉

• ε = p1A,i!A(= πε′〈1A, i!A〉) : gi ⇒ 1A

• δ = 〈〈1gi
, q〈1A, i!A〉)〉〉gi1A(= ⊗〈1⊗, π′ε′〉〈1A, i!A〈◦ η′ ⊗ 〈1A, i!A〉) : gi ⇒

g2
i

The verification of the comonad laws proceeds by 2-categorical pasting;

we omit the details.

188 Comonads and Kleisli fibration

5.3.4 Objects with an indeterminate

Given a category B with a terminal object 1, and any object I of B, we

recalled in §5.2 the universal property of B[x : I], the category with an

indeterminate element of ‘type’ I. We also mentioned that, when B has

finite products, B[x : I] could be presented as a Kleisli category. We give

now the 2-categorical version of this result.

First, we must reformulate the ‘category with an indeterminate’ con-

cept in a 2-category. Since we are interested in cartesian objects, we give a

formulation of ‘cartesian objects with an indeterminate’.

5.3.8. Definition. Let K be a 2-category with finite products. Let B be

a cartesian object of K and let i : 1 → B be a global element. The cartesian

object with an i-indeterminate B[x : i] is a cartesian object together with

a morphism j : B → B[x : i] which preserves finite products and a 2-cell

x : j1 ⇒ ji : 1 → B[x : i] with the following universal property: given a

cartesian object C, a finite product preserving morphism f : B → C and

a 2-cell α : f1 ⇒ fi, there is a unique finite product preserving morphism

(f, α) : B[x : i] → C such that (f, α)j = f and (f, α)x = α. Further, given

any other such pair (f ′, α′) and a 2-cell γ : f ⇒ f ′, there is a unique 2-cell

γ : (f, α) ⇒ (f ′, α) such that γj = γ.

Now, we want to show that if K admits Kleisli objects for comonads,

i.e. if the appropriate oplax colimits exist, the Kleisli object B ⊗i for the

comonad ⊗ i given in §5.3.3 has the universal property of B[x : i].

We must show, among other facts, that B ⊗i is cartesian. In Cat, this

5.3 Comonads and Kleisli objects in a 2-category 189

follows from the fact that the Kleisli category BG, for a comonad G on B

with finite products, has finite products. Consider objects X and Y in BG,

then

BG(Z, X × Y) ∼= B(GZ, X × Y) ∼= B(GZ, X) × B(GZ, Y) ∼= BG(Z, X) × BG(Z, Y)

so products in BG are obtained from those in B. To generalise this to K

assume the following property.

5.3.9. Definition. Let K be a category with finite products, which admits

Kleisli objects for comonads. A comonad 〈g : A → A, ε, δ〉 induces a comonad

〈g×g : A×A → A×A, ε×ε, δ×δ〉. Let 〈u : A → Ag, λ〉 be the Kleisli object

of g. K satisfies pck if the oplax cocone (U × U : A × A → Ag × Ag, λ × λ)

is an oplax colimit.

5.3.10. Remark. The above definition means that the Kleisli object of

the product comonad g× g is given by the product of those for g. In Cat, we

have

(A × A)G×G((X, X ′), (Y, Y ′)) ∼= A × A((GX, GX ′), (Y, Y ′))

∼= A(GX, Y) × A(GX ′, Y ′)

∼= AG(X, Y) × AG(X ′, Y ′)

5.3.11. Lemma. Let K satisfy pck. Given a comonad 〈g : A → A, ε, δ〉, if

190 Comonads and Kleisli fibration

A is cartesian, so is Ag.

Proof. Let (u : A → Ag, λ) be the oplax colimit for g, and !A ' 1 : 1 → A

via τ, 1 and δA ' ⊗ : A×A → A via η, ε be the adjunctions for the cartesian

object A. The corresponding adjoints for Ag are written !Ag ' 1′ via τ ′ and

δAg ' ⊗′ via η′, ε′, as given below.

• Let 1′ = u ◦ 1. η′ : 1Ag ⇒ u1!Ag is the unique such 2-cell induced by

universality of (u, λ) as follows: 1A is the unique mediating morphism

from (u, λ) to itself, u1!Ag is the unique mediating morphism from (u, λ)

to (u1!Agu, u1!Agλ). Hence η′ is determined by the oplax-cocone mor-

phism uτ : u ⇒ u1!Agu. The adjunction law η′u1 = 1u1 follows by

universality of the oplax cocone (11, 111
) (for the identity comonad on

1), since η′u1 is uniquely determined by the oplax-cocone morphism

uτ1 = 1u1 : u1 ⇒ u1!Agu1.

• To define ⊗′ : Ag × Ag → Ag we use the universal property of (u × u :

A×A → Ag×Ag, λ×λ), guaranteed by pck. Thus, we define an oplax

cocone (u ⊗ : A×A → Ag, σ), where σ = uφg ◦λ ⊗ as displayed below

and φg = 〈〈gp, gq〉〉 is the ‘comparison’ 2-cell. This cocone induces the

5.3 Comonads and Kleisli objects in a 2-category 191

required ⊗′. To obtain the unit and counit of adjunction, we use the

2-dimensional property of the oplax colimits.

– The counit ε′ : δAg⊗′ ⇒ 1Ag is uniquely determined by the oplax-

cocone morphism (u×u)ε : (u×u)δ ⊗ ⇒ u×u, from ((u×u)δ ⊗ =

)δu ⊗ : A× A → Ag × Ag, δσ) to (u × u, λ × λ).

– The unit η′ : 1Ag ⇒ ⊗′ δAg is uniquely determined by the oplax-

cocone morphism uη : u ⇒ u ⊗ δ = ⊗′ δu, from (u, λ) to (⊗′ δu :

A → Ag,⊗′ δλ)

– ⊗′ ε′ ◦ η′ ⊗′ = 1⊗′ because: ⊗′ ε′ is uniquely determined by u⊗ ε :

u ⊗ δ ⊗ ⇒ u ⊗ and η′ ⊗′ is uniquely determined by uη′ ⊗ :

u ⊗ ⇒ u ⊗ δ ⊗. Thus, their composite is uniquely determined

by the composite of these oplax-cocone morphisms, which is the

identity by the adjunction laws for δA � ⊗.

– ε′δAg ◦ δAgη
′ = 1δAg

because: ε′δAg is uniquely determined by

(u× u)εδA : (δAgu ⊗ δA, σδ) ⇒ (uδ, λδ) and δAgη
′ is uniquely de-

termined by (δuη =)(u×u)δη : (δAgu, δAgλ) ⇒ (δAg ⊗′ δAgu, δAg ⊗′

δAgλ). Thus, their composite is uniquely determined by the com-

posite of these oplax-cocone morphisms, which is the identity by

the adjunction laws for δA � ⊗.

✷

Note that the construction of 1′ and ⊗′ in the above proof is such that u

192 Comonads and Kleisli fibration

strictly preserves the assigned finite products 1 and ⊗.

5.3.12. Proposition. Let K be a 2-category with finite products, satis-

fying pck. Let B be a cartesian object, with a global element i : 1 → B. Bgi

has the universal property of B[x : I]

Proof. By Proposition 5.3.11, we have a finite product preserving morphism

u : B → Bgi
, with a 2-cell x : u1 ⇒ ui given by the composite

Given another cartesian object C, with product ⊗̂, a finite product preserv-

ing morphism f : B → C and a 2-cell α : f1 ⇒ fi, we have an oplax cocone

on gi (f, σ), where σ is the composite 2-cell in the diagram below

where (φ−1 =)φ−1
f , the inverse of φf , exists because f preserves finite prod-

5.4 Fibred comonads and resolutions 193

ucts, and σ′ = 〈〈1f , α!A ◦ fτ〉〉. Hence, by universality there exists a unique

(f, σ) : Bgi
→ C, such that (f, σ)λ = σ. This implies (f, σ)x = α as follows:

(f, σ)x = fq1,i ◦ σ1

= fq1,i ◦ φ−1
f 〈1, i〉 ◦ 〈〈1f1, α〉〉

= qf1,fi ◦ 〈〈1f1, α〉〉, because φ−1
f is coherent w.r.t. projections

= α

Finally, we must show (f, σ) preserves finite products. This holds because f

preserves them: the comparison 2-cell : φ(f,σ) : (f, σ) ⊗′ ⇒ ⊗̂((f, σ)× (f, σ))

is uniquely determined by the morphism φf : (f ⊗, fφg ◦ σ ⊗) ⇒ (⊗̂(f ×

f), ⊗̂(σ × σ)). Then, φ(f,σ) is an isomorphism, since φf is. ✷

5.4 Fibred comonads and resolutions

Instantiating Definition 5.3.1 in the 2-categories Fib and Fib(B), we get the

appropriate notions of fibred comonad and B-fibred comonad, respectively.

We spell out the details only for Fib; those for Fib(B) are obtained by con-

sidering the ap-propriate vertical instances.

5.4.1. Definition. A fibred comonad is given by the following data:

• a fibration
E
↓p

B

194 Comonads and Kleisli fibration

• a fibred 1-cell

• fibred 2-cells (ε̃, ε) and (δ̃, δ)

satisfying

G̃ε̃ ◦ δ̃ = 1G̃

ε̃G̃ ◦ δ̃ = 1G̃

G̃δ̃ ◦ δ̃ = δ̃G̃ ◦ δ

Gε ◦ δ = 1G

εG ◦ δ = 1G

Gδ ◦ δ = δG ◦ δ

5.4 Fibred comonads and resolutions 195

As we can see from the above definition, a fibred comonad consists of a pair of

comonads: the total one, 〈G̃ : E → E, ε̃, δ̃〉, and the base one 〈G : B → B, ε, δ〉

such that the fibration
E
↓p

B
is a morphism of monads, i.e. commutes with

the counits and comultiplications, and G̃ is fibred over G. We will write

〈(G̃, G) : p → p, (ε̃, ε), (δ̃, δ)〉 for such a fibred comonad, or briefly (G̃, G).

A comonad in Fib(B) is a vertical fibred comonad, i.e. one where the

base comonad is the identity such. It is therefore a B-fibred comonad, but

we drop the prefix when there is no ambiguity.

Similarly, instantiating Definition 5.3.1 in Fib we get:

5.4.2. Definition. A fibred resolution for 〈(G̃, G) : p → p, (ε̃, ε), (δ̃, δ)〉

is a fibred adjunction

such that

F̃ Ũ = G̃

ε̃F̃�Ũ = ε̃

F̃ η̃F̃�Ũ Ũ = δ̃

FU = G
εF�U = ε

FηF�UU = δ

where we have superscripted the units and counits with the corresponding

196 Comonads and Kleisli fibration

adjunctions.

Thus, a fibred resolution for (G̃, G) is a pair of resolutions for the corre-

sponding comonads G̃ and G, with the resolution for G̃ fibred over the one

for G, such that (p, q) is a map of adjunctions between these revolutions.

Considering the appropriate vertical instance of the above definition, we get

the notion of B-fibred resolution.

The corresponding notions of fibred oplax cocone and fibred oplax col-

imit for the 2-categories Fib(B) and Fib are obtained similarly to those of

comonad and resolution above. In the following section, we will show the

existence of Kleisli fibrations for comonads in Fib(B) which are in turn used

to build the corresponding ones in Fib in §5.4.2.

5.4.1 Kleisli fibration for a vertical fibred comonad

In this section we show how, generalising the situation in Cat, every comonad

in Fib(B) has a Kleisli object, which we call its Kleisli fibration. If we consider

fibrations as indexed categories or pseudo-functors, the usual construction in

Cat can be transferred to the present situation fibrewise. However it is sim-

pler to present the construction globally, as we will show next.

