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Abstract

We present a strikingly simple partial evaluator, that is type-
directed and rei�es a compiled program into the text of a re-
sidual, specialized program. Our partial evaluator is concise
(a few lines) and it handles the agship examples of o�-
line monovariant partial evaluation. Its source programs are
constrained in two ways: they must be closed and mono-
morphically typable. Thus dynamic free variables need to
be factored out in a \dynamic initial environment". Type-
directed partial evaluation uses no symbolic evaluation for
specialization, and naturally processes static computational
e�ects.

Our partial evaluator is the part of an o�ine partial eval-
uator that residualizes static values in dynamic contexts. Its
restriction to the simply typed lambda-calculus coincides
with Berger and Schwichtenberg's \inverse of the evaluation
functional" (LICS'91), which is an instance of normalization
in a logical setting. As such, type-directed partial evaluation
essentially achieves lambda-calculus normalization. We ex-
tend it to produce specialized programs that are recursive
and that use disjoint sums and computational e�ects. We
also analyze its limitations: foremost, it does not handle in-
ductive types.

This paper therefore bridges partial evaluation and �-
calculus normalization through higher-order abstract syn-
tax, and touches upon parametricity, proof theory, and type
theory (including subtyping and coercions), compiler op-
timization, and run-time code generation (including decom-
pilation). It also o�ers a simple solution to denotational
semantics-based compilation and compiler generation.

1 Background and Introduction

Given a source program and parts of its input, a partial
evaluator reduces static expressions and reconstructs dy-
namic expressions, producing a residual, specialized pro-
gram [15, 36]. To this end, a partial evaluator needs some
method for inserting (lifting) arbitrary statically-calculated
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values into the residual program | i.e., for residualizing
them (Section 1.1). We present such a method (Section 1.2);
it is type directed and we express it using Nielson and Niel-
son's two-level �-calculus [44]. After a �rst assessment (Sec-
tion 1.3), we formalize it (Section 1.4) and outline a �rst
application: given a compiled normal form and its type,
we can recover its text (Section 1.5). We implement type-
directed residualization in Scheme [10] and illustrate it (Sec-
tion 1.6). The restriction of type-directed residualization to
the simply typed �-calculus actually coincides with Berger
and Schwichtenberg's normalization algorithm as presented
in the proceedings of LICS'91 [3], and is closely related to
Pfenning's normalization algorithm in Elf [46] (Section 1.7).
Residualization also exhibits a normalization e�ect. Moving
beyond the pure �-calculus, we observe that this e�ect ap-
pears for constants and their operators as well (Section 1.8).
We harness it to achieve partial evaluation of compiled pro-
grams (Section 2). Because this form of partial evaluation
is completely directed by type information, we refer to it as
type-directed partial evaluation.

Section 3 extends type-directed partial evaluation to dis-
joint sums. Section 4 analyzes the limitations of type-
directed partial evaluation. Section 5 reviews related work,
and Section 6 concludes.

1.1 The problem

Let us consider the example term

(�f:g@(f@d)@f)@�a:a

where the in�x operator @ denotes function application
(and associates, as usual, to the left). Both g and d are
unknown, i.e., dynamic. d has type b1 and g has type
b1 ! (b1 ! b1)! b2, where b1 and b2 are dynamic base
types. f occurs twice in this term: as a function in an ap-
plication (where its denotation �a:a could be reduced) and
as an argument in a dynamic application (where its denota-
tion �a:a should be residualized). The question is: what are
the binding times of this term?

This paper addresses closed terms. Thus let us close the
term above by abstracting its two free variables. For added
clarity, let us also declare its types.

�g : b1 ! (b1 ! b1)! b2:
�d : b1:(�f : b1 ! b1:g@(f@d)@f)@�a : b1:a

We want to decorate each �-abstraction and application with
static annotations (overlines) and dynamic annotations (un-
derlines) in such a way that static reduction of the decorated



term \does not go wrong" and yields a completely dynamic
term. These are the usual rules of binding-time analysis,
which is otherwise abundantly described in the literature
[4, 6, 11, 15, 36, 37, 41, 44]. In the rest of this paper, we
use Nielson and Nielson's two-level �-calculus, which is sum-
marized in Appendix A.

Before considering three solutions to analyzing the term
above, let us mention a non-solution and why it is a non-
solution.

Non-solution:

�g : b1! (b1! b1)! b2:

�d : b1:(�f : b1! b1:g@ (f @d)@ f)@ �a : b1:a

This annotation is appealing because the application of f
is static (and thus will be statically reduced away), but it
is incorrect because the type of g is not entirely dynamic.
Thus after static reduction, the residual term is not entirely
dynamic either:

�g : b1! (b1! b1)! b2:�d : b1:g@d@�a : b1:a

In Scheme, the residual program would contain a closure:

> (let* ([g (gensym! "g")] [d (gensym! "d")])

`(lambda (,g)

(lambda (,d)

,((lambda (f) `((,g ,(f d))

,f))

(lambda (a) a)))))

(lambda (g15)

(lambda (d16)

((g15 d16) #<procedure>)))

>

In summary, the annotation is incorrect because �a : b1:a
can only be classi�ed to be static (i.e., of type b1! b1) if f
is always applied. Thus it should be classi�ed to be dynamic
(i.e., of type b1! b1), as done in Solution 1.

Solution 1:

�g : b1! (b1! b1)! b2:

�d : b1:(�f : b1! b1:g@ (f @d)@ f)@ �a : b1:a

This solution is correct, but it does not give a satisfactory
result: static reduction unfolds the outer call, duplicates the
denotation of f , and creates an inner �-redex:

�g : b1! (b1! b1)! b2:

�d : b1:g@ ((�a : b1:a)@ d)@�a : b1:a

To remedy this shortcoming, the source program needs a
binding-time improvement [36, Chapter 12], i.e., a modi�ca-
tion of the source program to make the binding-time analysis
yield better results. The particular binding-time improve-
ment needed here is eta-expansion, as done in Solution 2.

Solution 2: Eta-expanding the second occurrence of f

makes it always occur in position of application. Therefore
�a : b1:a can be classi�ed to be static.

�g : b1! (b1! b1)! b2:

�d : b1:(�f : b1 ! b1:g@(f @d) @ �x:f @x )@�a : b1:a

This annotation is correct. Static reduction yields the fol-
lowing term:

�g : b1! (b1! b1)! b2:�d : b1:g@d@�a : b1:a

The result is optimal. It required, however, a binding-time
improvement, i.e., human intervention on the source term.

Recent work by Malmkj�r, Palsberg, and the author
[18, 19] shows that binding-time improvements compensate
for the lack of binding-time coercions in existing binding-
time analyses. Source eta-expansion, for example, provides a
syntactic representation for a binding-time coercion between
a higher-order static value and a dynamic context, or con-
versely between a dynamic value and a static higher-order
context.

Binding-time analyses therefore should produce annot-
ated terms that include binding-time coercions, as done in
Solution 3. We use a down arrow to represent the coercion
of a static (overlined) value into a dynamic (underlined) ex-
pression.

Solution 3: In this solution, the coercion of f from b1! b1
to b1 ! b1 is written #b1!b1 f :

�g : b1! (b1! b1)! b2:

�d : b1:(�f : b1! b1:g@ (f @d)@ #
b1!b1 f )@�a : b1:a

One possibility is to represent the coercion directly with
a two-level eta-redex, to make the type structure of the term
syntactically apparent [18, 19]. The result of binding-time
analysis is then the same as for Solution 2.

