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SHAPE THEORY FOR C*-ALGEBRAS

BRUCE BLACKADAR

Abstract.

A shape theory is developed for separable C*-algebras, generalizing the
topological theory. Several related results about homotopy and lifting
homomorphisms into quotients are obtained. The relationship between shape
equivalence and K-theory and Kasparov theory is explored.

Shape theory has played an important role in topology in recent years.
Roughly speaking, the goal of shape theory is to separate out the global
properties of a topological space X which can be measured by the homology or
cohomology groups of X from the possibly pathological local structure of X.
The idea is to write X as a projective limit X =limX, of “nice” spaces
(specifically absolute neighborhood retracts or ANR’s), ), and then consider only
those topological properties of X which can be determined from the homotopy
type of the X, and the connecting maps. A general reference for shape theory is
[4].

Shape theory for C*-algebras was first introduced by Effros and Kaminker
[9]. The idea here is to write a general C*-algebra A as an inductive limit A=
lim 4, of “nice” (semiprojective—see below) C*-algebras and classify the
algebras up to homotopy equivalence of the associated inductive systems.

The theory of [9] has already proved useful in classifying C*-algebras which
are inductive limits of algebras of the form C(S*)®F, F finite-dimensional, and
it is clear that C*-shape theory will be important in the future.

It is desirable for potential applications of shape theory to extend the theory
to apply to C*-algebras which are not obviously covered by [9]. Also, the
theory of [9], although analogous to topological shape theory, is not a direct
noncommutative generalization.

In this paper, we develop a shape theory for general (separable) C*-algebras
which exactly restricts to topological shape theory in the commutative case,
and prove analogs and generalizations of some of the principal results of the
topological theory as well as those of [9]. It is hoped that this shape theory will
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play a role in noncommutative topology similar to that played by ordinary
shape theory in the commutative case.

The organization of the paper is as follows. In section 1 we give a systematic
treatment of universal C*-algebras on sets of generators and relations, which
has heretofore been missing from the literature. In section 2, we define
projective and semiprojective C*-algebras and maps between C*-algebras. Our
definition of a semiprojective C*-algebra differs from that of [9] and is more in
keeping with the definition of an ANR in topology. We prove that many
“standard” C*-algebras are semiprojective. Section 3 contains some results
about semiprojectives analogous to properties of ANR’s, and a comparison of
our definition with [9]. Section 4 contains the definition and basic results
about shape systems and shape equivalence of C*-algebras. Then in section 5
we explore the relationship of shape theory with K-theory and Kasparov
theory.

Throughout the paper, except in section 1, we will assume that all C*-
algebras are separable. This is probably an unnecessary assumption, and most
of the results carry through to the nonseparable case with only obvious
modifications. The only results which do not obviously generalize are 3.1 and
3.6. We will have occasion to refer to several subcategories of the category & of
separable C*-algebras: we will denote by &, the category of separable unital
C*-algebras and unital homomorphisms, %% category of separable
commutative C*-algebras (equivalent to the category of pointed compact
metrizable spaces), and ¥%, the separable commutative unital C*-algebras
(equivalent to the category of compact metrizable spaces.) We will use € to
denote a general subcategory of &. The term “ideal” will always mean “closed
two-sided ideal.” As in [9], if ¢,¥: A — B we will write ¢~y if ¢ and y are
homotopic. We will denote the unital extension of A by 4!, and the smallest
unital C*-subalgebra of A' containing 4 by 4. & will denote the compact
operators.

This work was done while I was on sabbatical at the Mathematics Institute,
Universitdt Tiibingen, West Germany, supported by a Forschungsstipendium
from the Alexander von Humboldt-Stiftung.

1. Universal C*-algebras.

We wish to define a universal C*-algebra on a set 4 ={x,} of generators and
a set of relations #. We could allow the relations in £ to be any kind of
relations which could be formulated for operators on a Hilbert space or for
elements of a C*-algebra, but for specificity we will only consider relations of
the form ([|p(xy,- - -5 Xa, X5, - -5 X2 S1), where p is a polynomial in. 2n
noncommuting variables with complex coefficients, x,,...,x, € 4, and n20.
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If n=0, the relation may be rewritten as an algebraic relation among
Xgp-+ o5 Xgp Xos- + -, Xg, and the scalars. In the relations, it is important to
distinguish between functions of the generators which behave as scalars and
scalars themselves (which are not assumed to be in the generated algebra.)

A representation of (¥, 4%) is a set of operators {y,} on a Hilbert space #
which satisfy

1PWap- - s Yoy Yoo - Yl S

whenever ([|p(x,,,. . ., Xq, X¥,. .., x3)| £n) € R (Where complex coefficients are
interpreted as scalar multiples of the identity.) A representation g of {¥4, %)
extends uniquely to a *-homomorphism, also denoted g, from the free
x-algebra % (%) generated by ¢ into £ ().