5.4.3. Proposition. Given a fibred comonad 〈G : p → p, ε, δ〉 for
E
↓p

B
,

let pG : EG → B be the following functor:

pGX = pX
pG(f : GX → Y = pf

5.4 Fibred comonads and resolutions 197

pG is the Kleisli fibration for G via the oplax colimit induced by the (stan-

dard) resolution associated with the Kleisk category EG.

Proof.

• We first show pG is a fibration. Given u : I → pX in B, let (u)
pG

(X) =

(u)
p
(X) ◦ εu∗p(X) : G(u∗p(X)) → X. Given a morphism f : GY → X

with pf = u ◦ v, for some v : pY → I, there is a unique φf : GY →

u∗p(X) over v such that (u)
p
(X) ◦ φf = f . But then, the composite of

φf and (u)
pG

(X) is

(u)
p
(X) ◦ εu∗p(X) ◦Gφf ◦ δY = (u)

p
(X) ◦ φf ◦Gεu∗p(X) ◦ δY = f

by naturality of ε and the comonad laws. Therefore (u)
pG

(X) is carte-

sian in EG and pG is a fibration.

• The resolution FG ' UG : E → EG is given by

UGX = X
FGX = GX

UG(X
f→ Y) = f ◦ εX

FG(GX
f→ Y) = Gf ◦ δX

we then have a B-fibred resolution FG � UG : p → pG since FG and

UG preserve cartesian morphisms. The induced fibred oplax cocone

(UG, ηUG) is a fibred oplax colimit: given a fibred oplax cocone (L :

p → q, σ : L ⇒ LG), with
D
↓p

B
, the unique mediating functor (L, σ) :

EG → D in Cat preserves cartesian morphisms:

(L, σ)((u)
p
(X) ◦ εu∗p(X)) = L((u)

p
(X)) ◦ L(εu∗p(X)) ◦ σu∗p(X) = L((u)

p
(X))

198 Comonads and Kleisli fibration

by the oplax cocone laws.

✷

5.4.4. Remarks.

• The construction of Kleisli fibrations can also be presented fibrewise:

for a fibred comonad G, the fibre (EG)I is (EI)G|I for G |I : EI → EI the

ordinary comonad obtained by restriction. See Example 5.4.6. This

fact is useful when dealing with (vertical) fibred structure, since then

results for Cat can be transferred to the fibred case in an straightforward

fashion, e.g. Proposition 6.2.5.

• Similarly to the proof of the above proposition, we could show the

existence of Kleisli fibrations for fibred monads, and Eilenberg-Moore

objects, or objects of algebras [Str72], for fibred (co)monads. Again

they agree globally and fibrewise with those in Cat.

Since Kleisli objects in Fib(B) are constructed as in Cat, we have as im-

mediate consequence

5.4.5. Corollary. Fib(B) satisfies pck.

5.4.6. Example. Let 〈G : C → C, ε, δ〉 be a comonad. It induces a Set-

fibred comonad 〈Fam(G) : f(C) → f(C),Fam(ε),Fam(δ)〉 for the family

fibration f(C) : Fam(C) → Set in an obvious fashion: the comonad on CI

5.4 Fibred comonads and resolutions 199

(I a set) has action GI . The Kleisli fibration for this ‘family’ comonad is

simply Fam(CT) This means that the 2-functor Fam : Cat → Fib(Set) pre-

serves Kleisli objects for comonads. Similar considerations apply to monads

and Kleisli and Eilenberg-Moore objects for them.

5.4.2 Kleisli fibration for a comonad in Fib

In this subsection we construct Kleisli objects for comonads in Fib. We call

these objects Kleisli fibrations. The construction is based on the factorisation

of fibred adjunctions given by Theorem 3.2.3; Kleisli objects in Fib are built

from those in Cat and Fib().

Consider a fibred comonad 〈(G̃, G) : p → p, (ε̃, ε), (δ̃, δ)〉 for p : E → B

in Fib, and a resolution for it, given by the following fibred adjunction

This fibred adjunction can be factored, by Theorem 3.2.3, yielding an A-

fibred adjunction F̂ � U : F ∗(p) → q, and thus an A-fibred comonad F̂U :

F ∗(p) → F ∗(p). As we will show in Proposition 5.4.9 below, this A-fibred

comonad is determined by F � U and the comonad (G̃, G). Then we can

obtain the Kleisli fibration of (G̃, G) as the Kleisli object for the BG-fibred

200 Comonads and Kleisli fibration

comonad determined by (G̃, G) and the Kleisli resolution for G, FG � UG :

BG → B; see Theorem 5.4.11.

To simplify the presentation, we consider the isomorphisms ϑ’s between

pull-backs, introduced in §3.1.1 are identities. This causes no lost of gener-

ality, by the Cat-fibred 2-equivalence Fib ≡ ICat of Corollary 1.3.10, since

ICat is split. So we work with Fib as if we were working with ICat; the

property of having Kleisli objects is preserved under 2-equivalence.

5.4.7. Warning. Fib does not have Kleisli objects in the sense of Defi-

nition 5.3.3, but only in a weaker, ‘bicategorical’ sense. This means that the

oplax cocone (u, σ) we will construct below satisfies the universal property

of the oplax colimit ‘up to isomorphism’. See [Kel89] for a precise defini-

tion of bicategorical limits. This means that Fib admits the construction

of fibrations with indeterminates in a similar weaker sense. This is a valid

notion and is acceptable for the applications in §6. If we restrict attention to

the 2-category Fibsp of split fibrations and splitting-preserving morphisms,

we do have Kleisli objects in the sense of Definition 5.3.3. We will give the

definitions of the relevant constructions in Fib, which involve coherent iso-

morphisms δ, φ given in §3.1.1, but in sketching the proof of the respective

universal properties we ignore these isomorphisms, as if working in Fibsp to

simplify calculations.

Given a comonad (G̃, G) : p → p in Fib for
E
↓p

B
, and a resolution

F � U : B → A for the base comonad G : B → B, we define an A-fibred

comonad GF�U on F ∗(p) with the following property: given any fibred res-

5.4 Fibred comonads and resolutions 201

olution for (G̃, G) such that is base resolution is F � U , then the fibred

comonad it induces on F ∗(p) is (isomorphic to) GF�U .

5.4.8. Definition. Given a fibration p : E → B, a fibred comonad on

it (G̃, G) : p → p (with counit (ε̃, ε) and comultiplication (δ̃, δ)) and a res-

olution F � U : B → A (via η, ε) for G : B → B, its associated A-fibred

comonad GF�U : F ∗(p) → F ∗(p) with counit ε and comultiplication δ is

given as follows:

• GF�U = 〈Fη〉pF ∗(Ĝ). Recall that Ĝ : p → G∗(p) is obtained by factor-

ing G̃ : E → E through the pullback of G and p, and 〈Fη〉p(UF)∗(p) →

p is the A-fibred 1-cell induced by Fη as in Lemma 3.1.2.(i).

• ε = δp
Fη,εF ◦ 〈Fη〉pF ∗(ε̂), where ε̂ : Ĝ ⇒ 〈ε〉p, is the B-fibred 2-cell

obtained by factoring ε̃ : G̃ ⇒ 1E through ε : G ⇒ 1B as in Lemma

3.1.2.(ii).

• δ = (φG
η)−1F ∗(Ĝ) ◦ 〈Fη〉pF ∗(δ̂), where δ̂ : Ĝ ⇒ 〈δ〉p ◦ G∗(Ĝ) ◦ Ĝ is the

B-fibred 2-cell obtained by factoring δ̃ : G̃ ⇒ G̃2 through δ : G ⇒ G2

as in Lemma 3.1.2.(ii).

We must verify that the data in the definition above yields an A-fibred

comonad. The comonad laws for G follow from those of (G̃, G), using the

lemmas in §3.1.1 and Lemma 3.1.2. We show Gε ◦ δ = 1G for illustration.

First,

(φG
η)−1 = 〈Fη〉p(φĜ

Fη)
−1 ◦ ((δp

Fη,GFη)
−1 ◦ δp

Fη,δF)F ∗(G∗(Ĝ))

202 Comonads and Kleisli fibration

by Lemma 3.1.2.(ii), with the same kind of ‘pasting’ argument as explained

for step (#) below. Then, omitting some subscripts and superscripts for

brevity,

Gε ◦ δ

= 〈Fη〉F ∗(Ĝ)δFη,εF ◦ 〈Fη〉F ∗(Ĝ)〈Fη〉F ∗(ε̂) ◦ (φGη)−1〈Fη〉F ∗(δ̂)

= 〈Fη〉F ∗(Ĝ)δFη,εF ◦ 〈Fη〉(φĜ
Fη)

−1〈εF 〉F◦
((δp

Fη,GFη)
−1δp

Fη,δF)F ∗(G∗(Ĝ))F ∗(Ĝ) ◦ 〈Fη〉F ∗(〈δ〉G∗(Ĝ)Ĝε ◦ δ̂),

using the above expression for (φG
η)−1 and the interchange law for 2-cells

= 〈Fη〉δFηUF,GεF F ∗(Ĝ) ◦ 〈δF 〉φĜ
εF ◦ 〈Fη〉F ∗(〈δ〉G∗(Ĝ)Ĝε ◦ δ̂),

(#); see explanation below

〈Fη〉F ∗(δFηU,Gε)F
∗(Ĝ) ◦ (〈δ〉)F ∗(φĜ

ε) ◦ 〈Fη〉F ∗(〈δ〉G∗(Ĝ)Ĝε̂ ◦ δ̂),

using Lemmas 3.1.6, 3.1.10.(iii) and 3.1.2.(ii)

= 〈Fη〉F ∗(δFηU,Gε ◦ 〈δ〉(φĜ
ε ◦G∗(Ĝ)Ĝε̂) ◦ δ̂),

= 〈Fη〉F ∗(δFηU,Gε ◦ 〈δ〉(̂G̃ε̃) ◦ δ̂),

by Lemma 3.1.9.(v)

= 〈Fη〉F ∗((̂(G̃ε̃ ◦ δ̃),

by Lemma 3.1.9.(ii)

1〈Fη〉F ∗(Ĝ)

Step (#) above uses

〈Fη〉δFηUF,GεF F ∗(Ĝ) ◦ 〈Fη〉〈δF 〉φF ∗(Ĝ)
εF =

〈Fη〉(F ∗(Ĝ)δFη,εF ◦ (φ
F ∗(Ĝ)
Fη)−1〈εF 〉) ◦ (δ−1

Fη,FUFη ◦ δFη,δF)F ∗(G∗(Ĝ)〈εF 〉

which is proved equating both sides by ‘pasting’ with (Fη)′p〈δF 〉〈εF 〉◦ p∗(GF)(εF◦

δF)′p and applying Lemma 3.1.2.(ii).

5.4 Fibred comonads and resolutions 203

5.4.9. Proposition. Let p : E → B be a fibration, (G̃, G) : p → p be a

comonad in Fib, with counit (ε̃, ε) and comultiplication (δ̃, δ), and (F̃ , F) �

(Ũ , U) : p → q, with
D
↓q

A
, be a resolution for it. Let F̂ � U : F ∗(p) → q

be the A-fibred adjunction induced by this resolution, as in Theorem 3.2.3.

Then, the comonad induced by F̂ � U on F ∗(p) is isomorphic to GF�U .

Proof. We show the argument for Fibsp to simplify the presentation. Re-

call from the proof of Theorem 3.2.3 that F̂ � U : F ∗(p) → q is given by:

• U = 〈η〉q ◦ F ∗Û , where Û is obtained by factoring Ũ thorugh the

pullback of U and p.