Another possibility is to produce the binding-time coer-
cion as such, without committing to its representation, and
to leave it to the static reducer to treat this coercion appro-
priately. This treatment is the topic of the present paper.

In Scheme:

> (let* ([g (gensym! "g")] [d (gensym! "d")])

`(lambda (,g)

(lambda (,d)

,((lambda (f) `((,g ,(f d))

,(residualize f '(a -> a))))

(lambda (a) a)))))

(lambda (g23)

(lambda (d24)

((g23 d24) (lambda (x25) x25))))

>

Speci�cally, this paper is concerned with the residualiza-
tion of static values in dynamic contexts, in a type-directed
fashion. The solution to this seemingly insigni�cant problem
turns out to be widely applicable.

1.2 Type-directed residualization

We want to map a static value into its dynamic counterpart,
given its type.

t 2 Type ::= b j t1! t2 j t1 � t2

j t1! t2 j t1� t2

b 2 Base-Type

The leaves of a type are dynamic and ground. In the rest of
the paper, types where all constructors are static (resp. dy-
namic) are said to be \completely static" (resp. \completely
dynamic").
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At base type, residualization acts as the identity function:

#
b
v = v

Residualizing a value of product type amounts to resid-
ualizing each of its components and then reconstructing the
product:

#
t1�t2 v = pair(#t1 fst v; #t2 snd v)

One can infer from Solution 3 that

#
b1!b2 v = �x1:v@x1

(where x1 is fresh) and more generally that

#
b!t

v = �x:#
t (v@x):

At higher types, the fresh variable needs to be coerced
from dynamic to static. A bit of practice with two-level eta-
expansion [16, 17, 18] makes it clear that, for example:

#
(b3!b4)!b2 v = �x1:v@ (�x3:x1@ x3)

It is therefore natural to de�ne a function " that is sym-
metric to #, i.e., that coerces its argument from dynamic
to static, and to de�ne the residualization of functions as
follows.

#
t1!t2 v = �x1:#

t2 (v@("t1 x1))

The functions # and " essentially match the insertion of
two-level eta-redexes for binding-time improvements [18, 19].
Figure 1 displays the complete de�nition of residualization.

Type-directed residualization maps a completely static
two-level �-term into a completely dynamic one. First, reify
(#) and reect (") fully eta-expand a static two-level �-term
with two-level eta-redexes. Then, static reduction evaluates
all the static parts and reconstructs all the dynamic parts,
yielding the residual term.

1.3 Assessment

So far, we have seen (1) the need for binding-time coercions
at higher types in a partial evaluator; (2) the fact that these
binding-time coercions can be represented as two-level eta-
redexes; and (3) an interpreter for these binding-time coer-
cions | i.e., type-directed residualization.

Let us formalize type-directed residualization, and then
describe a �rst application.

1.4 Formalization

Proposition 1 In Figure 1, reify maps a simply typed com-
pletely static �-term into a well-typed two-level �-term.

Proof: by structural induction on the types (see Appendix
A for the notion of well-typing).

Property 1 In the simply typed case, static reduction in the
two-level �-calculus enjoys both strong normalization and
subject reduction [44].

Corollary 1 Static reduction after rei�cation (see Figure 1)
does not go wrong and yields completely dynamic terms.

t 2 Type ::= b j t1 ! t2 j t1 � t2

v 2 Value ::= c j x j �x:v j v0@ v1 j

pair(v1; v2) j fst v j snd v

e 2 Expr ::= c j x j �x:e j e0@ e1 j

pair(e1; e2) j fst e j snd e

reify = �t:�v : t:#t v

: Type! Value! TLT

#
b
v = v

#
t1!t2 v = �x1:#

t2 (v@("t1 x1))

where x1 is fresh.

#
t1�t2 v = pair(#

t1 fst v; #t2 snd v)

reect = �t:�e : t:"t e

: Type! Expr! TLT

"b e = e

"t1!t2 e = �v1:"t2 (e@(#t1 v1))

"t1�t2 e = pair("t1 fst e; "t2 snd e)

residualize = statically-reduce � reify

: Type! Value! Expr

Since the de�nition of type-directed residualization is based
solely on the structure of types, we have omitted type an-
notations.

The domains Value and Expr are de�ned inductively, fol-
lowing the structure of types, and starting from the same set
of (dynamic) base types. TLT is the domain of (well-typed)
two-level terms; it contains both Value and Expr.

The down arrow is read reify: it maps a static value and
its type into a two-level �-term that statically reduces to the
dynamic counterpart of this static value. Conversely, the up
arrow is read reect: it maps a dynamic expression into a
two-level �-term representing the static counterpart of this
dynamic expression.

In residualize, reify (resp. reect) is applied to types oc-
curring positively (resp. negatively) in the source type.

N.B. One could be tempted to de�ne

\eval" = dynamically-reduce � reect

by symmetry, but the result is not an evaluation functional
because base types are dynamic.

Figure 1: Type-directed residualization

Corollary 2 The type of a source term and the type of a re-
sidual term have the same shape (i.e., erasing their annota-
tions yields the same simple type).

This last property extends to terms that are in long ��-
normal form [30], i.e., to normal forms that are completely
eta-expanded. By Proposition 1, we already know that static
reduction of a completely static term in long ��-normal form
yields a completely dynamic term in long ��-normal form.
We have independently proven the following proposition.
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(define-record (Base base-type))

(define-record (Func domain range))

(define-record (Prod type type))

(define residualize

(lambda (v t)

(letrec ([reify (lambda (t v)

(case-record t

[(Base -)

v]

[(Func t1 t2)

(let ([x1 (gensym!)])

`(lambda (,x1) ,(reify t2 (v (reflect t1 x1)))))]

[(Prod t1 t2)

`(cons ,(reify t1 (car v)) ,(reify t2 (cdr v)))]))]

[reflect (lambda (t e)

(case-record t

[(Base -)

e]

[(Func t1 t2)

(lambda (v1) (reflect t2 `(,e ,(reify t1 v1))))]

[(Prod t1 t2)

(cons (reflect t1 `(car ,e)) (reflect t2 `(cdr ,e)))]))])

(begin

(reset-gensym!)

(reify (parse-type t) v)))))

Figure 2: Type-directed partial evaluation in Scheme

Proposition 2 Residualizing a completely static term in long
��-normal form yields a term with the same shape (i.e.,
erasing the annotations of both terms yields the same simply
typed �-term, modulo �-renaming).

In other words, residualization preserves both the shape
of types and the shape of expressions that are in long ��-
normal form.

1.5 Application

We can represent a completely static expression with a com-
piled representation of this expression, and a completely dy-
namic expression with a (compiled) program constructing
the textual representation of this expression.1 In Consel's
partial evaluator Schism, for example, this representation is
used to optimize program specialization [13]. Since (1) re-
i�cation amounts to mapping this static expression into a
two-level term and (2) static reduction amounts to running
both the static and the dynamic components of this two-
level term, type-directed residualization constructs the tex-
tual representation of the original static expression. There-
fore, in principle, we can map a compiled program back into
its text | under the restrictions that (1) this program ter-
minates, and (2) it has a type.

The following section illustrates this application.

1.6 Type-directed residualization in Scheme

Figure 2 displays an implementation of type-directed re-
sidualization in Scheme, using a syntactic extension for
declaring and using records [10]. Procedure parse-type

maps the concrete syntactic representation of a type (an S-
expression) into the corresponding abstract syntactic repres-
entation (a nested record structure). For example, '((A * B)

1The same situation occurs with interpreted instead of compiled
representations, i.e., if one uses an interpreter instead of a compiler.