DEeFINITION 1.1. A set (4, %) is admissible if

(a) There exists a representation of (¥4, ).
(b) Whenever {yf} is a representation of (%, %) on #* for each § € Q, then
@y € L(®yH") for each « (and {D; %} is a representation of (¥, R)).

Condition 1.1(a) insures that the relations in &£ are not inconsistent with
each other or with the C*-axioms. (If representations on a 0-dimensional space
are allowed, then 1.1(a) is vacuous, but the universal C*-algebra may be {0}.)
1.1(b) implies that the relations in 4 at least implicitly place a bound on ||x,||
for each a. For relations of the form we are considering, the second part of
1.1(b) follows automatically from the first. The two conditions together imply
that for any z € #(9),

[llzlll = sup{lle(2)|l : o a representation of (¥4, #)}

is a well-defined finite number, and that |||-||| is a C*-seminorm on % (%).

DEFINITION 1.2. The completion of & (%4)/{z: |||z|||=0} under ||| ||| is called
the universal C*-algebra of (¥4,%), denoted C*(¥,%). C*(¥4,4%) has the
property that any representation of (¢, %) extends uniquely to a representation
of C*(4,4), and any_ representation of C*(¥, %) gives a representation of
(%, R).

ExampLEs 1.3. (a) Let 4 be any C*-algebra, 4 = A, & the set of all x-algebraic
relations in A. Then C*(¥, Z)= A.

(b) Let A be any C*-algebra, ¥=A4, a dense »-subring of 4 which is an
algebra over a dense subfield of C, # the set of all x-algebraic relations on A4,
plus the scalar multiple relations between elements of 4, plus a relation ||x||
< | x|, for each x € A,. Then C*(%4, &)= A. So in particular a separable C*-
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algebra is the universal C*-algebra on a countable set of generators and
relations.

(c) Let A be any Banach s-algebra, ¥ = A, # the *-algebraic relations. Then
C*(%4,A) is the enveloping C*-algebra of A. One may also work with a dense
»-subring as in (b).

(d) Let G be a locally compact group. Applying (c) to 4=L!(G), we get
C*(%,R)=C*(G). If G is discrete, C*(G) is also C*(¥9, ), where =G,

R = {x*x=1,xx*=1, xy=zfor all x,y,z € G with xy=z}.
(e) Many well-known C*-algebras occur naturally as universal C*-algebras:
(1) ¥={x},
R = {x=x* [x|=1, [1-x*|<1}.
C*(%,®)=C,((0,1]).
@ 9={x1},
R = {x=x* ||x|S1, [1-x2| S, 1=1*=1% xl=1x=x} .
C*(%, #)=C([0,1]).
(1) and (2) are the “universal positive contraction C*-algebras.”
() g={x},
R = {x*x=1, xx*=1} .
C*(%,R)=C(S")=C*(Z), “universal unitary algebra.”
@ 9={x},
R = {x*x=xx* ||x|=1}.
C*(%9,R)=C,(2,), where 2, is the punctured unit disk.
() ¥={x1},
R = {x*x=xx* |x| L1, 1=1*=12, x1 =1x=x} .
C*(%, R)=C(D).
(4) and (5) are the “universal normal contraction C*-algebras.”

6) ¥={x}, #={x*x=1}. C*(¥, R)~ C*(u), where u is the unilateral shift.
This is the “universal isometry algebra” or “Toeplitz algebra,” denoted
g.
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() 9={x}, #={lx|| =1}, “universal contraction algebra.”
8) ¥={x,1},
R = {"x" éls 1=1‘=12, x1=1x=x} ,

“universal unital contraction algebra.”

(9) Let A=(a;; be an nxn matrix of 0’s and 1's, ¥={s,,...,s,} ,
R = {s¥s;=(s¥s)’, sts;= Y ays;s}, sis;=0  for all i,k,i%k} .
j=1

C*¥%,R)x0,[7; 6.7].
(10) Let o be an irrational number, 0<a<1, ¥={u,v},
R = {u*ru=uu*=v*v=vv*=1, uw=e>""vu} .
C*(¥, A) is the irrational rotation algebra R,.
(11) ¥={x;;:15i,j<n},
R = {x;=x} x;xu=0pxy : 1=0,j,k,1<n} .
C*(%,#) =M, (C).

(12) ¥={x;,1: 1Zi,j<n},

jo

n

_ ek _1%_12 1y —

R = {x;=x}=) xuX 1=1*=1% x;1=1x;;=x;} .
k=1

C*(%, ) is the “noncommutative Grassmanian” G;° [5].

n n
R = {kzl xpx =041, k; x,.,‘xj‘;=5ijl}.

C*(%,R)=U}" [5]. UF=C(SY).