• The unit η : 1 ⇒ 〈η〉qF ∗Û F̂ is the vertical factor of the unit (η̃, η) :

1 ⇒ (Ũ , U) ◦ (F̃ , F).

• The counit ε : 1 ⇒ F̂ 〈η〉qF ∗(Û) is the vertical factor of the fibred 2-cell

(ε̃p∗(F) ◦ F̃ η′F ∗(Û), εF ◦ Fη) : (F̃ 〈η〉qF ∗(Û), F) ⇒ (p∗(F), F).

The comonad induced by F̂ � U : F ∗(p) → q on F ∗(p) is then given by the

following data:

• The comonad functor is

F̂ ◦ U = F̂ ◦ 〈η〉q ◦ F ∗Û = 〈Fη〉p ◦ F ∗(U∗(F̂)) ◦ F ∗(Û) = 〈Fη〉p ◦ F ∗(T̂)

where the second step results from Lemma 3.1.5 and the last step from

a routine diagram chase.

204 Comonads and Kleisli fibration

• The counit is

ε = 〈Fη〉pF ∗(ε̂) ◦ 1〈η〉F∗(p)◦F ∗(T̂) = 〈Fη〉pF ∗(ε̂)

applying Lemma 3.1.9.(ii) to the definition of ε given above and taking

into account that F̃ η′F ∗(Û) is a cartesian 2-cell and hence its vertical

factor is (isomorphic to) 1〈η〉F∗(p)◦F ∗(T̂)

• The comultiplication is

δ = F̂ ◦ η̂q ◦ F ∗(Û)

=
̂̂
F η̃F ∗(p) ◦ 〈η〉q ◦ F ∗(Û) by Lemma 3.1.8.(i)

= ̂̃F η̃p ◦ 〈η〉q ◦ F ∗(Û) by change-of-base

= 〈Fη〉p ◦ (UF)∗̂̃F η̃p) ◦ F ∗(Û) by Lemma 3.1.8.(ii)

= 〈Fη〉p ◦ F ∗(U∗(̂̃F η̃p) ◦ Û)

= 〈Fη〉p ◦ F ∗(̂̃F η̃U) by Lemma 3.1.9.(iv)

= 〈Fη〉p ◦ F ∗(δ̂)

This argument provides an alternative proof that 〈G, ε, δ〉 is a comonad. ✷

We now show how to construct the Kleisli fibration for a comonad in Fib,

following the steps outlined at the beginning of this subsection. To structure

the proof, we prove the following lemma about ‘reindexing’ of oplax cocones.

5.4.10. Lemma. Given

• a fibred comonad 〈(G̃, G) : p → p, (ε̃, ε), (δ̃, δ)〉 for
E
↓p

B
,

• a fibred oplax cocone ((L̃, L) : p → q, (σ̃, σ)), with
D
↓q

C

5.4 Fibred comonads and resolutions 205

• an oplax cocone (K : B → A, ν : K ⇒ KG) for G, and

• a functor J : A → C such that JK = L and Jν = σ. There is a unique

oplax cocone (L′ : E → J∗(D), σ† : L′ ⇒ L′G̃) such that ((L′, K), (ν, σ))

is a fibred oplax cocone for (G̃, G), q∗(J)L′ = L and q∗(J)σ† = σ̃.

Proof. Let L′ = 〈Kp, L̃〉 : E → J∗(D) be the unique functor into the pullback

J∗(D). Then q∗(J)L′ = L holds. Also, 〈KGp, L̃G̃〉 = L′G̃ : E → J∗(D) is

the unique such functor. Hence the 2-cells σ̃ : L̃ ⇒ L̃G̃ and σp : Kp ⇒ KGp

determine a 2-cell σ† = 〈σ̃, σp〉 : L′ ⇒ L′G̃. Then, q∗(J)σ† = σ̃ holds. It only

remains to verify that (L′, σ†) is an oplax cocone for G; the rest is immediate.

L′ε̃ ◦ σ† = 1L′ , by the universal property of the pullback:

• J∗(q)(L′ε̃◦σ†) = Kεp◦σp = 1J∗(q)L′ , because (K, σ) is an oplax cocone,

and

• qast(J)(L′ε̃ ◦ σ†) = L̃ε̃ ◦ σ̃ = 1q∗(J)L′ , because (L̃, σ̃) is an oplax cocone.

A similar argument shows L′δ̃ ◦ σ† = σ†G̃ ◦ σ†.

5.4.11. Theorem. Given a fibred comonad 〈(G̃, G) : p → p, (ε̃, ε), (δ̃, δ)〉

for
E
↓p

B
, let 〈G = GFG�UG

: F ∗
G(p) → F ∗

G(p), ε, δ〉 be the associated BG-fibred

comonad induced by the Kleisli resolution FG � UG : B → BG, via η, ε, for G.

Then, F ∗
G(p)G : F ∗

G(E)G → BG is the fibration of the Kleisli object for (G̃, G)

in Fib.

206 Comonads and Kleisli fibration

Proof. In the proof, we omit G subscripts from F and U above and write

p′ for F ∗
G(p).

• By Lemma 3.2.1, we have a fibred adjunction

with U = (p′)∗(U)〈εF 〉 counit (ε′)p and unit ((η)′p′〈εF 〉q) ◦ (δp
Fη,εF). Let

(U ′ : p′ → p′
G
, λ : U ′ ⇒ U ′G) be the Kleisli object of G in Fib(BG).’

We then have an oplax cocone ((U ′U, U) : p → p′
G
, (λ, ηU)) for (G̃, G)

in Fib, where λ = (U ′((η)′p′〈εF 〉pG) ◦ λ)U , unfolding the definition of

the 2-cells involved.

• To verify ((U ′U, U), (λ, ηU)) is a fibred oplax colimit, let ((L̂, L) : p →

q, (σ̃, σ)), with
D
↓q

C
be another fibred oplax cocone.

– Since (U, ηU) is an oplax colimit, there is a unique morphism H =

(L, σ) : BG → C with HU = L and HηU = σ. By Lemma 5.4.10,

there is a fibred oplax cocone ((L′, U) : p → H∗(q), (σ†, ηU)). We

write q′ for H∗(q).

– Let σ̂ = L̂′ ⇒ 〈ηU〉q′G∗(L̂′)L̂′ be the vertical factor of σ† obtained

by Lemma 312.(ii), so that σ† = (ηU)′q′ , G
∗(L̂′)L̂′ ◦ (q′)∗(U)σ̂.

5.4 Fibred comonads and resolutions 207

Then, (〈η〉q′F ∗(L̂′) : p′ → q′, 〈η〉q′F ∗(σ̂)) is an oplax cocone. Note

that the codomain of 〈η〉q′F ∗(σ̂) is

〈η〉q′F ∗〈ηU〉q′F ∗(G∗(L̂′))F ∗(Ĝ)

= 〈η〉q′〈UFη〉q′ ◦ (GF)∗(L̂′)F ∗(Ĝ),

by Lemma 3.1.10.(iii) and naturality of η

= 〈η〉q′F ∗(L̂′)〈FηU〉pF ∗(Ĝ),

by Proposition 3.1.5

and so the above oplax cocone is well-defined. The oplax cocone

laws follow from those of (L′, σ†). We show one for illustration:

〈η〉q′F ∗(L̂′)ε ◦ 〈η〉q′F ∗(σ̂)

= 〈η〉q′(F ∗(L̂′)〈Fη〉pF ∗(ε̂) ◦ F ∗(σ̂))

= 〈η〉q′(F ∗(L̂′)〈Fη〉U∗(q′)(GF)∗(L̂′)F ∗(ε̂) ◦ F ∗(σ̂))

by Proposition 3.1.5

= 〈η〉q′(〈ηUF 〉q′(GF)∗(L̂′)F ∗(ε̂) ◦ F ∗(σ̂))

by Lemma 3.1.10.(iii) and naturality of η

= 〈η〉q′F ∗(〈ηU〉q′G∗(L̂′)ε̂ ◦ σ̂)

by Lemma 3.1.10.(iii) and the interchange law

= 〈η〉q′F ∗(̂(L′ε̃ ◦ σ†))

by Lemma 3.1.9.(ii)

1〈η〉q′F ∗(L̂′)

because(L′, σ†) is an oplax cocone

– By the universal property of (U ′ : p′ → p′
G
, λ : U ′ ⇒ U ′G) we

have a unique oplax-cocone morphism H ′ : p′
G
→ q′ with H ′U ′ =

〈η〉q′F ∗(L̂′) and H ′λ = 〈η〉q′F ∗(σ)) which is also a fibred oplax-

cocone morphism from ((U ′U, U), (λ, ηU)) to (L′, σ†). To see this,

with σ† = (ηU)′qG
∗(L̂)L̂′ ◦ (q′)∗(U)σ̂ we must show H ′λ = σ†,

208 Comonads and Kleisli fibration

which follows from

H ′U ′(η)′p′〈εF 〉pGU

= 〈η〉q′F ∗(Ĥ)(η)′p〈εF 〉pGU

= (ηU)′q(UFU)∗(〈η〉q′)〈ε〉G∗U∗(q′)U∗(〈Fη〉U∗(q′))〈ε〉G∗U∗(q′)G
∗(Ĥ)Ĥ

by Proposition 3.1.5

= (ηU)′q′〈UFηU〉q′〈UFUε〉q′〈UFηU〉q′〈UFUε〉q′G∗(Ĥ)Ĥ

using Lemma 3.1.10

= (ηU)′q′G
∗(Ĥ)Ĥ)

by the adjunction laws

and

H ′λU

= 〈η〉q′F ∗(σ))U

= (q′)∗(U)U∗(〈η〉q′)U∗(F ∗(σ̃)〈ε〉p
by diagram chase with pullbacksU∗()

= (q′)∗(U)U∗(〈η〉q′)〈ε〉U∗(q′)σ̂

using Lemma 3.1.8.(ii)

= (q′)∗(U)〈ηU〉q′〈Uε〉q′σ̂)

= (q′)∗(U)σ̂)

by the adjunction laws

– We thus get a unique fibred 1-cell (q∗(H)H ′, H) : pG → q which

makes ((U ′U, U), (λ, ηU)) a fibred oplax colimit.

✷

5.4.12. Remark. The above process to build the Kleisli fibration can be ap-

plied to obtain the Eilenberg-Moore one as well, starting with the Eilenberg-

Moore resolution for the base comonad. In this case, this rather involved

5.4 Fibred comonads and resolutions 209

construction admits a simpler presentation: the Eilenberg-Moore fibration

for a fibred comonad 〈(G̃, G) : p → p, (ε̃, ε), (δ̃, δ)〉 for
E
↓p

B
is the fibration

pG̃,G : EG̃ → BG, where EG̃ and BG are the Eilenberg-Moore categories for G̃

and G respectively, and

pG̃,G(X
x→ G̃X) = (p(X)

px→ Gp(X))

The construction of Kleisli objects in Fib from those in Cat and Fib()

yield at once the following corollary:

5.4.13. Corollary. Fib satisfies pck.

210 Comonads and Kleisli fibration

Chapter 6

Indeterminates in polymorphic
λ-calculi

In this chapter we apply the constructions of Kleisli fibrations in Fib(B),

Proposition 5.4.3, and Fib, Theorem 5.4.11, to obtain fibrations with an

indeterminate element, according to Proposition 5.3.12. We will show that

this construction is adequate for λ →- and λω-fibrations. This will allow us

to show contextual and functional completeness for these calculi, as explained

below. Another application of these fibrations with indeterminates is to give

a semantics for ML-style module features: signatures, structures and functors

[HMM86], following the approach in [FP92]. The contents of this chapter is

borrowed from [HJ93], although here we are concerned with a structural

presentation on how the polynomial categories obtained as Kleisli fibrations

inherit the relevant structure to interpret polymorphic calculi.