-> C) is mapped into (make-Func (make-Prod (make-Base 'A)

(make-Base 'B)) (make-Base 'C)).
The following Scheme session illustrates this implement-

ation:

> (define S (lambda (f)

(lambda (g)

(lambda (x)

((f x) (g x))))))

> S

#<procedure S>

> (residualize S

'((A -> B -> C) -> (A -> B) -> A -> C))

(lambda (x0)

(lambda (x1)

(lambda (x2)

((x0 x2) (x1 x2)))))

> (define I*K (cons (lambda (x) x)

(lambda (y) (lambda (z) y))))

> I*K

(#<procedure> . #<procedure>)

> (residualize I*K '((A -> A) * (B -> C -> B)))

(cons (lambda (x0) x0)

(lambda (x1) (lambda (x2) x1)))

>

S and I*K denote values that we wish to residualize. We know
their type. Procedure residualize maps these (static, com-
piled) values and a representation of their type into the cor-
responding (dynamic, textual) representation of these val-
ues.

At this point, a legitimate question arises: how does this
really work? Let us consider the completely static expression

�x:x

together with the type b ! b. This expression is mapped
into the following eta-expanded term:

�z:(�x:x)@ z:
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Static �-reduction yields the completely dynamic residual
term

�z:z

which constructs the text of the static expression we started
with.

Similarly, the S combinator is mapped into the term

�a:�b:�c:S@ (�d:�e:(a@d) @ e)@ (�f:b@ f)@ c

which statically �-reduces to the completely dynamic resid-
ual term

�a:�b:�c:(a@ c)@ (b@ c):

Let us conclude with a remark: because residual terms
are eta-expanded, re�ning the type parameter yields di�erent
residual programs, as in the following examples.

> (residualize (lambda (x) x) '((a * b) -> a * b))

(lambda (x0) (cons (car x0) (cdr x0)))

> (residualize (lambda (x) x)

'(((A -> B) -> C) -> (A -> B) -> C))

(lambda (x0) (lambda (x1) (x0 (lambda (x2) (x1 x2)))))

>

1.7 Strong normalization

The algorithm of type-directed residualization is actually
well known.

In their paper \An Inverse of the Evaluation Func-
tional for Typed �-Calculus" [3], Berger and Schwichten-
berg present a normalization algorithm for the simply typed
�-calculus. It is used for normalizing proofs as programs.

Berger and Schwichtenberg's algorithm coincides with
the restriction of type-directed residualization to the simply
typed �-calculus. Reify maps a (semantic, meta-level) value
and its type into a (syntactic, object-level) representation
of this value (\syntactic" in the sense of \abstract-syntax
tree"), and conversely, reect maps a syntactic represent-
ation into the corresponding semantic value. Disregarding
the dynamic base types, reect thus acts as an evaluation
functional, and reify acts as its inverse | hence probably
the title of Berger and Schwichtenberg's paper [3].

In the implementation of his Elf logic programming lan-
guage [46], Pfenning uses a similar normalization algorithm
to test extensional equality, though with no static/dynamic
notion and also with the following di�erence. When pro-
cessing an arrow type whose co-domain is itself an arrow
type, the function is processed en bloc with all its arguments:

#
t1!t2!:::!t

n+1 v =
�x1:�x2: ::: �xn:#

t
n+1(v@("t1x1)@("t2x2)@:::@("tnxn))

where tn+1 is not an arrow type and x1, ..., xn are fresh.
(The algorithm actually postpones reection until rei�cation
reaches a base type.)

Residualization also exhibits a normalization e�ect, as
illustrated below: we residualize the result of applying a
procedure to an argument. This program contains an ap-
plication and this application is performed at residualization
time.2

> (define foo (lambda (f) (lambda (x) (f x))))

> (residualize (foo (lambda (z) z)) '(A -> A))

(lambda (x0) x0)

>

2Or, viewing residualization as a form of decompilation (an analogy
due to Goldberg [27]): \at decompile time".

The same legitimate question as before arises: how does
this really work? Let us consider the completely static ex-
pression

(�f:�x:f@ x) @ (�z:z):

This expression is mapped into the following eta-expanded
term:

�y:((�f:�x:f @x)@ (�z:z))@ y:

Static �-reductions yield the completely dynamic residual
term

�y:y:

As an exercise, the curious reader might want to run the
residualizer on the term S @K@K with respect to the type
b ! b. The combinators S and K are de�ned as above [2,
De�nition 5.1.8, Item (i)].

1.8 Beyond the pure �-calculus

Moving beyond the pure �-calculus, let us reiterate this last
experiment: we residualize the result of applying a procedure
to an argument, and a multiplication is computed at resid-
ualization time.

> (define bar (lambda (x) (lambda (k) (k (* x 5)))))

> (residualize (bar 100) '((Int -> Ans) -> Ans))

(lambda (x0) (x0 500))

>

The usual legitimate question arises: how does this really
work? Let us consider the completely static expression

(�x:�k:k@(x� 5))@100:

This expression is mapped it into the following eta-expanded
term:

�a:((�x:�k:k@(x� 5)) @100)@ (�n:a@n)

Static �-reduction leads to

�a:a@ (100� 5)

which is statically �-reduced to the residual term �a:a@500.

Remark: Introducing a static �xed-point operator does not
compromise the subject-reduction property, so the second
part of Corollary 1 in Section 1.4 can be rephrased with the
proviso \if static reduction terminates".

1.9 This paper

The fact that arbitrary static reductions can occur at re-
sidualization time suggests that residualization can be used
as a full-edged partial evaluator for closed compiled pro-
grams, given their type. In the following section, we apply
it to various examples that have been presented as typical
or even signi�cant achievements of partial evaluation, in the
literature [15, 33, 36]. These examples include the power and
the format source programs, and interpreters for Paulson's
imperative language Tiny and for the �-calculus.

The presentation of each example is structured as follows:

� we consider interpreter-like programs, i.e., programs
where one argument determines a part of the control
ow (Abelson, [24, Foreword]);
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> (define power

(lambda (x n)

(letrec ([loop (lambda (n)

(cond [(zero? n) 1]

[(odd? n) (* x (loop (1- n)))]

[else (sqr (loop (/ n 2)))]))])

(loop n))))

> (define sqr (lambda (x) (* x x)))

> (power 2 10)

1024

> (define power-abstracted ;;; Int -> (Int -> Int) * (Int * Int => Int) => Int -> Int

(lambda (n)

(lambda (sqr *)

(lambda (x)

(letrec ([loop (lambda (n)

(cond [(zero? n) 1]

[(odd? n) (* x (loop (1- n)))]

[else (sqr (loop (/ n 2)))]))])

(loop n))))))

> (((power-abstracted 10) sqr *) 2)

1024

> (residualize (power-abstracted 10) '((Int -> Int) * (Int * Int => Int) => Int -> Int))

(lambda (x0 x1) (lambda (x2) (x0 (x1 x2 (x0 (x0 (x1 x2 1)))))))

> (((lambda (x0 x1) (lambda (x2) (x0 (x1 x2 (x0 (x0 (x1 x2 1))))))) sqr *) 2)

1024

>

The residualized code reads better after �-renaming. It is the specialized version of power when n is set to 10:

(lambda (sqr *)

(lambda (x)

(sqr (* x (sqr (sqr (* x 1)))))))

N.B. For convenience, our implementation of residualize, unlike the simpler version shown in Figure 2, handles
Scheme-style uncurried n-ary procedures. Their types are indicated in type expressions by \=>" preceded by the
n-ary product of the argument types.