(f) Amalgamated free products. Given C*-algebras A, (x € Q), D, with
©,: D — A, an injective map for each «, let ¥=U 4,, # the set of s-algebraic
relations in all of the 4,, along with {¢,(x)=¢,(x): x € D, a, B € 2}. C*(¥4, R)
is called the amalgamated free product of the 4, over D, denoted *(A,, D, ¢,) or
*p A, when the ¢, are understood. These C*-algebras are considered in [5],
[8], and [9]. One important (although not very difficult) point not mentioned
in these references is the fact that (¥, &) has a representation. A proof can be
found in [2; 3.1].

If D={0}, then »;, 4, = »A, is the free product of the 4,. If D=C, each 4, is
unital, and ¢, maps D onto the scalars, then *,A4,=#cA4, is the unital free
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product. The universal C*-algebra generated by a set of unitaries, isometries,
contractions, positive contractions, normal contractions, etc., can be written as
a free product of algebras in (e).

(g) Tensor products. The unital (maximal) tensor product of a family of
unital C*-algebras can be defined in a universal way as in the unital free
product, with additional relations making the different algebras commute.
However, if the algebras are nonunital, the commuting free product defined in
this way generally contains the tensor product as a proper ideal. For example,
the commuting free product of two copies of C,(R) is isomorphic to the algebra
of continuous functions on the 2-torus vanishing at one point, which is not
isomorphic to the tensor product C,(R?). Although arbitrary commuting free
products can be defined, there is no reasonable general definition of a tensor
product of an infinite number of nonunital C*-algebras [1]. A theory of
amalgamated tensor products of C*-algebras over commutative subalgebras
can be developed, although there appear to be technical problems in obtaining
a satisfactory theory.

While universal C*-algebras often have a very complicated internal structure
and are usually regarded as pathological, they are in some respects tractable
objects for study. For example, it is often relatively easy to compute the K-
theory of such algebras ([5], [7], [8]).

2. Projective and semiprojective C*-algebras.

In this section, we will denote by € a fixed subcategory of & which is closed
under quotients. ‘

DEFINITION 2.1. Let A,B € € and ¢: A — B a ¢-morphism. ¢ is a projective
morphism in € if for any C € ¥, ideal J € C, and morphism ¢: B — C/J, there
is a morphism y: A — C with noyy=go¢, where n: C — C/J is the quotient
map. A is projective in € if the identity map on A is projective.

This definition of projective C*-algebras agrees with that of [9]. If either A
or B is projective, then any morphism from A4 to B is projective. More
generally, a composition of a projective morphism with any other morphism
(in either order) is projective.

ExampLEs 2.2. (a) C,((0,1]) is projective in & [9].

(b) C is projective in &, but not in &.

(c) C([0,1]? is projective in %, but not in &, (the real and imaginary
parts of the image of the unilateral shift u in the Calkin algebra give a
homomorphism of C([0,1]?) into C*(u)/#. which cannot be lifted).
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We now list some general facts about projective C*-algebras.

Prorosition 2.3. [9; 3.1] A projective C*-algebra is contractible. In
particular, a C*-algebra which is projective in & cannot be unital.

ProposITION 2.4. If A is projective, and ¢, \y: A — B, then @ ~.
Proor. Let C=C([0,1],B), J=C,((0,1), B). C/J=B®B. Lift p@y to C.
PROPOSITION 2.5. A is projective in & if and only if A' is projective in &,.

Proor. See [9; § 4] for one direction. For the other, note that any ¢: A — B
extends uniquely to a unital homomorphism from A! to B.

ProposITION 2.6. If each A, is projective in & (respectively &,), then »A, is
projective in & (respeptively *xcA, is projective in &,).

ProPOSITION 2.7. A is projective in S€ (respectively #€,) if and only if A
=Co(X) for a locally compact (respectively compact) absolute retract X.

DEerFINITION 2.8. If A is a C*-algebra, let I be the commutator ideal of 4, i.e.
the (possibly improper) ideal generated by {xy—yx:x,y € A}. A,.=A/l is a
commutative C*-algebra, called the abelianization of A. We can have 4,={0}.
A, has the universal property that any homomorphism from A into a
commutative C*-algebra factors through A. If ¢: A — B, then ¢ induces a
unique morphism ¢, from A4, to B, called the abelianization of ¢.

ProposITION 2.9. If ¢: A — B is projective in & (respectively &), then
.. A, — B, is projective in S€ (respectively S€,). So if A is projective in &
(respectively &), then A, is projective in S€ (respectively S€,).

Proor. Let C be commutative, and ¢: B, —» C/J. Consider the following
diagram:

L >C
A= B, 1
ml .."lﬂB
A5 B> ClJ

By projectivity, dongog lifts to w; since C is commutative, o factors through A4,
to give .
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More generally, any commutative diagram of maps abelianizes to a
commutative diagram.

DEFINITION 2.10. Let 4,B € €, ¢: A — B. ¢ is semiprojective in ¥ if, for any
C € % and increasing sequence J, of ideals of C with J=UJ,_, and for any
morphism ¢: B — C/J, there is an n and a morphism : 4 — C/J, with moy
=gog, where n: C/J, — C/J is the quotient map. A4 is semiprojective in % if
the identity map on A is semiprojective.