The structure of the chapter is as follows: in §6.1 we refine Lambek’s

analysis [LS86, Part I,§6] of representability of terms with a parameter, i.e,

212 Indeterminates in polymorphic λ-calculi

morphisms in a polynomial category, introducing contextual completeness,

characterised by the existence of a certain left-adjoint and understand func-

tional completeness in a dual fashion. This is extended from simply typed to

polymorphic λ-calculi. §6.2 deals with indeterminates for fibrations over B,

establishing contextual and functional completeness for the several polymor-

phic calculi in Fib(B). It also presents the simple fibration of [Jac91a, §1.2.7]

as a Kleisli fibration. §6.3 deals with indeterminates for fibrations in Fib and

establishes functional completeness for λω in this context. Finally, §6.3.1

shows how polynomial fibrations can be used to give semantics to ML-style

module-features: signatures, structures and functors.

6.1 Contextual and functional completness for

λ-calculi

The categorical concept of ‘category with an indeterminate element’ or poly-

nomial category, as in §5.2, captures the notion of parameterisation. It can

be formulated type-theoretically as follows: given a simply typed λ-calculus

L, consider the simply typed λ-calculus L(c) obtained from L by freely ad-

joining a new constant c : σ; its typing relation 'c extends that of L, ', by

'c c : σ. Thus, the terms of L(c) have a parameter c : σ.

We can then formulate certain ‘representability’ properties of L. Specifi-

cally, we can consider contextual and functional completeness, which express

the two ways a term Γ 'c t : τ of L(c) can be represented by a term of L:

(i) By a unique term Γ, x : σ ' �t� : τ (same type, extended context)

6.1 Contextual and functional completness for λ-calculi 213

such that Γ 'c t = �t�[x := c] : τ .

(ii) By a unique term Γ ' �t� : σ −→ τ (same context, different type)

such that Γ 'c t = �t�c : τ .

So, contextual completeness, (i) above, means that the parameter c : σ

can be internalised in L by an extra variable x : σ in every context. The

parameter c : σ can be ‘instantiated’ to actual constants of type σ, cf. the

‘substitution’ functors of §5.2, and thus we can think of a term Γ 'c t : τ in

L(c) as a function

(' a : σ) �→ (Γ ' t[a/c] : τ)

where t[a/c] denotes the term with occurrences of c replaced by a. Func-

tional completeness, (ii) above, means that such function can be internalised

in L by a term Γ ' �t� : σ −→ τ . Thus, terms of type σ −→ τ internalise

terms of type τ with a parameter of type σ. The categorical expression of

these completeness properties is given in terms of categories B[x : I] with an

indeterminate, as in §5.2. Note that the formulation there makes sense for a

category B with a terminal object 1, the universal property holding for other

such categories C and terminal object preserving functors F : B → C with a

morphism a : F1 → FI. This version is used in the following definition:

6.1.1. Definition. Let B be a category with a terminal object. We call

B

(i) contextually complete if for every I ∈ B, the functor η : B → B[c : I]

has a left adjoint;

214 Indeterminates in polymorphic λ-calculi

(ii) functionally complete if every such η has a right adjoint.

This definition gives a finer formulation of the structure required in

B to interpret a simply typed theory: the terminal object 1 interprets the

empty context and thus closed terms of type τ correspond to global elements

B(1, τ), identifying types with their interpretation in B. Terms with a free

variable x : σ correspond to closed terms in B[x : σ]. To interpret these

terms in B, we require contextual completeness. Note that the left adjoint

L � ησ : B → B[x : σ] determines a comonad on B, which can be understood

type-theoretically as performing ‘context comprehension’, as in [Jac92]:

Γ �→ Γ, x : σ

Note that contexts are inductively formed by context comprehension starting

from the empty context. This is the reason to require finite products in B

the above ‘context comprehension’ comonad is × σ : B → B. A category

with finite products is then contextually complete. Proposition 5.3.12 gen-

eralises this observation to cartesian objects in a 2-category. Thus, when

the 2-category considered satisfies pck, its cartesian objects are contextually

complete.

By Proposition 5.2.1, B is functionally complete precisely when, for every

σ, × σ has a right adjoint, and thus B is cartesian closed. This is required

for B to internalise the functions induced by terms with a parameter, as

explained above.

The above analysis extends to polymorphic λ-calculi, λ → and λω. Re-

6.1 Contextual and functional completness for λ-calculi 215

call, from §2.1.3 that terms for these calculi are written as

Θ | Γ ' t : τ

where Θ is a context of type variables X : κ in a kind κ, Γ is a context of

term variables x : σ in a type σ.

Let P be λ → or λω. The presence of two levels of contexts, and thus two

sorts of variables, leads us to consider contextual and functional completeness

for types and for kinds. For types, we consider the polymorphic calculus

P(c) with a new constant c : σ, where σ is a closed type i.e. ' σ : Type. Its

typing relation 'c extends ' as before. Contextual completeness for types

means that for each term Θ | Γ 'c t : τ in P(c), there is a unique term

Θ | Γ, x : σ ' �t� : τ with

Θ | Γ 'c t = �t�[c/x] : τ.

Functional completeness for types means that for any such t there is a unique

Θ | Γ ' �t� : σ −→ τ with

Θ | Γ 'c t = �t�c : τ.

To describe contextual and functional completeness for kinds, we con-

sider a polymorphic calculus P(C, c) with a new constant C : κ, for a kind

κ, and a new term constant c : σ[X := C], for a type X : κ ' σ : Ω in

P . Its typing relation 'C,c extends ' in the obvious way. Although one

might expect completeness properties for kinds to be expressible in terms

of the parameter C alone, the fact that types may involve occurrences of C

216 Indeterminates in polymorphic λ-calculi

prompts the consideration of a parameter c. If we consider a calculus P(C)

with only a a new constant C, terms Θ | Γ 'C t : τ in P(C) are such that the

types of the term variables declared in Γ may involve occurrences of C, e.g.

x : C ∈ Γ. Using finite products for types, we can assume there is only one

such type in Γ, namely X : κ ' σ : Ω. Then, to internalise occurrences of C

in t we must also internalise those variables whose types involve C. This is

the role of the parameter c : σ[X := C].

So, completeness properties for kinds express the representability of

terms Θ | Γ 'C,c t : τ of P(C, c) in P , where the declarations xi : τi of

term variables in Γ are such that Θ ' τi : κi in P . That is the types occur-

ring in Γ do not involve occurrences of C; the only type depending on C is

σ. This is not relevant for contextual completeness, but is essential for the

formulation of functional completeness.

Contextual completeness for kinds means that for each term Θ | Γ 'C,c

t : τ in P(C, c) as above, there are unique Θ, X : κ ' �τ� : Ω and Θ, X :

κ | Γ, x : σ ' �t� : �τ� such that Θ 'C,c τ = �τ�[X := C] : Ω and

Θ | Γ 'C,c t = �t�[X := C][x := c] : τ .

Functional completeness for kinds means that for each term Θ | Γ 'C,c t :

τ there are unique Θ ' �τ� : A −→ Ω and Θ | Γ�t� : ΠX : κ.(σ −→ �τ�X)

with

Θ 'C,c τ = �τ�C : Ω

and

Θ | Γ 'C,c t = �t�Cc : τ

6.2 Indeterminates for fibrations over a given base 217

Of course, functional completeness for kinds only makes sense for λω.

Categorically, contextual and functional completeness for types are ex-

pressed in terms of fibrations with an indeterminate in Fib(B), while com-

pleteness properties for kinds involves fibrations with an indeterminate in

Fib. These are considered in §6.2 and §6.3 respectively.

6.2 Indeterminates for fibrations over a given

base

We consider fibrations with an indeterminate element in Fib(B). First, we

examine global elements and 2-cells in Fib(B). A global element s : 1B → p

of
E
↓p

B
in Fib(B) corresponds to a family of objects {s(I) ∈ EI}I∈B stable

under reindexing. This means that for each u : I → J in B, u∗(s(J)) ∼= s(I).

In case the base category has a terminal object 1, the global element s is

determined by the object s(1) in the fibre over 1. Given such an object X in

the fibre over 1, we write sX : 1B → p for the corresponding global element,

given by I �→!∗I(X).

Let
E
↓p

B
be a fibration, with a terminal object 1 and a global element

s. A 2-cell α : 1 ⇒ s is a family of vertical morphisms {αI : 1(I) → s(I)

in EI}I∈B stable under reindexing: for each u : I → J in B the following

diagram is a pullback:

218 Indeterminates in polymorphic λ-calculi

When the base category B has a terminal object 1, the 2-cell α : 1 ⇒ s is

determined by α1.

Type-theoretically, when p is a λ →- or λω-fibration, a global element

s corresponds to a closed type ' s(1) : Ω, and a global 2-cell α : 1 ⇒ s

corresponds to a closed term ' α1 : s(1).

6.2.1. Remark. The equivalence Fib(B)(1B,p
) � E1, when B has a ter-

minal object, as outlined above is an instance of Benabou’s ‘fibred Yoneda

lemma’. See [Jac91a, Lemma 1.1.9]

A fibration
E
↓p

B
is a cartesian object in Fib(B) when it has fibred fi-

nite products, cf. Definition 1.4.1. For a given global element s : 1B → p,

we write p[c : s] for the fibration with an indeterminate 2-cell c : 1 ⇒ s,

equipped with a fibred functor η : p → p[c : s] which preserves fibred finite

products and a 2-cell c : η1 ⇒ ηs, universal among such, as specified in Def-

inition 5.3.8. We can now formulate contextual and functional completeness

for types as follows:

6.2.2. Definition. Let
E
↓p

B
be a fibration, with fibred finite products and B

6.2 Indeterminates for fibrations over a given base 219

with a terminal object.
E
↓p

B
is

(i) contextually complete for types if for every global element sX : 1B →

p, η : p → p[c : sX] has a B-fibred left adjoint, and

(ii) functionally complete for types if every such η has a B-fibred right

adjoint.

By Propositions 5.3.12 and 5.4.3 and Corollary 5.4.5, every fibration

with fibred finite products is contextually complete for types. A concrete

description of p[c : s] : E ×s → B for a global element s : 1B → p induced by

X ∈ E1 is the following: E ×s has the same objects as E, while its hom-sets

are (E ×s)I(Y, Z) = EI(Y×I !
∗
I(X), Z). This agrees with the expected type-

theoretic interpretation: ‘contexts’ in p[c : s] have an extra variable of type

X, ‘weakened’ to the appropriate kind context I.

We apply the above construction of p[c : s] as a Kleisli fibration to show

contextual and functional completeness for types λ →- and λω-fibrations.

These are organised into 2-categories λ →-Fib(B) and λω →-Fib(B) respec-

tively, with structure preserving functors. We first show that Kleisli fibrations

for fibred comonads inherit generic objects, as follows:

6.2.3. Proposition. Let
E
↓p

B
have a (strong) generic object T and let

〈G : p → p, ε, δ〉 be a B-fibred comonad. Then, the Kleisli fibration pG :

EG → B has a (strong) generic object and UG : p → pG (the right adjoint of

the resolution) preserves generic objects.

220 Indeterminates in polymorphic λ-calculi

Proof. It is routine to verify that T is also a (strong) generic object for

pG: for X ∈ |E|, let χX : X → T be a p-cartesian morphism in E. Then

χX ◦ εX : X → T is pG-cartesian in EG. Preservation is immediate. ✷

The following lemma shows that p[c : s] inherits Cons -products from p.