Figure 3: Type-directed partial evaluation of power (an interactive session with Scheme)

� we residualize the result of applying these (separately
compiled) programs to the corresponding argument.

Because residualization is type-directed, we need to know
the type of the free variables in the residual program. We
will routinely abstract them in the source program, as a form
of \initial run-time environment", hence making the residual
program a closed �-term.

2 Type-Directed Partial Evaluation

The following examples illustrate that residualization yields
specialized programs, under the condition that the residual
program is a simply typed combinator | i.e., with no free
variables and with a simple type. The static parts of the
source program, however, are less constrained than when
using a partial evaluator: they can be untyped and impure.
In that sense it is symmetric to a partial evaluator such as
Gomard and Jones's �-Mix [35, 36] that allows dynamic com-
putations to be untyped but requires static computations to
be typed.3 In any case, residualization produces the same
result as conventional partial evaluation (i.e., a specialized
program) but is naturally more e�cient since no program
analysis other than type inference and no symbolic inter-
pretation take place.

3
�-Mix and type-directed partial evaluation both consider closed

source programs. They work alike for typed source programs whose
binding times have been improved by source eta-expansion.

2.1 Power

Figure 3 displays the usual de�nition of the power procedure
in Scheme, and its abstracted counterpart where we have
factored out the residual operators sqr and *. The �gure
illustrates that residualizing the partial application of power
to an exponent yields the specialized version of power with
respect to this exponent.

2.2 Format

For lack of space, we omit the classical example of par-
tial evaluation: formatting strings. Its source code can be
found in Figure 1 of Consel and Danvy's tutorial notes on
partial evaluation at POPL'93 [15]. Type-directed partial
evaluation yields the same residual code as the one presen-
ted in the tutorial notes (modulo of course the factoriza-
tion of the residual operators write-string, write-number,
write-newline, and list-ref).

2.3 De�nitional interpreter for Paulson's Tiny language

Recursive procedures can be de�ned with �xed-point operat-
ors. This makes it simple to residualize recursive procedures
| by abstracting their (typed) �xed-point operator.

As an example, let us consider Paulson's Tiny language
[45], which is a classical example in partial evaluation [6, 8,
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block res, val, aux

in val := read ; aux := 1 ;

while val > 0 do

aux := aux * val ; val := val - 1

end ;

res := aux

end

Figure 4: Source factorial program

(lambda (add sub mul eq gt read fix true? lookup update)

(lambda (k8)

(lambda (s9)

(read (lambda (v10)

(update 1 v10 s9 (lambda (s11)

(update 2 1 s11 (lambda (s12)

((fix (lambda (while)

(lambda (s14)

(lookup 1 s14 (lambda (v15)

(gt v15 0 (lambda (v16)

(true? v16

(lambda (s17)

(lookup 2 s17 (lambda (v18)

(lookup 1 s17 (lambda (v19)

(mul v18 v19 (lambda (v20)

(update 2 v20 s17 (lambda (s21)

(lookup 1 s21 (lambda (v22)

(sub v22 1 (lambda (v23)

(update 1 v23 s21 (lambda (s24)

(while s24))))))))))))))))

(lambda (s25)

(lookup 2 s25 (lambda (v26)

(update 0 v26 s25 (lambda (s27)

(k8 s27))))))

s14))))))))

s12))))))))))

This residual program is a specialized version of the Tiny
interpreter (Figures 9 and 10) with respect to the source pro-
gram of Figure 4. As can be observed, it is a continuation-
passing Scheme program threading the store throughout.
The while loop of Figure 4 has been mapped into a �xed-
point declaration. All the location o�sets have been com-
puted at partial-evaluation time.

Figure 5: Residual factorial program (after �-renaming and
\pretty" printing)

(define instantiate-type

(lambda (t)

`(((() => Exp) -> Exp) * ;;; reset-gensym-c

((Str -> Exp) -> Exp) * ;;; gensym-c

(Exp -> Exp) * ;;; unparse-expression

(Str -> Var) * ;;; make-Var

(Str * Exp => Exp) * ;;; make-Lam

(Exp * Exp => Exp) * ;;; make-App

(Exp * Exp => Exp) * ;;; make-Pair

(Exp -> Exp) * ;;; make-Fst

(Exp -> Exp) ;;; make-Snd

=> ,t

-> Exp)))

Figure 6: Type construction for self-application

9, 11, 14, 35, 36, 37, 41, 48]:

hpgmi ::= hnamei
�
hcmdi

hcmdi ::= skip j hcmdi ; hcmdi j hidei := hexpi j

if hexpi then hcmdi else hcmdi j

while hexpi do hcmdi end

hexpi ::= hinti j hidei j hexpi hopi hexpi j read

hopi ::= + j � j � j = j �

It is a simple exercise (see Figures 9 and 10 in appendix)
to write the corresponding de�nitional interpreter, to apply it
to, e.g., the factorial program (Figure 4), and to residualize
the result (Figure 5).

Essentially, type-directed partial evaluation of the Tiny
interpreter acts as a front-end compiler that maps the ab-
stract syntax of a source program into a �-expression repres-
enting the dynamic semantics of this program [14]. This �-
expression is in continuation-passing style [49], i.e., in three-
address code.

We have extended the de�nitional �-interpreter described
in this section to richer languages, including typed higher-
order procedures, block structure, and subtyping, �a la Reyn-
olds [47]. Thus this technique of \type-directed compilation"
scales up in practice. In that sense, type-directed partial
evaluation provides a simple and e�ective solution to (de-
notational) semantics-directed compilation in the �-calculus
[32, 43].

2.4 Residualizing the residualizer

To visualize the e�ect of residualization, one can residualize
the residualizer with respect to a type. As a �rst approxim-
ation, given a type t, we want to evaluate

(residualize

(lambda (v) (residualize v t))

t)

To this end, we �rst need to de�ne an abstracted version of
the residualizer (with no free variables). We need to factor
out all the abstract-syntax constructors, the unparser,4 and
the gensym paraphernalia, which we make continuation-
passing to ensure that new symbols will be generated cor-
rectly at run time. To be precise:

(define abstract-residualize

(lambda (t)

(lambda (reset-gensym-c gensym-c

unparse-expression

make-Var make-Lam make-App

make-Pair make-Fst make-Snd)

(lambda (v)

(letrec ([reify ...] ;;; as in

[reflect ...]) ;;; Figure 2

(reset-gensym-c

(lambda ()

(unparse-expression

(reify (parse-type t) v)))))))))

The type of abstract-residualize is a dependent type in
that the value of t denotes a representation of the type of v.
Applying abstract-residualize to a represention of a type,
however, yields a simply typed value. We can then write a

4Figure 2 uses quasiquote and unquote for readability, thus avoid-
ing the need for an unparser.
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> (define meaning-expr-cps-cbv

(lambda (e)

(letrec ([meaning (lambda (e r)

(lambda (k)

(case-record e

[(Var i)

(k (r i))]

[(Lam i e)

(k (lambda (v)

(meaning e (lambda (i v r) (lambda (j) (if (equal? i j) v (r j)))))))]

[(App e0 e1)

((meaning e0 r) (lambda (v0)

((meaning e1 r) (lambda (v1)

((v0 v1) k)))))])))])

(meaning (parse-expression e) (lambda (i) (error 'init-env "undeclared identifier: ~s" i))))))

> (define meaning-type-cps-cbv

(lambda (t)

(letrec ([computation (lambda (t)

(make-Func (make-Func (value t) (make-Base 'Ans)) (make-Base 'Ans)))]

[value (lambda (t)

(case-record t

[(Base -)

t]

[(Func t1 t2)

(make-Func (value t1) (computation t2))]))])

(unparse-type (computation (parse-type t))))))

> (residualize (meaning-expr-cps-cbv '(lambda (x) x)) (meaning-type-cps-cbv '(a -> a)))

(lambda (x0) (x0 (lambda (x1) (lambda (x2) (x2 x1)))))

>

N.B. The interpreter is untyped and thus we can only residualize interpreted terms that are closed and simply
typed. Untyped or polymorphically typed terms, for example, are out of reach.