If A or B is semiprojective, then any morphism from A4 to B is semiprojective.
More generally, a composition of a semiprojective morphism with any other
morphism (in either order) is semiprojective. Any projective C*-algebra or
morphism is semiprojective.

ProrosiTiON 2.11. Co(X) (respectively C(X)) is semiprojective in S€
(respectively S%€,) if and only if X is an ANR.

The proof is an easy exercise, and is omitted. In the nonunital case one
works in the category of pointed spaces. See [10] for detailed information
about ANR'’s.

This shows that our definition of semiprojective does not agree with the
definition in [9]. For any contractible C*-algebra is semiprojective in the sense
of [9] by [9; 3.5], so if X is compact and contractible C(X) is semiprojective in
the sense of [9]. But there exist contractible spaces which are not ANR’s, such
as the cone over the Cantor set. We will show in 3.2 that our definition is
actually more restrictive than the one in [9].

ProrosiTIiON 2.12. If @: A — B is semiprojective in & (respectively &), then
@.: A, — B, is semiprojective in € (respectively #€,). So if A is semiprojective
in & (respectively &,), then A, is semiprojective in € (respectively SE€,).

Thus, a commutative C*-algebra which is semiprojective in & or &, must
be Cy(X) for an ANR X. The converse is false (2.33).

We now prove that many standard C*-algebras are semiprojective, using a
long series of propositions.

LeEmMA 2.13. Let C be a C*-algebra, J, an increasing sequence of ideals of C
with J=UJ,. Let n,: C — C/J,, n: C — C/J be the quotient maps. Then, for

any x € C, ||n(x)| =inf||z,(x)|.

Proor. Follows easily from the definition of the quotient norm.
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ProrosiTioN 2.14. Let C, J,, J be as in 2.13, and let p be a projection in C/J.
Then there is a projection p € C/J, for sufficiently large n with n(p)=p.

Proor. Let 0< x € C with n(x)=p. Then n(x —x?)=0, so ||x,(x—x?)|| <1/4
for sufficiently large n. Thus for large n =,(x) has disconnected spectrum at 1/2
and p may be constructed from x,(x) by functional calculus.

CoroLLARY 2.15. If @: A — B is semiprojective in &, (respectively F%,),
then it is semiprojective in & (respectively S €). So if A is semiprojective in & ,, it
is semiprojective in &. Conversely, if ¢ (respectively A) is unital and
semiprojective in &, then ¢ (respectively A) is semiprojective in &,.

Proor. Given C, J,, J, 6: B— C/J, let p=0o(1p). Lift p to pe C/J,, and
replace C by p(C/J,)p, J, by p(J,/J,)p for k=n, J by p(J/J,)p. Conversely, if ¢ is
semiprojective in &, C is unital, and ¢: B — C/J is unital, let y: 4 — C/J, be
a lift. Set g=y(1 ). Since n(1¢;;, —q)=0, we have ||n,(1¢/;, —9)ll <1 for large n.
But =,(1¢,—q) is a projection, so m,(q)=1¢y, for large n, that is m,oy is a
unital lift.

It follows that C is semiprojective in &. From now on, unless otherwise
qualified, “semiprojective” will mean “semiprojective in &.”

COROLLARY 2.16. A4 is semiprojective if and only if A is semiprojective in & .
Proor. If A4 is unital, this follows trivially from 2.15; if A is nonunital, the
argument is similar to 2.5.

ProposiTION 2.17. Gi° is semiprojective.

Proor. We may work in &,. If : GI° — C/J, then ¢ extends to a morphism,
also denoted o, from M,(G™) to M,(C/J)=M,(C)/M,(J). If x is the matrix
(xy)) € M,(G}9), then x is a projection, so ¢(x) is a projection p in M, (C)/M,(J).
Lift p to a projection

p = (p;) € M,(CYM,(J) = M,(C/JY

for some k; then the map x;; — p;; gives a lift of o to C/J,.

Prorosition 2.18. Let C, J,, J be as in 2.13, and p,,...,p, orthogonal
projections in C/J. Then for sufficiently large n there are orthogonal projections
Py . .,p, € C/J, with n(p)=p; for all i. If C is unital and p, + . .. +p,=1, then
we may choose the p; so that p,+...+p,=1.
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Proor. We apply 2.14 inductively. First lift p, to p; € C/J, . Replace C by
(I=p)(C/J )1 =py), J, by (1—p)U/J,)(1—py), and J by (1—p,)(J/J )
(1—p,) (these make sense even if C is nonunital). Now lift j,, and continue
inductively. If C is unital and p, + ... +p,=1, then p,=1—p,—...—p,_,. In
this case, stop the induction after r—1 steps and set p,=1—p,—... —p,_;;
otherwise continue the induction through all r steps.