6.2.4. Lemma. Consider a B-fibred comonad G : p → p on
E
↓p

B
. If p

has ConsB-products then so does the Kleisli fibration
EG
↓pG

B
and the fibred

right adjoint UG : p → pG preserves them.

Proof. The products Π for pG are obtained from those of p, Π. Given

I, J objects of B, let π : I × J → J be the projection. For any two objects

X ∈ |EJ | and Y ∈ |EI×J |, let ΠJ(Y) =� ΠJ(Y) we have

(EG)I×J(π∗(X), Y) ∼= EI×J(G(π∗(X)), Y)

∼= EI×J(π∗(GX), Y)

∼= EJ(GX, ΠJ(Y))

∼= (EG)J(X, ΠJ(Y))

The Beck-Chevalley condition for Π follows from that of Π. Preservation by

UG : p → pG is immediate. ✷

Now we can show

6.2 Indeterminates for fibrations over a given base 221

6.2.5. Proposition. Let
E
↓p

B
be a λ →-/λω-fibration and let s : 1B → p

be a global element. Then η : p → p[c : s] with c : η1 ⇒ ηs as given in

Proposition 5.3.12 exhibit p[c : s] as the fibration with an indeterminate 2-

cell c : 1 ⇒ s in λ →-/λω-Fib(B).

Proof. We must show that p//s is a λ →-/λω-fibration if p is, and η preserves

the relevant structure. Proposition 6.2.3 accounts for generic objects. Using

the fibrewise presentation of p[c : s], cf. Remarks 5.4.4, we conclude that its

fibres are cartesian closed by [LS86, Part I, Proposition 7.1]; the structure

is as given in E. The reindexing functors for p[c : s], which are those of

p, preserve such structure. ConsB-products are similarly transferred, and

preserved by η, by Lemma 6.2.4. It is easy to verify that the unique mor-

phism induced into any other λ →-/λω-fibration given with the appropriate

morphism into it and a global 2-cell, is a morphism in λ →-/λω-Fib(B).

6.2.6. Corollary. Every λ →-/λω-fibration
E
↓p

B
is functionally complete

for types.

Proof. Given a global element s : 1B → p, we must provide a B-fibred

right adjoint Rs : p[c : s] → p to η. It is given, fibrewise, as follows:

• on objects: X ∈ |EI | �→ s(I) ⇒ X

• on morphisms: given f : X × s(I) → Y in EI , we have

s(I) ⇒ X × s(I)
〈ev,π′〉→ X × s(I)

f→ Y

222 Indeterminates in polymorphic λ-calculi

and we get the desired morphism transposing the above one across the

ex-ponential adjunction, Λ(f ◦ 〈ev, π′〉) : s(I) ⇒ X → s(I) ⇒ Y .

✷

As expected, functional completeness involves λ-abstraction of term vari-

ables. This is reflected in the above proof in the definition of the morphism

part of Rs

6.2.7. The Simple Fibration. For B a category with finite products,

the assignment I �→ B[x : I] from objects of B to categories extends to a

pseudo-functor B[:] : Bop → Cat as follows: given a morphism f : I → J

in B, the reindexing functor u∗ : B[y : J] → B[x : I] is determined by the

functor ηI : B → B[X : I] and the morphism ηIu◦x : 1 → ηIJ . Applying the

Grothendieck construction to B[:], we obtain the so-called simple fibration
s(B)

↓

B
; see [HJ93]. This fibration is a particular instance of a more general

construction, presented in [Jac91a, §1.2.7], which we describe next. Given
E
↓p

B
with fibred finite products, the fibration sp : s(E) → E, called simple of

p, is defined as follows:

• The category s(E) has

Objects |s(E)| = {(X, X ′) | X, X ′ ∈ |E|, pX = pX ′}.

Morphisms

s(E)((X, X ′), (Y, Y ′)) = {(f, f ′) | f : X → Y, f ′ : X ×X ′ → Y ′, pf = pf}

6.2 Indeterminates for fibrations over a given base 223

Composition is given by (f, f ′) ◦ (g, g′) = (f ◦ g, f ′ ◦ 〈g ◦ π, g′〉) and

identity by (1, π′)

• sp acts on objects and morphisms as (X, X ′) �→ X. A morphism (f, f ′) :

(X, X ′) → (Y, Y ′) is sp-cartesian iff there is a vertical isomorphism

v : X ×X ′ → X × (pf ′)∗(Y ′) such that f ′ = pf ′(Y ′) ◦ π′
X,(p,f ′)∗(Y ′) ◦ v.

We show how the fibration sp arises as the Kleisli fibration of a suitable

fibred comonad in Fib(E). Consider the following pullback diagram

This is both a change-of-base diagram, of p along p, and a binary product

diagram in Fib(B) of p with itself. Recall that there is a fibred product functor

× : p×p →p. We define the following E-fibred comonad 〈G : πp,p → πp,p, ε, δ〉:

• G = 〈πp,p,×〉 (pairing in Fib(B)). Concretely, G(X, X ′) = (X, X ×X ′)

and similarly for morphisms. πp,p ◦G = πp,p and G preserves cartesian

morphisms.

• ε : G ·→1πp,p given by ε(X,X′) = (1X , π′
X,X) : (X, X ×X ′) → (X, X ′)

224 Indeterminates in polymorphic λ-calculi

• δ : G ·→G2 given by

δ(X,X′) = 1X , 〈πX,X′ , 1X×X′〉) : (X, X ×X ′) → (X, (X ×X ′) ×X ′)

It is easy to verify that the above data yields an E-fibred comonad and

sp
∼= pG. This is implicit in the description of the fibres s(E)X as polynomial

categories EpX [x : X] given in ibid., since such categories correspond to

(EpX)X× as we have already seen. Note also that the simple fibration
s(B)

↓

B

is simple of
B
↓

1
, the trivial fibration of B over 1.

There is a full and faithful fibred 1-cell (H, 1) : p → sp, as given in

[Jac91a, §1.2.7].

It is worth spelling out the universal property of simple of p. Let

FPFib(B) be the 2-category of fibrations with fibred finite products over

B, fibred functors which preserve such products and the usual fibred 2-cells.

Given
E
↓p

B
∈ FPFib(B), consider the two fibred functors ∆p, 1p : p → p× p,

where ∆p is the diagonal functor and 1p is given by X �→ (X, 1(pX)) (re-

call 1(pX) is the terminal object in the fibre EpX); cf. Definition 1.4.1.

Then ηp(= UG) : p × p → sp together with α : 1p ⇒ ∆, given by αX =

(1X , πX,1(pX)) : (X, 1(pX)) → (X, X) in (EG)pX have the following univer-

sal property in FPFib(B) : for any
D
↓q

B
and any H : p × p → q together

with a 2-cell γ : H1p ⇒ H∆p, there is a unique (up-to-isomorphism) fibred

functor (H, γ) : sp → q such that (H, γ)ηp
∼= H and (H, γ)ηpα = γ (mod-

ulo the given isomorphism between the functors), and similarly for 2-cells

σ : H ⇒ H ′ between two such functors, which determine a correspondent

6.3 Indeterminates for fibrations in Fib 225

σ : (H, γ) ⇒ (H ′, γ′) : p × p → q.

These simple fibrations play a central role in the semantics of type the-

ories, as shown in [Jac91a].

6.2.8. Remark. Using Corollary 3.3.11 we can infer that, if p is a λω-

fibration so is sp and the 1-cell (H, 1) : p → sp above preserves the relevant

structure, extending [Jac91a, Theorem 3.3.3], which proves a similar result

for λ →- and λ2-fibrations. As mentioned in [Jac91a, §3.3], such full and

faithful structure preserving embedding of p into sp for λ2-fibrations consti-

tutes the first step in Pitts’ internalisation of a λ2-fibration
E
↓p

B
in the topos

SetE
op

, obtaining a completeness results for topos-theoretic models of λ2,

[Pit87]. This is meant to proof that polymorphism is ‘set-theoretic’, pro-

vided we replace Set for the topos SetE
op

. The abovementioned fact about

λω-fibrations therefore allow us to extend Pitts’ result to topos-theoretic

models of λω.

6.3 Indeterminates for fibrations in Fib

We consider fibrations with an indeterminate element in Fib. These will be

used to show functional completeness for kinds for λω-fibrations below, and

to give semantics to ML-module features in §6.3.1. We first examine global

elements and global 2-cells in Fib.

The 2-category Fib has finite products. The fibration
1
↓
1

written as 1,

226 Indeterminates in polymorphic λ-calculi

is terminal in Fib, and the product of
E
↓p

B
and

D
↓q

A
is

E × D
↓p×q

B × A
.

A global element (X̃, X) : 1 → p of
E
↓p

B
in Fib amounts to an object

X̃ ∈ E above X ∈ B. We thus write X : 1 → p for the global element

(X, pX). In particular, the terminal object 1 ∈ E forms such a global element

1 : 1 → p, when it exists. Type-theoretically, a global element corresponds

to a type X with a free variable of kind pX.

A 2-cell (f, g) : 1 ⇒ X between 1, X : 1 → p consists of a morphism

f : 1 → X in the total category of p over g : 1 → pX. It can therefore

be identified with a morphism u : 1 → pX in the base category together

with one f̂ : 1 → u∗(X) in fibre over 1. Therefore, such a 2-cell is written

as 〈u, f̂〉 : X. Type-theoretically, u is a constant of kind pX and f̂ a term

constant of type u∗(X).

By Definition 3.3.4, a fibration
E
↓p

B
has finite products, i.e. it is a carte-

sian object in Fib, if both E and B have finite products and p strictly preserves

them. Equivalently, by Corollary 3.3.6,
E
↓p

B
has finite products if the base

category B has finite products and p has fibred finite products, i.e. it is a

cartesian object in Fib(B). A morphism (H̃, H) : p → q in Fib preserves

finite products if both H̃ and H preserve them in the ordinary sense.

For a fibration
E
↓p

B
with finite products and a global element X ∈ |E|,

we can describe the fibration with an indeterminate p[〈C, c〉 : X] in Fib, in-

stantiating Definition 5.3.8. This is used to express contextual and functional

completeness for kinds, as follows:

6.3 Indeterminates for fibrations in Fib 227

6.3.1. Definition. Let
E
↓p

B
be a fibration with finite products. p is

(i) contextually complete for kinds if, for every X ∈ |E|, η : p → p[〈C, c〉 :

X] has a left adjoint in Fib, and

(ii) functionally complete for kinds if every such η has a right adjoint in

Fib.

This categorical expression of completeness for kinds properly reflects

the type-theoretic version for polymorphic λ-calculi in §6.1.

By Proposition 5.3.12, Theorem 5.4.11 and Corollary 5.4.13, a fibration

with finite products is contextually complete. We want to extend this result

for λ →- and λω-fibrations and show that λω-fibrations are functionally com-

plete for kinds. We must first show that p[〈C, c〉 : X] is a λ →-/λω-fibration

when p is. To do so we need the following auxiliary results:

6.3.2. Proposition. Given
E
↓p

B
, with a (strong) generic object G (ouer

Ω) and an adjunction F � U : B → A (via η, ε), let (U, U)p → F ∗(p) be

the fibred right adjoint to (p∗(F), F) induced by change-of-base, as in Lemma

3.2.1. Then, F ∗(p) has a (strong) generic object and (U, U) preserves generic

objects.