Figure 7: Type-directed partial evaluation of a call-by-value CPS �-interpreter

procedure instantiate-type that maps the representation of
the input type to a representation of the type of that simply
typed value (see Figure 6).

We are now ready for self-application with respect to a
type t:

(residualize

(abstract-residualize (instantiate-type t))

t)

The result is the text of a Scheme procedure. Applying this
procedure to the initial environment of the residualizer (i.e.,
the abstract-syntax constructors, etc.) and then to a com-
piled version of an expression of type t yields the text of
that expression.

Self-application eliminates the overhead of interpreting
the type of a source program.

For example, let us consider the S combinator of Section
1.6. Residualizing the residualizer with respect to its type es-
sentially yields the eta-expanded two-level version we wrote
in Section 1.6 to visualize the residualization of S.

For another example, we can consider the Tiny inter-
preter of Section 2.3. Residualizing the residualizer with
respect to its type (see Figure 9) yields the text of a Tiny
compiler (whose run-time support includes the Tiny inter-
preter).

2.5 The art of the �-interpreter

We consider various �-interpreters and residualize their ap-
plication to a �-term. The running question is as follows:

which type should drive residualization?

Direct style: For a direct-style interpreter, the type is the
same as the type of the interpreted �-term and the residual
term is structurally equivalent to the interpreted �-term [36,
Section 7.4].

Continuation-passing style: For a continuation-style inter-
preter, the type is the CPS counterpart of the type of
the interpreted �-term and the residual term is the CPS
counterpart of the interpreted �-term | for each possible
continuation-passing style [28]. Figure 7 illustrates the point
for left-to-right call-by-value.

Other passing styles: The same technique applies for store-
passing, etc. interpreters, be they direct or continuation-
passing, and in particular for interpreters that simulate lazy
evaluation with thunks.

\Monadic" style: We cannot, however, specialize a \mon-
adic" interpreter with respect to a source program because
the residual program is parameterized with polymorphic
functions [42, 50] and these polymorphic functions do not
have a simple type. Thus monadic interpreters provide an
example where traditional partial evaluation wins over type-
directed partial evaluation.
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2.6 Static computational e�ects

It is simple to construct a program that uses computational
e�ects (assignments, I/O, or call/cc) statically, and that
type-directed partial evaluation specializes successfully |
something that comes for free here but that (for better or for
worse) no previous partial evaluator does. We come back to
this point in Section 4.4.

3 Disjoint Sums

Let us extend the language of Figure 1 with disjoint sums
and booleans. (Booleans are included for pedagogical value.)

Reifying a disjoint-sum value is trivial:

#
t1+t2 v = case v of inleft(v1)) inleft(#t1 v1)

[] inright(v2)) inright(#t2 v2)

end

Reecting upon a disjoint-sum expression is more chal-
lenging. By symmetry, we would like to write

"t1+t2 e = case e of inleft(x1)) inleft("t1 x1)

[] inright(x2)) inright("t2 x2)
end

(where x1 and x2 are fresh) but this would yield ill-typed
two-level �-terms, as in the non-solution of Section 1.1.
Static values would occur in conditional branches and dy-
namic conditional expressions would occur in static contexts
| a clash at higher types.

The symmetric de�nition requires us to supply the con-
text of reection (which is expecting a static value) both with
an appropriate left value and an appropriate right value, and
then to construct the corresponding residual case expression.
Unless the source term is tail-recursive, we thus need to ab-
stract and to relocate this context.

Context abstraction is achieved with a control operator.
This context, however, needs to be delimited, which rules out
call/cc [10] but invites one to use shift and reset [16, 17]
(though of course any other delimited control operator could
do as well [21]).5 The extended residualizer is displayed in
Figure 8.

The following Scheme session illustrates this extension.

> (residualize (lambda (x) x) '((A + B) -> (A + B)))

(lambda (x0) (case-record x0

[(Left x1) (make-Left x1)]

[(Right x2) (make-Right x2)]))

> (residualize (lambda (x) 42) '(Bool -> Int))

(lambda (x0) (if x0 42 42))

> (residualize

(lambda (call/cc fix null? zero? * car cdr)

(lambda (xs)

(call/cc

(lambda (k)

((fix (lambda (m)

(lambda (xs)

(if (null? xs)

1

(if (zero? (car xs))

(k 0)

(* (car xs)

(m (cdr xs))))))))

xs)))))

5An overview of shift and reset can be found in Appendix B.

t 2 Type ::= b j t1 ! t2 j t1 � t2 j t1 + t2 j Bool

v 2 Value ::= c j x j �x : t:v j v0@ v1 j

pair(v1; v2) j fst v j snd v j

inleft(v) j inright(v) j

case v of inleft(x1)) v1
[] inright(x2)) v2

end

e 2 Expr ::= c j x j �x : t:e j e0@ e1 j

pair(e1; e2) j fst e j snd e j

inleft(e) j inright(e) j

case e of inleft(x1)) e1
[] inright(x2)) e2

end

reify = �t:�v : t:#t v

: Type! Value ! TLT

#
b
v = v

#
t1!t2 v = �x1:resett2 #

t2 (v@ "
t2
t1

x1)

where x1 is fresh.

#
t1�t2 v = pair(#

t1 fst v; #t2 snd v)

#
t1+t2 v = case v of

inleft(v1)) inleft(#t1 v1)

[] inright(v2)) inright(#t2 v2)

end

#
Bool

v = if v then true else false

reect = �t
0
:�t:�e : t:"t

0

t e

: Type! Type! Expr! TLT

"
t

b e = e

"
t

t1!t2
e = �v1:"

t

t2
(e@ #

t1 v1)

"
t

t1�t2
e = pair("tt1 fst e; "

t

t2
snd e)

"
t

t1+t2
e = shift � : t1 + t2 ! t

in case e of

inleft(x1)) resett (�@inleft("tt1 x1))

[] inright(x2)) resett (�@inright("tt2 x2))
end

where x1 and x2 are fresh.

"
t

Bool e = shift � : Bool ! t

in if e

then resett (�@true)

else resett (�@false)

Reset and reect are annotated with the type of the value
expected by the delimited context.

residualize = statically-reduce � reify

: Type! Value! Expr

Figure 8: Type-directed residualization
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'((((Num -> Num) -> Num) -> Num) *

(((LNum -> Num) -> LNum -> Num) -> LNum -> Num) *

(LNum -> Bool) * (Num -> Bool) *

(Num * Num => Num) *

(LNum -> Num) * (LNum -> LNum) => LNum -> Num))

(lambda (x0 x1 x2 x3 x4 x5 x6)

(lambda (x7)

(x0 (lambda (x8)

((x1 (lambda (x9)

(lambda (x10)

(if (x2 x10)

1

(if (x3 (x5 x10))

(x8 0)

(x4 (x5 x10)

(x9 (x6 x10))))))))

x7)))))

>

In the �rst interaction, the identity procedure over a disjoint
sum is residualized. In the second interaction, a constant
procedure is residualized. The third interaction features a
standard example in the continuations community: a pro-
cedure that multiplies numbers in a list, and escapes if it
encounters zero. Residualization requires both the type of
fix (to traverse the list) and of call/cc (to escape).