CoRrOLLARY 2.19. If ¢;: A; — B; (i=1,...,r) are morphisms in &, then

@31 @i @ A;— E_*“)l B;
is semiprojective if and only if each ¢, is semiprojective. So if A,,...,A, are
unital, then A, ®...@DA, is semiprojective if and only if each A; is
semiprojective.
Proor. First lift p;=0a(1p) to p; € C/J,, and then lift ¢; to
T (PIL(C/T)/ (/T )Imn (p)  for some m; 2k .
Let n=max n; The converse is trivial.

REMARK 2.20. It is not known, and quite possibly false, that a direct sum of
nonunital semiprojective C*-algebras is always semiprojective.

Prorosition 2.21. Let C, J,, J be as in 2.13, with C unital. If 4 is an isometry
in C/J, then there is an isometry u € C/J, for sufficiently large n with n(u)=1a. If
i is unitary, then u can be chosen to be unitary.

Proor. Let x € C with n(x)=i. Then
lim "nn(x)*nn(x)— 1 " =0 )

so for large n, m,(x*x) is invertible. Set u,=m,(x)[n,(x*x)] /2. Then u, is an
isometry with n(u,)=4. If 4 is unitary, we also have

lim ||z, (x)m,(x)*— 1| = 0,

so m,(x) is invertible for large n, and hence u, is unitary for large n.
COROLLARY 2.22. F, C(S'), and U™ are semiprojective.
Proor. Trivial for 4 and C(S'), and as in 2.17 for U}~

ProvposiTiON 2.23. Let C, J,, J be as in 2.13. Let j and § be projections in C/J,
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and let @ be partial isometry in C/J with a*i=p, au*=q. Let p and q be
projections in C with n(p)=p, n(q)=q. Then for sufficiently large n there is a
partial isometry u € C/J, with n(u)=u and u*u=r,(p), uu*=m,(q).

Proor. Let x € C with n(x)=1. Then for large n we have

70 () *1, () — 7, (@) and ||, (x)m, (x)* — 7, (9)l

small. If fis a continuous function which is identically zero near 0 and for
which f(4)=A"1/2 for A near 1, then w=rm,(x)f(n,(x*x)) is a partial isometry in
C/J, with ||p'—=,(p)| and ||¢’ —=,(q)| small, where p'=w*w, ¢'=ww*. Then if

vi = zi(zlz.:zi)—ll2 (i=192) ’
where
z = @ -DQrE-D+1,  z = Qr,@-1)Q2g-D+1

[11; § 6, Lemma 4], then the v; are unitaries in (C/J,) which conjugate =,(p)
and ¢ to p’ and =,(g) respectively, and n(v)=1 € (C/J); so u=v,wv, is the
desired partial isometry.

COROLLARY 2.24. 0, is semiprojective for any matrix A.
ProvposiTiON 2.25. M, (C) is semiprojective.

PROOF. Let e,,,¢e,,,€,;,€,, be matrix units in C/J. Lift e;, to a projection p
in C/J,, and e,, to a partial isometry u in C/J, for some n2k with u*u=mx,(p),
uu*=1—mn,(p). Then {n,(p),u,u*, 1 —mn,(p)} is a system of matrix units in C/J,
which lift the e;;.

PROPOSITION 2.26. If @: A — B is semiprojective in &y, then @,: M,(A)
— M, (B) is semiprojective in & ,. So if A unital and semiprojective, then M,(A)
is semiprojective.

ProoF. Let {&,;} be the images of the matrix units {f;;} of M,(C)< M,(A) in
C/J. Lift {&,;} to matrix units {e;;} <C/J,. Replace C by e;;(C/J\)es, J, by
ey (J/J ey, for n=k, and J by e,;(J/JJey;. Then @, | fi,M,(A)f;; looks like
@, S0 00, | f1,M,(A)f;, lifts to a homomorphism

¥ 1My (A) fi1 = 7l )(CI Y/ U /T )Ima(e1)

for some large n. If x € M,(A), write

X =
i

fuxufjx s

1

T~
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where x;; € fi, M, (A) fy,; set

2

Ya(x) = Z T, (€)Y (x;)ma(e;y) -

»

¥, is a lift of gop,.

ProposITION 2.27. Let A be unital and semiprojective, and p a full projection in
A. Then pAp is semiprojective.

Proor. Since p is full, for sufficiently large r we can find projections p’ and ¢
and a partial isometry v in M,(pAp) such that gM,(pAp)q=A, p'<q, v*v
=diag (p,0,...,0), vv*=p'. Let 6: pAp — C/J. Extend to

o,: M,(pAp) » M, (C/J)).
Let g=o,(q). Lift § to a projection q' € M,(C/J,). Let w be a lift of
g,|gM, (pAp)g to =,(¢)M,(C/J)n,(q) for some n=k. Set a=q,(v); by
increasing n if necessary, we may find a partial isometry u € M,(C/J,) which
lifts 4, for which u*u=diag (1,0,...,0) and uu* =w(p’). Identify pAp and C/J,
with the upper left-hand corners in M, (pAp) and M, (C/J,), respectively. If y(x)
=u*w(vxv*)u, then y is a lift of ¢ to C/J,.