Proof. We must simply verify that UG(= 〈ε∗Ω(G), GΩ〉) over GΩ is a (strong)

generic object for F ∗(p). Let X be an object of F ∗(E). We obtain a carte-

sian morphism χX : X → UG as the adjoint transpose of a cartesian mor-

phism χp∗(F)X : p∗(F)X → G, cf. Remark 1.2.13. The hom-set isomorphism

228 Indeterminates in polymorphic λ-calculi

A(F ∗(p)(X), U(Ω)) ∼= B(F (F ∗(p)(X)), Ω) implies that if G is strong, so is

UG. ✷

6.3.3. Corollary. Let
D
↓q

B
be a fibration with a fibred terminal object

1 : 1B → q. Given another fibration
E
↓p

B
, if p has a (strong) generic object,

so does q∗(p) and the fibred 1-cell (1, 1) : p → q∗(p) preserves generic objects.

6.3.4. Proposition. Consider
E
↓p

B
where B has finite products. Let I

be an object of B. Consider the comonad × I : B → B and its Kleisli

resolution F � U : B → B ×I . If p has ConsB -products then F ∗(p) has

ConsB ×I
-products and the fibred 1-cell (U, U) : p → F ∗(p) preserves Cons -

products.

Proof. Given K, J objects of B the image of the projection π : K × J → J

in B ×I along F is isomorphic to the projection π : (I × K) × J → I × J ,

hence

π∗F ∗(p) ∼= π∗p � ΠI×K
J

A simple calculation shows that such right adjoints satisfy the Beck-Chevalley

condition for F ∗(p) because they satisfy it for p. The Beck-Chevalley con-

dition for p is used once more to show that (U, U) : p → F ∗(p) preserves

Cons -products. ✷

Let λ →-Fib and λω-Fib be the 2-categories of λ →- and λω-fibrations

respectively, with structure preserving fibred 1-cells. Given the description

6.3 Indeterminates for fibrations in Fib 229

of p[〈C, c〉 : X] as a Kleisli fibration for a comonad in Fib, we have:

6.3.5. Corollary. Given a fibration
E
↓p

B
and a global element X ∈ |E|,

if
E
↓p

B
is a λ →-/λω-fibration, so is p[〈C, c〉 : X] and η : p → p[〈C, c〉 : X]

preserves the relevant structure. Furthermore, the universal property of η

holds in λ →-/λω-Fib.

Proof. We first show that F ∗(p) has the relevant structure. The fibred-ccc

structure of p[〈C, c〉 : X] is obtained from that of p because F ∗ : Fib(B) →

Fib(B ×I) preserves finite products and groupoid fibrations and hence it pre-

serves the relevant fibred adjunctions. The presence of a generic object fol-

lows from Proposition 6.3.2. ConsB ×I
-products are obtained by Proposi-

tion 6.3.4. Knowing that F ∗(p) has the relevant structure, we prove that

p[〈α, x〉 : X] has it as well, using Proposition 6.2.3 and Lemma 6.2.4. The

rest of the corollary is proved with similar arguments. ✷

A concrete description of p[〈C, c〉 : X] goes as follows: its total category,

written E//(X)d, has:

Objects: (I, Y) with I ∈ B, Y ∈ E and pY = I × pX.

Morphisms: (u, f) : (I, Y) → (J, Z) with u : I × pX → J and f : Y ×

(π′
I,pX)∗(X) → Z over 〈u, π′

I,pX〉 : I × pX → J × pX.

p[〈C, c〉 : X]E//(X) → B//pX — where B//pX denotes the Kleisli category

of × pX — takes objects and morphisms to their first components. η =

230 Indeterminates in polymorphic λ-calculi

(U ′, U, U) : p → p[〈C, c〉 : X] acts as follows: for I ∈ |B|, UI = I, and for

Y ∈ |EI |,U ′UY = (I, π∗
I,pX(Y)).

Note that a morphism in (u, f) : η(Y) → (J, Z) in E//(X) corresponds

to a term pY | π∗
pY,pX(Y) 'C,c f : Z(u, c), with C : pX and c : X(C), where

the ‘context for type varibles’ π∗
pY,pX(Y) does not depend on C. This reflects

precisely the restriction on contexts required in the formulation of functional

completeness for kinds in §6.1

λ →-/ and λω-fibrations are contextually complete for kinds, in view

of the presentation of the corresponding fibrations with indeterminates as

Kleisli fibrations above. We now show that λω-fibrations are also function-

ally complete for kinds.

6.3.6. Proposition. Every λω-fibration is functionally complete for kinds.

Proof. Let
E
↓p

B
be a λω-fibration. We must construct a fibred right adjoint

(R̃, R) to (U ′U, U) : p → p[〈C, c〉 : X]. The base right adjoint R : B ×pX → B

is given by I �→ pX ⇒ I. R̃ : E//(X) → E is obtained as the composite R̂RR′,

applying Theorem 3.2.3 where:

• R′ : E//(X) → F ∗(E) is the right adjoint to U ′ : F ∗(E) → E, given by

(I, Y) �→ (I, (π′
I,pX)∗(X) ⇒I×pX Y

• R : F ∗(E) → U∗F ∗(E) is given by Lemma 3.2.1:

(I, Y) �→ 〈evpX,I , π
′
pX⇒I,pX〉∗(Y)

6.3 Indeterminates for fibrations in Fib 231

• R̂ : U∗F ∗(E) → E is the right adjoint to Û : E → U∗F ∗(E) — whose

action is Y �→ π∗
pY,pX(Y) — given by (I, Y) �→ ΠK(Y).

Hence R̃ has action

(I, Y) �→ ΠK((π′
pX⇒I,pX)∗(X) ⇒pX⇒I×pX 〈evpX,I , π

′
pX⇒I,pX〉∗(Y))

✷

Note that functional completeness of a λω-fibration
E
↓p

B
is due to the

fact that both B and E are cartesian closed, the latter by Corollary 3.3.11.

6.3.1 A semantics for ML-style modules using polyno-
mial fibrations

In [FP92], a topos theoretic semantics for Pure ML is presented. The ap-

proach advocates synthetic domain theory to interpret recursive functions and

data types, and the theory of classifying toposes via the notion of generic

structure to interpret signatures, structures and functors. Here we adapt

the latter idea and show how fibrations with indeterminates can interpret

ML-style signatures, structures and functors. For simplicity, we consider the

purely functional fragment of SML without recursion, i.e. a simply typed

λ-calculus with type variables as embodied in the notion of a λ →-fibration;

this is the minimal setting required to illustrate the above application.

Consider the following ML-signature:

signature Order =

sig

232 Indeterminates in polymorphic λ-calculi

type t;

val le: t ∗ t → bool

end;

Thus, a signature declares types (t above) and values (le above) whose

type may involve the declared types besides the ‘pervasive’ types (bool

above). They may also contain structures, but we will consider them later.

Consider
E
↓p

B
a λ →-fibration, which interprets a λ →-calculus with

the basic types of ML. Recall that the generic object T lies over the kind

Ω of all types, e.g. bool : 1 → Ω names the (closed) type B = bool∗(T)

corresponding to bool above. Similarly, t : 1 → Ω names t above. The value

le corresponds to a morphism le : 1 → T × T ⇒!∗Ω(B), which we identify

with its vertical factor le : 1 → t∗(T × T ⇒!∗Ω(B)). Therefore we interpret

the above signature Order by adjoining t : Ω and le : t∗((T × T ⇒!∗Ω(B)) to

p:

[[Order]] = p[〈t, le〉 : T × T ⇒!∗Ω(B)] : E//(T × T ⇒!∗Ω(B)) → B//Ω

Now consider the following structure which matches the signature Order:

structure IntOrder: Order =

struct

type int;

fun le(m,n) = (in =< n)

end;

6.3 Indeterminates for fibrations in Fib 233

Thus a structure amounts to a choice of the components declared in the

signature. Hence we can interpret the structure IntOrder as the morphism

[[IntOrder]] of λ →-fibrations in the diagram below, determined by the uni-

versal property of [[Order]].

where the le being substituted is that defined in the structure IntOrder.

With respect to ML-functors, consider

functor Dual(structure O1:Order):Order =

struct

type t = O1.t;

fun le(x,y) = O1.le(y,x)

end;

The above ML-functor takes a structure matching Order as argument

and produces another such structure, namely one with the same type but

with the dual ordering relation. Note that the mapping

O1.t �→ dual(O1).t O1.le �→ dual(O1).le

determines a 2-cell

〈1Ω, s ⇒ B〉 : 〈Ω, t∗(T × T) ⇒ B〉 ⇒ 〈Ω, t∗(T × T) ⇒ B〉

234 Indeterminates in polymorphic λ-calculi

where s : t∗(T × T) → t∗(T × T) is the canonical ‘swap’ (or symmetry)

isomorphism s = t∗〈π′, π〉. By the universal property of [[Order]], such a

2-cell induces a λ →-morphism [[dual]] : [[Order]] → [[Order]], which is the

interpretation of the ML-functor dual. The action of dual on structures is

given by precomposition with [[dual]].

Signatures containing structures are interpreted by iterating the process

of forming fibrations with indeterminates. Consider for instance the signature

signature Sig =

sig

type t;

structure str: Sig’

val v: . . . str.t’ . . .

end;

The interpretation of Sig is built upon the interpretation of Sig’ as

follows: the fibration [[Sig’]] has a generic structure matching Sig’. Thus

we can interpret Sig over this fibration by [[Sig]] = [[Sig’]][〈t, v〉 : . . . (t′)∗(T)

. . .].

Regrettably, the 2-category λ →-Fib does not seem to have enough

structure to interpret features like sharing.

Chapter 7

Conclusions and further work

The aim of this thesis was to give a category-theoretic account of certain log-

ical phenomena, i.e. logical predicates, induction and indeterminates. These

topics are important in the semantics of type theories and programming lan-

guages and therefore a proper abstract account of them is convenient, and

even necessary, for their application as well as their generalisation to other

systems.

Our approach has been to investigate the above topics using the cor-

respondence category of predicates ≡ fibred category. This identification is

at the right level of abstraction to unveil some of the abstract results which

underlie the above logical phenomena.

Thus, we have shown how certain properties of a fibred category, i.e.

cartesian closure, can be interpreted logically, via the internal language of

the fibration, to obtain logical predicates for simply typed λ-calculus, cf.

Corollary 3.3.11 and Definition 4.2.2. The main property of logical predi-

236 Conclusions and further work

cates, namely the Basic Lemma, has a clear expression in this context as

the soundness of typing for interpretations of simply typed λ-calculus in a

cartesian closed category, cf. Corollary 4.2.4.

An analogous argument allows us to explain the induction principle for

inductive data types categorically, in terms of preservation of initial algebras

for an endofunctor on a distributive category, cf. Definition 4.5.13. Here

again, we recover the logical view of induction via the internal language of

the fibration. This shows the adequacy of our treatment.

An abstract account of a concept should stand on its own: if we have

captured the essential features of a problem, we should be able to prove the

right results with the right hypotheses. In particular, an abstract account

cannot be justified solely in terms of examples, although it is important to

recover these as particular instances. A mere rephrasing of concrete exam-

ples using categorical language is quite often misleading if irrelevant features

are taken into account. A significative example is the identification predi-

cate ≡ subobject, justified for higher-order logic and Set-like settings, like

a topos. However, when analysing logical predicates for simply typed λ-

calculus, which are expressed in first-order logic, we should not avail ourselves

of the comprehension principle implicit in the consideration of a predicate as

a morphism in the category. In particular, we should not prove the cartesian

closed property of a category of predicates using the domain of a subobject,

which corresponds to the extent of a predicate, as in [MR91], if we want to

achieve the right level of generality.

237

Thus, our account succeeds in proving the relevant results using suitable

hypotheses, namely the logical connectives and quantifiers supported by the

structure of a fibred category. We have examined a few illustrative examples

in this setting. In particular, we have seen in §4.3.2 that certain desirable

logics do not have all the structure necessary to make sense of logical pred-

icates, as far as the individual connectives and quantifiers in the relevant

formulas are concerned. However, these logics may be able to interpret the

relevant formulas all the same, because of their capability of internalising the

structure of a richer, external logic over the same category. In the case of

ωCpo, we have exploited the fact that exponentials in it are obtained from

those in Set, with a pointwise cpo structure, a standard property of cate-

gories of sets with structure. Of course, much remains to be done in the way

of applications.