The same legitimate question as in Section 1 arises: how
does this really work? Let us residualize the static application
f @ g with respect to the type Bool! Int, where

f = �h:�x:1 + h@ x

g = �y:if y then 2 else 3

We want to perform the addition in f statically. This re-
quires us to reduce the conditional expression in g, even
though g's argument is unknown. During residualization,
the delimited context [f @ g@[�]] is abstracted and relocated
in both branches of a dynamic conditional expression:

#
Bool!Int(f @ g) =

�b:resetInt (#
Int(f @ g@("IntBool b))) =

�b:if b then resetInt (f @ g@true) else resetInt(f @ g@false)

which statically reduces to �b:if b then 3 else 4.

4 Limitations

Our full type-directed partial evaluator is not formally
proven. Only its restriction to the simply typed �-calculus
has been proven correct, because it coincides with Berger and
Schwichtenberg's algorithm [3]. (The two-level �-calculus,
though, provides a more convenient format for proving, e.g.,
that static reduction does not go wrong and yields a com-
pletely dynamic term.)

This section addresses the practical limitations of type-
directed partial evaluation.

4.1 Static errors and non-termination may occur

As soon as we move beyond the simply-typed �-calculus,
nothing a priori guarantees that type-directed partial eval-
uation yields no static errors or even terminates. (As usual
in partial evaluation, one cannot solve the halting problem.)
For example, given the looping thunk loop, the expression

(residualize (lambda (dummy) ((loop) (/ 1 0)))

'(Dummy -> Whatever))

may either diverge or yield a \division by zero" error, de-
pending on the Scheme processor at hand, since the order
in which sub-expressions are evaluated, in an application, is
undetermined [10].

4.2 Residual programs must have a type

We must know the type of every residual program, since it
is this type that directs residualization. (The static parts of
a source program, however, need not be typed.)

Residual programs can be polymorphically typed at base
type (names of base types do not matter), but they must
be monomorphically typed at higher types. Overcoming
this limitation would require one to pass type tags to poly-
morphic functions, and to enumerate possible occurrences
of type tags at the application site of polymorphic functions
(an F2 analogue of control-ow analysis / closure analysis
for higher-order programs).

Examples include de�nitional interpreters for program-
ming languages with recursive de�nitions that depend on
the type of the source program. Unless one can enumer-
ate all possible instances of such recursive de�nitions (and
thus abstract all the corresponding �xpoint operators in the
de�nitional interpreter), these interpreters cannot be resid-
ualized.

Inductive types are out of reach as well because eta-
expanding a term of type t that includes an inductive type
t0 does not terminate if t0 occurs in negative position within
t. For example, we can consider lists.

#
List(t)

w = casew of

nil ) nil

[] cons(v; w)) cons(#t v; #List(t) w)

"
t
0

List(t) w = shift � : List(t)! t0

in case w of

nil ) resett0 (�@nil)
[] cons(x; y))

resett0 (�@cons("t
0

t x; "t
0

List(t) y))

where x and y are fresh. Reecting upon a list-typed ex-
pression diverges.

The problem here is closely related to coding �xed-point
operators in a call-by-value language. A similar solution can
be devised and gives rise to a notion of lazy insertion of
coercions.

4.3 Single-threading and computation duplicationmust be
addressed

Type-directed partial evaluation does not escape the prob-
lem of computation duplication: a program such as

(lambda (f g x) ((lambda (y) (f y y)) (g x)))

is residualized as

(lambda (f g x) (f (g x) (g x)))

Fortunately, the Similix solution applies: a residual let ex-
pression should be inserted [8]. The residual term above
then reads:

(lambda (f g x) (let ([y (g x)]) (f y y)))
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We have implemented type-directed partial evaluation in
such a way. This makes it possible to specialize a direct-
style version of the Tiny interpreter in Section 2.3. The
corresponding residual programs (see Figure 5) are in direct
style as well. Essentially they use let expressions \let v =
f@x in e" instead of CPS \f@x@�v:e".

4.4 Side e�ects

Unless side-e�ecting procedures can be performed statically,
they need to be factored out and, in the absence of let inser-
tion, be made continuation-passing.

At �rst, this can be seen as a shortcoming, until one con-
siders the contemporary treatment of side e�ects in partial
evaluators. Since Similix [8], all I/O-like side e�ects are re-
sidualized, which on the one hand is safe but on the other
hand prevents, e.g., the non-trivial specialization of an inter-
preter which �nds its source program in a �le. Ditto for spe-
cializing an interpreter that uses I/O to issue compile-time
messages | they all are delayed until run time. Similar
heuristics can be devised for other kinds of computational
e�ects.

In summary, the treatment of side e�ects in partial eval-
uators is not clear cut. Type-directed partial evaluation at
least o�ers a simple testbed for experiments.

4.5 Primitive procedures must be either static or dynamic

The following problem appears as soon as we move beyond
the pure �-calculus.

During residualization, a primitive procedure cannot be
used both statically and dynamically. Thus for purposes of
residualization, in a source expression such as

((lambda (x) (lambda (y) (+ (+ x 10) y))) 100)

the two instances of + must be segregated. The outer occur-
rence must be declared in the initial run-time environment:

(lambda (add)

((lambda (x) (lambda (y) (add (+ x 10) y))) 100))

This limitation may remind one of the need for binding-time
separation in some partial evaluators [36, 41].

A simple solution, however, exists, that prevents segreg-
ation. Rather than binding a factorized primitive operator
such as + to the o�ine procedure

(lambda (<fresh-name>)

(lambda (a1 a2)

`(,<fresh-name> ,a1 ,a2)))

one could bind it to an online procedure that probes its ar-
guments for static-reduction opportunities.

(lambda (<fresh-name>)

(lambda (a1 a2)

(if (number? a1)

(if (number? a2)

(+ a1 a2)

(if (zero? a1)

a2

`(,<fresh-name> ,a1 ,a2)))

(if (and (number? a2) (zero? a2))

a1

`(,<fresh-name> ,a1 ,a2)))))

4.6 Type-directed partial evaluation is monovariant

Partial evaluation derives much power from polyvariance
(the generation of mutually recursive specialized versions of
source program points). Polyvariance makes it possible, e.g.,
to derive linear string matchers out of a quadratic one and to
compile pattern matching and regular expressions e�ciently
[15, 36]. We are currently working on making type-directed
partial evaluation polyvariant.

4.7 Residual programs are hard to decipher

A pretty-printer proves very useful to read residual pro-
grams. We are currently experimenting with the ability to
attach residual-name stubs to type declarations, as in Elf.
This mechanism would liberate us from renaming by hand,
as in the residual program of Figure 5.