COoROLLARY 2.28. If A is unital and semiprojective, then M ,(A) is semiprojective
Jor all n. In particular, M,(C) is semiprojective for all n.

ProoF. Mx(A) is semiprojective for all k by induction from 2.26, and M, (A)
is a full corner in Mx(A) for large k.

CoRroLLARY 2.29. If A'and B are unital C*-algebras which are strongly Morita
equivalent, then A is semiprojective if and only if B is semiprojective.

Proor. A and B are each isomorphic to full corners in matrix algebras over
the other.

This can be false if A or B is nonunital: it follows from 3.1 that X is not
semiprojective.

CoroLLary 2.30. If A is unital and semiprojective and F is a finite-dimensional
C*-algebra, then AQF is semiprojective. In particular, F and C(S')®F are
semiprojective.

. Proor. Follows from 2.28 and 2.19.
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ProrosiTION 2.31. If A,,. . ., A, are semiprojective in & (respectively &,), then
Ay *... %A, is semiprojective in & (respectively A, xc...*cA, is semiprojective
in #,).

ProrositTioN 2.32. If A,,...,A, are semiprojective and F is a finite-
dimensional C*-subalgebra of A,,. .., A,, then A, xp...*gA, is semiprojective.

Proor. Almost identical to [9; 3.11].

Note that an infinite free product of semiprojective C*-algebras will not in
general be semiprojective unless all but finitely many are projective.

ExampLE 2.33. C([0, 1]%) is semiprojective (in fact projective) in ¥, ; but it
is not semiprojective in &,. For let u be the unilateral shift, C the C*-algebra of
all sequences in C*(u) converging to a scalar multiple of the identity,

Jo = {(x4,%3,. +.): x;€ X < C*(u) for all i, x,=0 for i>n},
J = {(xy,%3,...): x; € A for all i, x; —» 0} .

Then J =UJ,. C/J is isomorphic to the C*-algebra of all sequences in 7(C*(u))
converging to a scalar multiple of the identity, where

n:C*u) > C*u)/H = C(SY).

Let x=(x,,x5,...) and y=(y;,¥,,...) with x,=Re (r(w))/n, y,=Im (r(u))/n.
Then x and y are commuting self-adjoint contractions in C/J, so there is a
homomorphism ¢ of C([0,1]?) onto C*(x, y)< C/J. But it is easily seen that ¢
cannot lift to C/J, for any n. One can also define a homomorphism from
C(S! x SY) into C/J which cannot be lifted by sending the two generators to
¢ and e”; thus C(S* x §') is not semiprojective in &;. A similar argument
shows that the irrational rotation algebras are not semiprojective.

2.34. Example 2.33 shows that even a universal C*-algebra on a finite set of
generators and relations need not be semiprojective. For such a C*-algebra to
be semiprojective, the relations must be partially liftable in the sense that if
Xys...,X, € C/J satisfy the relations, then suitable preimages in C/J, for
sufficiently large k also satisfy the relations. The propositions in this section
and elementary C*-theory show that many types of relations are partially
liftable, such as (|lx,]| 1), (,=x2), (x,=x¥=x2), (x2x,=1), (x*x,=x,x*=1),
(the matrix (x;) is a projection or unitary in M,(4)), etc. But 2.33 shows that
commutation relations among the generators are not partially liftable. It would
be very interesting to know whether every C*-algebra is the universal C*-
algebra on a set of generators and compatible partially liftable relations. This
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would imply that every C*-algebra is an inductive limit of semiprojectives. A
more extensive list (or, preferably, a characterization) of partially liftable
relations is needed.

There is a weakened form in which any finite set of relations is partially
liftable, which will be crucial in the development of shape theory:

ProposITION 2.35. Let G={x,,...,X,},

AR AQIFY N | AQ /% .
with all n,>0, and let A=C*(9,R). If ¢p: A — B satisfies

"pi((p(xl)’ . -a(P(xn)a ‘P(Xf)y v ,(P(X:))" < n;

Jor each i, then ¢ is semiprojective.

Proor. Follows easily from 2.13.

Finally, we prove a generalization of the theorem from topology that a
compact retract of an open set in an ANR is an ANR [10; IIL.7.7].

DEerINITION 2.36. If A and B are C*-algebras with A unital, A is retract of B
if there is a unital homomorphism w: A — M(B), the multiplier algebra of B,
and a surjective homomorphism g: B — A, such that gow=id 4, where g is the
canonical extension of ¢ to a homomorphism from M(B) to A4 [13; 3.12.10].

THEOREM 2.37. Let D be semiprojective in &, I an ideal in D, and A a unital
C*-algebra which is a retract of 1. Then A is semiprojective.