In the case of the induction principle, the categorical conditions on a

‘logic’ over a distributive category in Proposition 4.5.8 give the appropriate

logical expressivity to make sense of induction, cf. Examples 4.5.14. Note

that for this abstract notion of logic over a distributive category, the induction

principle is a property we must impose on it. It cannot be taken for granted,

although it holds when we restrict ourselves to internal logics, by the presence

of comprehension cf. Corollary 4.5.15.

We would like to emphasise the importance of a 2-categorical perspec-

tive in studying these issues. One of the main results of the thesis, Theorem

3.2.3, which underlies the categorical account of logical predicates and induc-

tion outlined above, is a property of fibrations qua objects in the 2-category

238 Conclusions and further work

Fib. This is the framework in which we have developed our results about

fibrations.

We have also dealt with indeterminate elements for fibrations with some

structure, as relevant for the interpretation of polymorphic λ-calculi. We have

thus been able to capture some aspects of parameterisation in these calculi,

as embodied in the notions of contextual and functional completeness for

kinds and types, cf. Definitions 6.3.1 and 6.2.2. To do so, we reformulated

cartesian categories with indeterminates elements 2-categorically in §5.3. We

proved in this general context Lambek’s characterisation of these categories

with indeterminates as Kleisli objects for certain comonads in Proposition

5.3.12. This result relies essentially on Street’s presentation of Kleisli objects

for comonads as oplax colimits, cf. Definition 5.3.3, and the observation

that Cat, as well as Fib(B) and Fib, satisfy a special property, called pck

in Definition 5.3.9, which asserts that finite products in these 2-categories

preserve certain oplax colimits. To apply this result in Fib(B) and Fib, we

have shown the existence of Kleisli objects for comonads in these 2-categories.

Theorem 5.4.11, which presents the construction of such Kleisli objects in

Fib, constitutes another of the main technical results of this thesis.

Both of these main results, Theorems 3.2.3 and 5.4.11, have been proved

by 2-categorical diagram chasing, using the algebraic laws of fibred 2-cells in

§3.1.1. These arguments rely thus on the fact that Fib is fibred as a 2-

category over Cat: there is a cartesian-vertical factorisation of l-cells, given

by pullbacks, as well as for 2-cells, as given in Lemma 3.1.2.(ii). Thus the

abovementioned theorems hold in any such fibred 2-category. We regard

239

this as the appropriate level of abstraction to study 2-dimensional aspects of

categorical logic, as pointed out by Bénabou. For instance, fibred 2-categories

are the common framework underlying our semantics of ML module features

in §6.3.1 and the one in [FP92], on which our approach was based. The

latter is set in the following fibred 2-category: the base is the 2-category

of toposes and geometric morphisms and the fibre over a topos E is the 2-

category of internal full subcategories in it. This is a sub-fibred-2-category

of Fib over Cat. This set-up is not mentioned in ibid. though. In both cases,

signatures, modules and functors are understood in terms of indeterminates

for the objects of the corresponding fibred 2-category. In the second case, due

to the presence of additional structure in the objects considered, objects with

indeterminates are not given by a Kleisli construction as in the simpler setting

we considered in §6.3.1. Of course, the presence of considerably additional

structure in the framework of ibid. allows a fuller account of ML features

than ours.

A glimpse at the proofs in §5.4.2 prompts a study of coherence problems

for fibred bicategories. [Pow93] presents a vivid account of such coherence

problems.

A natural continuation of the work in this thesis, is to give an account of

logical predicates for general type systems, in the sense of [Jac91a], includ-

ing polymorphic λ-calculi and the Calculus of Constructions. To do so, we

need to consider fibrations in 2-categories such as Fib(B), Cat(B) and Fib.

Fibrations in Fib(B) have been studied by Bénabou and applied to type the-

ory in [Jac91a, Pav90]. Fibrations in the above 2-categories give the setting

240 Conclusions and further work

to study logic for type systems, e.g. λ2, which are themselves understood

as fibrations. For instance, Theorem 3.2.3 can be applied to adjunctions

between fibrations in Fib(B) and gives as direct consequences some results

about ‘lifting’ of products and sums for such fibrations proved in [Pav90,

Prop. II.3.73]. Such results are relevant to the characterisation of logical

predicates for type systems; the latter reflect categorical properties of the

logics for a type system. Of course, the relevant technical machinery is more

involved than that for the simple type systems we have considered in this

thesis.

It also remains to investigate notions of logical predicates for calculi

such as linear logic, where some connectives, like ⊗, do not have a universal

property, unlike × for instance, and thus cannot be handled in terms of

adjoints. [Amb92] has some relevant results in this direction.

Another important direction of research is the study of logics via fibra-

tions for type systems with partial terms. A starting point is to consider

fibrations over categories of partial maps. We have some preliminary results

about such fibrations, e.g. suitable conditions to extend a fibration
E
↓p

B
from

B to a category of partial maps of B specified by a dominion [RR88]. A

salient feature of these categories of partial maps is that their horn-sets are

partially ordered, and so they are 2-categories. Thus, in a logic for such

categories, the primary relation between ‘terms’ t, t′ : A → B is not that of

equality t = t′ as in algebraic theories, but the order relation t ≤ t′. In the

internal logic, the predicate x : A ' tx ≤ t′x is given bv the inserter of t and

t′, i.e. the universal 1-cell e : A′ → A such that te ≤ t′e; see [Kel89] for a

241

precise definition. This seems the appropriate 2-dimensional analogue of the

fact that the equality predicate x : A ' tx = t′x is given by the equaliser of

t and t′.

In the framework of category, as given in [Str73, Joh92], as the cate-

gorical formulation of the notion of family, which in the 1-dimensional case

are usually presented as display maps [Jac90]. This 2-categorical aspect of

fibrations is of advantage over indexed-categories. It should be of relevance

to understanding dependent types in categories of partial maps.

The above considerations on logics over 2-categories, as arising from

categories of partial maps for instance, is a starting point to study the

categorical-logical aspects of reduction properties in type systems, consid-

ering the interpretation of term-rewriting in a 2-category as in [RS87].

We should investigate further applications of the construction of cate-

gories and fibrations with indeterminate elements. For instance, we know

that functional completeness for a cartesian closed category C, as expressed

in §5.2, can be used to derive combinators for simply typed λ-calculus, by

regarding the category C[x : I] with an I-indeterminate as a category en-

riched over C [Kel82]. It remains to study indeterminates for type theories

with dependent types, as embodied in the notion of comprehension category

of [Jac92].

Finally, we must also consider (co)induction principles for coinductive

and recursive data types, involving exponentials, extending the approach in

§4.5. This should shed light in the formulation of such principles. Of course,

242 Conclusions and further work

the incorporation of these concepts in logics for partial maps and dependent

types would be quite challenging.

Bibliography

[Abr90] S. Abramsky. Abstract interpretation, logical relations and Kan

extensions. Journal of Logic and Computation, 1(1):5 – 40, 1990.

[AL91] A. Asperti and G. Longo. Categories, Types and Structures. MIT

Press, 1991.

[Amb92] S. Ambler. First Order Linear Logic in Symmetric Monoidal

Closed Categories. PhD thesis, Edinburgh Univ., Dept. of Comp.

Sci., 1992. ECS-LFCS-92-194.

[Bel88] J.L. Bell. Toposes and Local Set Theories. Oxford University Press,

1988.

[Bén85] J. Bénabou. Fibred categories and the foundation of naive category

theory. Journal of Symbolic Logic, 50, 1985.

[BGT91] R. M. Burstall, J. A. Goguen, and A. Tarlecki. Some fundamental

algebraic tools for the semantics of computation. part 3: Indexed

categories. Theoretical Computer Science, 91:239–264, 1991.

244 BIBLIOGRAPHY

[BM91] R . M. Burstall and J. McKinna. Deliverables: an approach to

program development in the calculus of constructions. Technical

Report ECS-LFCS-91-133, Edinburgh Univ., Dept. of Comp. Sci.,

1991.

[BM92] R . M . Burstall and J. McKinna. Deliverables: a categorical ap-

proach to program development in type theory. Technical Report

ECS-LFCS-92-242, Edinburgh Univ., Dept. of Comp. Sci., 1992.

[BW85] M. Barr and C. Wells. Toposes, Triples and Theories. Springer

Verlag, 1985.

[BW90] M. Barr and C. Wells. Category Theory for Computing Science.

Prentice Hall, 1990.

[CH88] T. Coquand and G. Huet. The calculus of constructions. Informa-

tion and Computation, 73(2/3), 1988.

[CKW90] A. Carboni, G.M. Kelly, and R. Wood. A 2-categorical approach

to change of base and geometric morphisms I. Research report

90-1, Dept. of Pure Math., University of Sidney, February 1990.

[CS91] J.R.B. Cockett and D. Spencer. Strong categorical datatypes I. In

Proceedings Category Theory 1991. Canadian Mathematical Soci-

ety, 1991.

[Ehr89] T Ehrhard. Dictoses. In Proceedings of the Conference on Category

Theory and Computer Science, Manchester, UK, Sept. 1989, vol-

BIBLIOGRAPHY 245

ume 389 of Lecture Notes in Computer Science. Springer Verlag,

1989.

[FP92] M.P. Fourman and W. Phoa. A proposed categorical semantics for

Pure ML. In Proc. ICALP 92, 1992.

[Gir86] J.-Y. Girard. The system F of variable types, fifteen years later.

Theoretical Computer Science, 45(2):159–192, 1986.

[Gol79] R. Goldblatt. Topoi, The Categorical Analysis of Logic. North Hol-

land, 1979.

[Gra66] J. W. Gray. Fibred and cofibred categories. In S. Eilenberg, editor,

Proceedings of the Conference on Categorical Algebra. Springer

Verlag, 1966.

[Gro71] A. Grothendieck. Catégories fibrées et descente. In A.

Grothendieck, editor, Revêtements étales et groupe fondamental,

(SGA 1), Expose VI, volume 224 of Lecture Notes in mathematics.

Springer Verlag, 1971.

[HJ93] C. Hermida and B. Jacobs. Contextual and functional complete-

ness for polymorphic lambda calculi. Draft, 1993.

[HJP80] J.M.E. Hyland, P.T. Johnstone, and A.M. Pitts. Tripos theory.

Math. Proc. Camb. Phil. Soc., 88, 1980.

246 BIBLIOGRAPHY

[HMM86] R. Harper, D. MacQueen, and R. Milner. Standard ML. Technical

Report ECS-LFCS-86-2, Edinburgh Univ., Dept. of Comp. Sci.,

1986.

[How80] W.A. Howard. The formulae-as-types notion of construction. In

R. Hindley and J. Seldin, editors, To H.B. Curry: essays in Com-

binarory Logic, lambda calculus and Formalisms. Academic Press,

1980.

[Hyl89] J.M.E. Hyland. A small complete category. Annals of Pure and

Applied Logic, 40:135–165, 1989.

[Jac90] B. Jacobs. Comprehension categories and the semantics of type

dependency. Dept. of Computer Science, Univ. of Nijmegen, 1990.

[Jac91a] B. Jacobs. Categorical Type Theory. PhD thesis, Nijmegen, 1991.

[Jac91b] B. Jacobs. Semantics of second order lambda calculus. Math.

Struck in Camp. Science, 1:327–360, 1991.