5 Related Work

5.1 �-calculus normalization and G�odelization

Normalization is traditionally understood as rewriting un-
til a normal form is reached. In that context, (one-level)
type-directed eta-expansion is a necessary step towards long
��-normal forms [31]. A recent trend, embodied by par-
tial evaluation, amounts to staging normalization in two
steps: a translation into an annotated language, followed
by a symbolic evaluation. This technique of normalization
by translation appears to be spreading [39]. Follow-up work
on Berger and Schwichtenberg's algorithm includes Alten-
kirch, Hofmann, and Streicher's categorical reconstruction
of this algorithm [1].6 This reconstruction formalizes the
environment of fresh identi�ers generated by the rei�ca-
tion of �-abstractions as a categorical �bration. Berger and
Schwichtenberg also dedicate a signi�cant part of their pa-
per to formalizing the generation of fresh identi�ers (they
represent abstract-syntax trees as base types).

In the presence of disjoint sums, the existence of a nor-
malization algorithm in the simply typed lambda-calculus is
not known. Therefore our na��ve extension in Section 3 needs
to be studied more closely. The call-by-value nature of our
implementation, for example, makes it possible to distin-
guish terms that are undistinguishable under call-by-name.

> (residualize

(lambda (f) (lambda (x) 42))

'((a -> (b + c)) -> a -> Int))

(lambda (x0) (lambda (x1) 42))

> (residualize

(lambda (f) (lambda (x) ((lambda (y) 42) (f x))))

'((a -> (b + c)) -> a -> Int))

(lambda (x0) (lambda (x1) (case-record (x0 x1)

[(Left x2) 42]

[(Right x3) 42])))

>

In his PhD thesis [27], Goldberg investigates G�odel-
ization, i.e., the encoding of a value from one language
into another. He identi�es Berger and Schwichtenberg's
algorithm as one instance of G�odelization, and presents a
G�odelizer for proper combinators in the untyped �-calculus.

An implementation of Berger and Schwichtenberg's al-
gorithm in Standard ML can be found in Filinski's PhD

6In that work, reify is \quote" and reect is \unquote".
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thesis [23]. This implementation handles most of the ex-
amples displayed in the present paper, in ML. It is ingeni-
ous because as expressed in Figures 1 and 2, type-directed
partial evaluation requires dependent types. It can be easily
translated into Haskell (excluding disjoint sums, of course,
for lack of computational e�ects).

5.2 Binding-time analysis

All of Nielson and Nielson's binding-time analyses dynamize
functions in dynamic contexts because of the di�culties of
handling contravariance in program analysis [44]. So do all
other binding-time analyses [36], with the exception of Con-
sel's [12] and Heintze's [40]. These analyses are polyvariant
and thus they spawn another variant instead of dynamizing.

In practice, type-directed partial evaluation needs a
simple form of binding-time analysis: a type inferencer where
all base types are duplicated into a static version and a dy-
namic version. Whenever a primitive operation is applied to
an expression which is not entirely static, it is factored out
into the initial run-time environment. The other occurrences
of this primitive operation do not need to be factored out,
however (thus enabling a small form of polyvariance).

To use this binding-time analysis and more generally
type-directed partial evaluation, the simplest is to de�ne
source programs as closed �-terms, by abstracting all free
occurrences of variables. (To enable the small form of poly-
variance mentioned in the last paragraph, each occurrence
of primitive operator can be abstracted separately.) One can
then curry this program with the static variables �rst, and
then residualize the application of this curried program to
the static values, with respect to the type of the result. This
simple use matches the statement of Kleene's Sm

n -theorem.

5.3 Partial evaluation

Type-directed partial evaluation radically departs from all
other partial evaluators (and optimizing compilers) because
it has no interpretive dimension whatsoever: its source pro-
grams are compiled. If anything, it is closest to run-time
code generation (the output syntax need not be Scheme's).

The last ten years have seen two avors of partial evalu-
ation emerge: online and o�ine. O�ine partial evaluation is
staged into two components: program analysis and program
specialization. Online partial evaluation is more monolithic.
Extensive work on both sides [6, 11, 15, 34, 36, 41, 48, 51]
has led to the conclusions of both the usefulness of program
analysis and the need for online partial evaluation in a pro-
gram specializer (as illustrated in Section 4.5). Because it
relies on one piece of static information | the type of the
residual program | type-directed partial evaluation appears
as an extreme form of o�ine partial evaluation.

In the spring of 1989, higher-order partial evaluation was
blooming at DIKU [34]. In parallel with Bondorf (then visit-
ing Dortmund), the author developed a version of Similix [8]
that did not dynamize higher-order values in dynamic con-
texts. In this unreleased version, instead, the specializer kept
track of the arity of static closures and eta-expanded them
when they occurred in dynamic contexts. Type-directed par-
tial evaluation stems from this unpublished work. The idea,
however, did not take. Despite the analogy with call unfold-
ing, which is central to partial evaluation but unsafe without
let insertion (under call by value), \Similix [...] refuses
to lift higher-order values into residual expressions: lifting
higher-order values and data structures is in general unsafe

since it may lead to residual code that exponentially duplic-
ates data structure and closure allocations" [9, page 327].
All the later higher-order partial evaluators developed at
DIKU have adopted the same conservative strategy | a
choice that Henglein questions from a type-theoretical stand-
point [29]. In practice, this decision created the need for
source binding-time improvements in o�ine partial evalu-
ation [36, Chapter 12]. In contrast, binding-time coercions
\improve binding times without explicit eta-conversion", to
paraphrase the title of Bondorf's LFP'92 paper [7] | a prop-
erty which should prove crucial for multi-level binding-time
analyses since it eliminates the need for (unfathomed) multi-
level binding-time improvements [26].

Thus Mix-like partial evaluation [36] and type-directed
partial evaluation fundamentally contrast when it comes
to dynamic computations: Mix-like partial evaluators do
not associate any structure to the binding time \dynamic",
whereas we rely on the type structure of dynamic computa-
tions in an essential way. As a consequence, and modulo the
abstraction of the initial run-time environment (which must
be de�ned in a partial evaluator anyway), type-directed par-
tial evaluation needs a restricted form of binding-time ana-
lysis (see Section 5.2) but it needs no specialization by sym-
bolic interpretation. It is, however, monovariant.

We are currently integrating the residualization algorithm
in Pell-Mell, our partial evaluator for ML [40]. This al-
gorithm ful�lls our need for binding-time coercions at higher
types. Type-directed partial evaluation also formalizes and
clari�es a number of earlier pragmatic decisions in the sys-
tem. For example, our treatment of inductive data structures
can be seen as lazy insertion of coercions (Section 4.2).

5.4 Self-application

Self-application is the best-known way to optimize partial
evaluation [6, 11, 15, 25, 36, 37, 41, 48]: rather than run-
ning the partial evaluator on a source program, with all the
symbolic interpretive overhead this entails, one could instead

1. generate a specializer dedicated to this program (a.k.a.
\a generating extension"), and

2. run this dedicated specializer on the available input.

To be e�cient, self-application requires a good binding-time
analysis and a good binding-time division in the partial eval-
uator [36, Section 7.3].

Type-directed partial evaluation is based on type infer-
ence, needs no particular binding-time division, and as illus-
trated in Section 2.4, is self-applicable as well.