Proor. Let w: A — M(I) and g: I — A be as above. Let C be unital, and let
6: A — C/J be unital, with J=UJ,. The argument of [13; 3.12.8] gives a
homomorphism 6: D — M (I) which is the identity on I. If a=0g0g00, then a
lifts to a map B: D — C/J, for some k. noB(I)=0(A) contains the identity of
C/J, so for sufficiently large n, B,=n,oB(I) contains the identity of C/J,. For
such an n, n,of extends to a unital homomorphism y: M(I) - B,< C/J, which
lifts g0g, and so Y =yow gives a lift of gogow =a0.

The identical statement and proof, restricted to ¥€,, gives [10; II1.7.7].

2.38. There is a strong converse to Theorem 2.37 in S¥,: every compact
ANR is a retract of an open set in a compact AR ; in fact, a metrizable compact
ANR is a retract of an open set in the Hilbert cube [10; II1.6.3]. It is not
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known whether every unital semiprojective C*-algebra is a retract of an ideal
in a projective C*-algebra. It may be true that every (separable) unital
semiprojective C*-algebra is a retract of an ideal in the unital free product of a
countable number of copies of C([0, 1]). The difficulty in trying to prove this is
that the primitive ideal space of such a C*-algebra is not Hausdorff. (In a
separable commutative C*-algebra A, every closed subset of Prim (4) is a G;.)

3. Properties of semiprojectives.

We retain the notation of section 2. We require that ¢ be closed under
quotients and  countable inductive limits, and also  that
Ce¥% = CRC([0,1]) e %.

We will need to consider inductive limits of the form

D = h_’m (Dn’)’n.n+ 1) ’

where y, ,+1: D, = D, is not assumed to be injective. To construct such an
inductive limit, set I, = kery, ,<D,, where

Yam: Dpn— D, form>n.

We have 1,1, .+, for all m>n, and if I,=U,, I, 74 »+1 drops to an injective
map

‘);n,n+1 : Dn/In - Dn+1/1n+1 ’
and D=lim (D,/I,,7, 4+1), Where the connecting maps are injective. In fact, the
C*-algebras C/J considered in section 2 are actually inductive limits with
surjective connecting maps: C/J=lim (C/J,, n,4,). An inductive limit with
injective connecting maps will be called a faithful inductive limit. If
D = ll_fll’ (Dm'yn,n+l) ’

we will denote by y, the canonical homomorphism from D, into D. If D is
unital, then D, is unital for sufficiently large n.

THEOREM 3.1. Let ¢: A — B be semiprojective in €, D=EIE (Dpy Y, w+1)» and
B: B — D a €-morphism. Then for sufficiently large n, there are homomorphisms
a,: A — D, such that y,oa,~Bo@, and such that y,oa, — Po@ pointwise.

ProoF. Let C be the C*-subalgebra of [T, C([n,n+ 1], D,) consisting of all
sequences (f,) for which

fn+1(n+l) = ‘Yn,n+1(.f;|(n+1)) fOI' a“ n,

and for which
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Eim || f,() =P a(fm@) =0, where m<s<m+1,nst<n+1, m<n.
et
(C is Brown’s “mapping telescope” [16; 5.2].) Let
Jo = {(f)eC| f,=0for n>k},
J={(f)eC| lim|fl,=0} = UJ,.

Then C/J = D. Let o be B, regarded as a map from B to C/J. Lift sog to y: 4
— C/J,, and let a, be the composition of  with evaluation at n (n<k). The
homotopy is given by composing y with evaluation at ¢ (t =n) and then with y,
rstsr+1).

CoroLLARY 3.2. If A is semiprojective in &,, then A is semiprojective in the
sense of [9].

Proor. The condition in [9] is exactly the conclusion of 3.1 for faithful unital
inductive limits. (In [9], no assumption of separability is made, but one may
restrict to the image of A without loss of generality.)

THEOREM 3.3. (cf. [9; 3.2]) Let ¢: A — B be semiprojective in €,

D= lﬂﬂ (Dm?n.n-fl) ’
and let By, B,: B — D, for some k with y,0B,~y,0B8,. Then for sufficiently
large n2k, y,,,°B000 >y n0B100.

Proor. Let
E = {(x,£,y) e B,®C([0,11, D)®D; | f(O)=1:(), fF()=1(}
and for n=k let
E, = {(x £,3) € D,®C([0,1],D,)®D, | FO=70a(), f() =740} -

Then EQi_m (Ep 0, n+1) for obvious maps 6,,.,. If g is a path of
homomorphisms from B to D with g,=y,0p, for t=0,1, define 6: B —» E by

a(x) = (Bo(x), £,8,(x)) ,

where f(tf)=g,(x). Lift ¢ to a map a: A — E, with f,0a~go¢. Thus, if n?
(respectively n°) is the projection of E, (respectively E) onto its first coordinate
D,, we have

8o = mpob,on = nogop = Pyop.

Similarly, if n} and =n' are projections .onto the third coordinates, we have
n p
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6, ~B,0¢. The map « gives a homotopy from y, ,0d, to y, ,0d,. Thus we have

VinoBoo@ = P4 4000 = Yy u00; = Yy 0B 00

as maps from 4 to D,.