[Jac92] B. Jacobs. Comprehension categories and the semantics of type

dependency. Theoretical Computer Science, to appear, 1992.

[Jac93] B. Jacobs. Parameters and parameterization in specification. Tech-

nical Report 786, Dept. of Math., Univ. Utrecht, March 1993.

[Joh92] P.T. Johnstone. Fibrations and partial products in a 2-category.

Incomplete Draft, March 1992.

BIBLIOGRAPHY 247

[Kel82] G.M. Kelly. Basic Concepts of Enriched Category Theory. Cam-

bridge University Press, 1982.

[Kel89] G.M. Kelly. Elementary observations on 2-categorical limits. Bul-

letin Australian Mathematical Society, 39:301–17, 1989.

[KN93] P. Knijnenburg and F. Nordemann. Partial hyperdoctrines: Cat-

egorical models for partial function logic and Hoare logic. Math.

Struct. in Camp. Science, 00:1–29, 1993.

[KS74] G.M. Kelly and R.H. Street. Review of the elements of 2-

categories. In A. Dold and B. Eckmann, editors, Category Semi-

nar, volume 420 of Lecture Notes in Mathematics. Springer Verlag,

1974.

[Law70] F. W. Lawvere. Equality in hyperdoctrines and comprehension

scheme as an adjoint functor. In A. Heller, editor, Applications of

Categorical Algebra. AMS Providence, 1970.

[LS81] D. Lehmann and M. Smyth. Algebraic specification of data types:

A synthetic approach. Math. Systems Theory, 14:97–139, 1981.

[LS86] J. Lambek and P.J. Scott. Introduction to Higher-Order Categori-

cal Logic, volume 7 of Cambridge Studies in Advanced Mathemat-

ics. Cambridge University Press, 1986.

[Mac71] S. MacLane. Categories for the Working Mathematician. Springer

Verlag, 1971.

248 BIBLIOGRAPHY

[Mar92] S. Martini. Categorical models for non-extensional λ-calculi and

combinatory logic. Math. Struct. in Camp. Science, 2:327–357,

1992.

[Mit90] J. Mitchell. Type systems for programming languages. In J. van

Leeuwen, editor, Handbook of Theoretical Computer Science, Vol-

ume B: Formal Models and Semantics. North Holland, 1990.

[MM87] J. Mitchell and E. Moggi. Kripke-style models for typed lambda

calculus. In 2nd LICS Conf. IEEE, 1987.

[MM91] J. Mitchell and E. Moggi. Kripke-style models for the typed

lambda calculus. Journal of Pure and Applied Logic, 51:99–124,

1991.

[MR91] Q. Ma and J. C. Reynolds. Types, abstraction and parametric

polymorphism 2. In Math. Found. of Prog. Lang. Sem., Lecture

Notes in Computer Science. Springer Verlag, 1991.

[MS92] J. Mitchell and A. Scedrov. Notes on stoning and relators. Draft,

August 1992.

[MTH90] R. Milner, M. Tofte, and R. Harper. The Definition of Standard

ML. MIT Press, 1990.

[OT93] P. O’Hearn and R. Tennent. Relational parametricity and local

variables. In 20th POPL, New York, 1993. ACM.

BIBLIOGRAPHY 249

[Pav90] D . Pavlović. Predicates and Fibrations. PhD thesis, University of

Utrecht, 1990.

[PDM89] B. Pierce, S. Dietzen, and S. Michaylov. Programming in higher-

order lambda-calculi. Tech. Report CMU-CS-89-111, Carnegie-

Mellon Univ., Dept. of Comp. Sci., March 1989.

[Pho92] W. Phoa. Fibrations (outline). Lecture notes, Edinburgh, Febru-

ary 1992.

[Pit87] A.M. Pitts. Polymorphism is set theoretic, constructively. In Pro-

ceedings of the Conference on Category Theory and Computer Sci-

ence, Edinburgh, UK, Sept. 1987, volume 283 of Lecture Notes in

Computer Science, pages 12–39. Springer Verlag, 1987.

[Pit91] A.M. Pitts. Notes on categorical logic. Notes, Cambridge Univer-

sity, 1991.

[Pow93] A.J. Power. Why tricagoteries. draft, LFCS, 1993.

[Rey83] J. C. Reynolds. Types, abstraction, and parametric polymor-

phism. In R.E.A. Mason, editor, Information Processing ’83.

North Holland, 1983.

[RR88] E. Robinson and G Rosolini. Categories of partial maps. Informa-

tion and Computation, 79:95–130, 1988.

[RS87] D.E. Rydehard and J.G. Stell. Foundations of equational deduc-

tion: A categorical treatment of equational proofs and unification

250 BIBLIOGRAPHY

algorithms. In Proceedings of the Conference on Category Theory

and Computer Science, Edinburgh, UK., Sept. 1987, volume 283

of Lecture Notes in Computer Science, pages 114–139. Springer

Verlag, 1987.

[See83] R.A.G. Seely. Hyperdoctrines, natural deduction and the Beck

condition. Zeitschr. f. math. Logik und Grundlagen d. Math., 29,

1983.

[See87] R.A.G. Seely. Linear logic, ∗-autonomous categories and cofree

coalgebras. In Proc. AMS Conf. on Categories in Comp. Sci. and

Logic (Boulder 1987), 1987.

[Str72] R. Street. The formal theory of monads. Journal of Pure and Ap-

plied Algebra, 2:149–168, 1972.

[Str73] R. Street. Fibrations and Yoneda’s lemma in a 2-category. In

Category Seminar, volume 420 of Lecture Notes in Mathematics.

Springer Verlag, 1973.

[Win90] G. Winskel. A compositional proof system for a category of la-

belled transition systems. Information and Computation, 87:2–57,

1990.

Index

λ2, 89

fibration, 91

λω, 90

fibration, 91

λ →, 88

fibration, 91

ConsI

products, 67

sums, 67

ConsB-

products, 67

sums, 67

ω-

chain, 165

complete posets, 144

Set, 155

T -algebra, 164

1-cell, 28

2-

adjunction, 36

category, 28

sub-, 36

with binary products, 186

with terminal object, 186

cell, 28

functor, 35

natural transformation, 35

adjunction, 31

map of, 32

admissible subset, 144

base, 39

Beck-Chevalley condition, 67

bifibration, 39

canonical comparison 2-cell, 106

cartesian, 38

fibred

2-cell, 105

adjunction, 51

252 INDEX

lifting, 39

object, 187

with an i-indeterminate, 190

category

total, 39

underlying, 28

with an indeterminate, 179

ccc-logical predicate, 139

change of base, 53

classifying morphism, 91

cleavage, 43

cocartesian, 39

cofibration, 39

coherence conditions, 56

comonad, 182

contextual completeness, 215

for kinds, 218

for types, 217

contextually complete, 215

for kinds, 228

for types, 221

deliverable, 150

distributive

categories, 164

functor, 164

environment model, 93

equality predicate, 138, 162

equivalence, 32

essentially surjective, 70

extensional, 93

externalisation, 76

fibration, 39

cloven, 43

codomain, 40

family, 40

groupoid, 62

opposite, 63

representable, 70

simple, 224

small, 76

split, 45

sub-, 51

subobject, 41

fibre, 40

fibred

I-colimits, 123

I-limits, 122

INDEX 253

1-cell, 48

2-cell, 48

adjunction, 50

binary products, 64

ccc, 64

comonad, 195

comonad associated to a base

resolution, 203

exponents, 64

functor, 48

resolution, 197

terminal object, 63

first-order hyperdoctrine, 87

Frobenius condition, 168

full type hierarchy, 94

functional completeness, 214

for kinds, 218

for types, 217

functionally complete, 216

for kinds, 229

for types, 221

generic object, 69, 70

strong, 70

Grothendieck construction, 60

idts, 165

indexed

category, 55

groupoid, 62

opposite, 63

functor, 57

natural transformation, 57

induction principle, 172

inductive data type specification,

165

injective scone, 143

interchange law, 29

internal

ConsA-

category, 73

functor, 74

natural transformation, 75

products, 75

sums, 75

language, 132

logic, 41

internalisation, 77

interpretation, 83

kinds, 88

254 INDEX

Kleisli

category, 181, 185

fibration, 198

object, 184

Kripke lambda model, 147

locally cartesian closed category, 66

logical

binary coproducts, 125

binary products, 125

exponents, 128

initial object, 125

predicate, 95

terminal object, 125

ML-, 233

functors, 233

signatures, 233

structures, 233

model, 165

initial, 165

natural numbers object (NNO), 166

normalised, 45

oplax

cocone, 184

colimit, 184

parameter set, 165

pseudo-functor, 55

realisable, 155

reindexing functor, 43

resolution, 183

slice category, 30

soundness of typing, 140

splitting, 45

tripos, 153

typed applicative structure, 92

types, 88

vertical, 40

Index

categories

A ×
f,g

B, 27

B[x : i], 190

Sub′(ωCpo), 144

Sub(C), 41

s(E), 224

T -Alg, 164

[C, D], 27

B[x : I], 180

B ×I , 181

C(L), 138

C/A, 41

C→, 40

DC, 27

EA, 40

1, 186

Del, 150

G(B), 179

Mod, 158

OpLax(g, B), 184

R, 154

Rel(K, B, F), 160

Fam(C), 40

PER, 152

ω-Set, 152

ωCpo, 144

Σ(C), 76

C̃, 143

functors

1-Alg, 171

F→, 49

K∗, 102

sp, 225

TM , 165

[F], 76

∆I, 122

ηI , 180

∆̂I, 122

256 INDEX

〈σ〉q, 103

Fam, 49

G, 113

ΠI , 66

→, 26

ΣI , 66

T̃M̃ , 170

op, 27

comonads and Kleisli objects

(u : A → Ag, λ), 184

(G̃, G), 197

FG, 199

UG, 199

〈g : A → A, ε, δ〉, 183

〈gi : A → A, ε, δ〉, 189

2-categories

λω-Fib, 230

λ →-Fib, 230

λ →-Fib(B), 221

λω →-Fib(B), 221

Cat, 26

Cat(B), 75

CoFib, 49

Fib, 49

Fib(A), 53

Fib(A)sp, 53

Fibsp, 53

ICat, 61

ICat(B), 58

Kco, 31

Kop, 31

K0, 28

KIadj, 115

Kradj, 116

2-Cat, 36

2-cells

[σ], 76

γI , 44

σ̂, 103

φf , 189

φF
σ , 106

σ′
q, 103

fibrations

f(C), 40

p[c : s], 220

pG, 198

INDEX 257

sp, 225

p̄, 77

domI , 70

c̃od , 143

cod, 35, 40

dom, 35

notation for fibred concepts

u∗, 43

u∗(X), 43

u!(Y), 45

A-, 53

δv,u, 44

(), 43

u(X), 43

+̃, 125

0̃, 125

1̃, 125

ẽv, 128

π̃, 125

⇒̃, 128

×̃, 125

u(Y), 45

type-theoretic judgements

P Prop, 81

T Type, 84

Γ ' t : P , 81

κ Kind, 88

Θ | Γ ' p : P , 84

Θ | Γ ' t : τ , 88

Θ ' P Prop, 84

Θ ' τ : κ, 88

miscellaneous symbols

(D, constr), 166

Appσ,τ , 92

Aw,w′ , 148

Aσ, 92

f ∗(B), 27

g∗(f), 27

r · n, 153

,̂ 27

〈 , 〉, 27

A, 92

P , 96, 139

T , 84

TM , 165

Ω, 88

ω, 153

258 INDEX

⊗, 187

Σ, 92

T̃M̃ , 170

↓, 153

℘ω, 153

·→ , 27

Const, 93

pck, 191