5.5 Partial evaluation of de�nitional interpreters

In the particular cases where the source program p is a de�n-
itional interpreter, or where the source program is the partial
evaluator PE itself and the static input is a de�nitional in-
terpreter or PE itself, the partial-evaluation equations�

run PE hp; hs; ii = phs; i

run p hs; di = run phs; i h ; di

are known as the \Futamura Projections" [15, 25, 36]. As il-
lustrated in Section 2.3 and (to a lesser extent) in Section 2.4,
type-directed partial evaluation enables their implementa-
tion in a strikingly simple way. (The third Futamura pro-
jection, however, is out of reach because of the polymorphic
type of PEhPE; i.)
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6 Conclusion

To produce a residual program, a partial evaluator needs
to residualize static values in dynamic contexts. Consider-
ing higher-order values introduces a new challenge for resid-
ualization. Most partial evaluators dodge this challenge by
disallowing static higher-order values to occur in dynamic
contexts | i.e., in practice, by dynamizing both, and more
generally by restricting residualized values to be of base type
[4, 6, 9, 36, 37]. Only recently, some light has been shed on
the residualization of values at higher types, given informa-
tion about these types [18, 19].

We have presented an algorithm that residualizes a closed
typed static value in a dynamic context, by eta-expanding
the value with two-level eta-redexes and then reducing all
static redexes. For the simply typed �-calculus, the al-
gorithm coincides with Berger and Schwichtenberg's \inverse
of the evaluation functional" [3]. It is also interesting in
its own right in that it can be used as a partial evaluator
for closed compiled programs, given their type. This par-
tial evaluator, in several respects, outperforms all previous
partial evaluators, e.g., in simplicity and in e�ciency. It
also provides a simple and e�ective solution to (denotational)
semantics-directed compilation in the �-calculus.

Future work includes formalizing type-directed partial
evaluation,7 extending it to a richer type language (e.g.,
polymorphic or linear), making it more user-friendly, pro-
gramming more substantial examples, and obtaining poly-
variance.

An implementation is available on the author's home
page.
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A Nielson and Nielson's Two-Level �-Calculus

In its most concise form, the two-level simply typed �-
calculus [44] duplicates all the constructs of the simply typed
�-calculus (�, application (hereby noted @), pair, fst, snd)

into static constructs (�, @, pair, fst, snd) and dynamic con-
structs (�, @, pair, fst, snd).

(define-record (Program names command))

(define-record (Skip))

(define-record (Sequence command command))

(define-record (Assign identifier expression))

(define-record (Conditional expression command command))

(define-record (While expression command))

(define-record (Literal constant))

(define-record (Boolean constant))

(define-record (Identifier name))

(define-record (Primop op expression expression))

(define-record (Read))

(define meaning-type

'((Int * Int * (Int -> Ans) => Ans) * ;;; add

(Int * Int * (Int -> Ans) => Ans) * ;;; sub

(Int * Int * (Int -> Ans) => Ans) * ;;; mul

(Int * Int * (Int -> Ans) => Ans) * ;;; eq

(Int * Int * (Int -> Ans) => Ans) * ;;; gt

((Int -> Ans) -> Ans) * ;;; read

(((Sto -> Ans) -> Sto -> Ans) -> Sto -> Ans) *

(Int * (Sto -> Ans) * (Sto -> Ans) * Sto => Ans) *

(Nat * Sto * (Int -> Ans) => Ans) * ;;; lookup

(Nat * Int * Sto * (Sto -> Ans) => Ans) =>

(Sto -> Ans) * ;;; continuation

Sto => ;;; store

Ans))

Figure 9: Scheme interpreter for Tiny (abstract syntax and
semantic algebras)

A simply typed �-term is mapped into a two-level �-term
by a binding-time analysis. The intention is to formalize the
following idea:

Statically reducing a two-level �-term, erasing the
annotations of the residual term, and reducing
this unannotated term should yield the same res-
ult (normal form) as reducing the original term.

The two-level �-calculus thus provides an ideal medium
for staged evaluation with more than one binding time. To
this end, it makes use of three properties that are captured
in its typing discipline:

� static reduction preserves well-typing;

� static reduction strongly normalizes;

� static reduction yields normal forms that are com-
pletely dynamic.

Static reduction can be implemented directly in a func-
tional language: overlined constructs are treated as syntax
constructs and dynamic constructs as syntax-building func-
tions. It can also be implemented with quasiquote and un-
quote in Scheme (as done in Section 1) and thus can be seen
as macro-expansion in a simply typed setting.

B Abstracting Control with Shift and Reset

This section provides some intuition about the e�ect of shift
and reset.

Shift and reset were introduced to capture composition
and identity over continuations [16, 17]. Reset delimits a
context, and is identical to Felleisen's prompt; shift abstracts
a delimited context, and is similar (though not in general
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(define meaning

(lambda (p)

(lambda (add sub mul eq gt read fix true? lookup update)

(lambda (k s)

(letrec ([meaning-program

(lambda (p k s)

(case-record p

[(Program vs c) (meaning-declaration vs 0 (lambda (r) (meaning-command c r k s)))]))]

[meaning-declaration

(lambda (d offset k)

(if (null? d)

(k (lambda (i) (error 'lookup "undeclared identifier ~s" i)))

(meaning-declaration (cdr d)

(add1 offset)

(lambda (r) (k (lambda (i) (if (eq? (car d) i) offset (r i))))))))]

[meaning-command

(lambda (c r k s)

(case-record c

[(Skip) (k s)]

[(Sequence c1 c2) (meaning-command c1 r (lambda (s) (meaning-command c2 r k s)) s)]

[(Assign i e) (meaning-expression e r (lambda (v) (update (r i) v s k)) s)]

[(Conditional e c-then c-else)

(meaning-expression e r (lambda (v)

(true? v

(lambda (s) (meaning-command c-then r k s))

(lambda (s) (meaning-command c-else r k s))

s)) s)]

[(While e c)

((fix (lambda (while)

(lambda (s)

(meaning-expression e r (lambda (v)

(true? v

(lambda (s) (meaning-command c r while s))

k

s)) s)))) s)]))]

[meaning-expression

(lambda (e r k s)

(case-record e

[(Literal l) (k l)]

[(Identifier i) (lookup (r i) s k)]

[(Primop op e1 e2)

(meaning-expression e1 r (lambda (v1)

(meaning-expression e2 r (lambda (v2)

((meaning-primop op) v1 v2 k)) s)) s)]

[(Read) (read k)]))]

[meaning-primop

(lambda (op)

(case op [(+) add] [(-) sub] [(*) mul] [(=) eq] [(>) gt]))])

(meaning-program p k s))))))

Figure 10: Scheme interpreter for Tiny (valuation functions)

equivalent) to Felleisen's control [21]. Since contexts are
delimited, their abstraction can be composed.

Let us consider some examples.

1 + reset (2� shift k in 3� ((k 4) + (k 5)))
= 1 + let k = �v:2� v in 3 � ((k 4) + (k 5)) = 55

1 + reset (2� shift k in 3� (k 4))
= 1 + let k = �v:2� v in 3 � (k 4) = 25

1 + reset (2� shift k in k 10)
= 1 + let k = �v:2� v in k 10 = 21

1 + reset (2� shift k in 10)
= 1 + let k = �v:2� v in 10 = 11

In the three terms, k is bound to an abstraction of the de-
limited context [2� [ ]]. This abstraction reads �v:2� v. In
the �rst term, it is used twice; in the second and in the third,
once; and in the last, it is not used.

Shift and reset can be eliminated by CPS transformation
[49]. A shift expression is CPS-transformed by abstract-
ing the current (delimited) continuation into a procedure.
When this procedure is applied, the abstracted continuation
is composed with the new current continuation. Finally, a re-
set expression is CPS-transformed by supplying the identity
procedure as a continuation [16, 17].

Filinski's direct implementation of shift and reset can be
found in the literature, both in Standard ML of New Jersey
[22] and in Scheme [38].
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