Of course, 3.1 and 3.3 may be rephrased in terms of semiprojective algebras
by taking ¢ =id.

3.4. Theorem 3.3 suggests that a generalization of 2.32 to allow F to be an
arbitrary semiprojective C*-algebra may be possible. Part of the proof of [9;
3.11] carries over to this case — homomorphisms ¢;: A; — C/J can be lifted to
Y2 A; — C/J, such that ,|F ~y |F for all i,j. The problem is then to extend
the homotopy to homotopies of the homomorphisms of the A,

3.5. In ¥#%,, semiprojectives (ANR’s) are “locally projective” [10; II1.7.1, 7.2,
7.9]. As a result, if X is a compact ANR, there is a finite open cover % of X
such that, whenever @,j: Y — X are continuous functions which are #-close,
then @~y [10; IV.1.1]. Since there are simple semiprojective C*-algebras
which are not projective, the “local projectivity” result does not carry over to
the commutative case. There are several ways to rephrase the homotopy result
which make sense for an arbitrary unital C*-algebra A (e.g. considering open
covers, of the state space of A or writing A as a sum of ideals or left ideals), but I
have been unable to prove any direct generalization for semiprojective C*-
algebras in &,.

We do, however, have a weaker version of the homotopy result:

THEOREM 3.6. If ¢: A — B is semiprojective in €, and B,, B are €-morphisms
from B to D with B, — B pointwise, then for sufficiently large n, B,op~Bo¢.
Proor. Let C=C([0,1],D), J,={feC |f(1/n)=0 for all n, f=0 on
[0, 1/k1},
J = {feC| f(1/n)=0 for all n} = UJ,.
C/J is isomorphic to the C*-algebra of all convergent sequences of elements of

D. Let o: B — C/J be defined by a(x)= (B,(x)). Lift cop to C/J,.

4. Shape systems and shape equivalence.
We retain the notation of section 3.

DEFINITION 4.1. Let A € %. A shape system for A in € is an inductive system
(Am)r',.,” 1) in € with

18
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A = 1_122 (An’yn,n+1)

and y, ,+;: A, = A,4+, semiprojective in €. A strong shape system for 4 is a
shape system in which each A, is semiprojective. A faithful shape system
(respectively faithful strong shape system) is a shape system (respectively
strong shape system) for which each v, , . is injective.

ProposITION 4.2. Let (A,,7, »+1) be a shape system (respectively strong shape
system) for A in & (respectively &,), and let A, A,, J, ,+, be the abelianizations
of A, A,, Vp n+ respectively. Then (A,,7, ,+,) is a shape system (respectively
strong shape system) for A in S€ (respectively SE,).

Proor. Follows immediately from 2.12.

THEOREM 4.3. Every (separable) €*-algebra has a shape system in &. A unital
C*-algebra has a shape system in &,.

Proor. Write A =C*(¥, %) for a countable set of generators ¥ ={x,,x,,. ..}
and relations

2 = {(lp1 () =), (Ip2 O S12)s- .}

as in 1.3(b). Let 4,={xy,...,X,},
R, = {(IpCNSm+1/m), (xS Ixilla+1/n) | 1Sin,
p; involves only x,,...,x,} .

Set 4,=C*(9,,®,). There is a natural map y, ,+,: 4, = A,+1,5ince 9,9,
and the relations in &, ; include stronger forms of all of the relations in £,.
Yn,n+1 iS semiprojective by 2.35, and it is clear that A=lim (4,7, ,+1)-

4.4, 1t is not clear whether every (separable) C*-algebra has a strong shape
system in & (cf. 2.34.) This is true in %, : every compact Hausdorff space is a
projective limit of ANR’s (in fact of polyhedra) [4; IX.1.4]. It appears highly
unlikely that a general separable C*-algebra has a faithful shape system in
& —C([0,1]?) is probably a counterexample (it is easily seen that C([0,1]?)
has no faithful strong shape system in &.) Even inh %), it is doubtful whether
every algebra has a faithful shape system. Thus in the definition of shape
systems it seems to be necessary to allow nonfaithful inductive limits to obtain
a universally applicable theory.

While Theorem 4.3 shows the existence of shape systems in general, the
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algebras that arise from the construction are usually rather ugly and difficult to
analyze. However, many C*-algebras which arise in practice have natural and

very tractable shape systems. For example, AF algebras, inductive limits of
algebras of the form C(S')®F, and such algebras as 0, [6; 3.1] have natural
faithful strong shape systems.

QuEsTION 4.5. Does every separable nuclear C*-algebra have a shape system
(strong shape system) in & of nuclear C*-algebras?

It is not even clear that commutative C*-algebras have nuclear shape
systems.

DEFINITION 4.6. Let (A4,,9,,,+,) and (B,,0, ,.,) be inductive systems in .
(A Yn,n+1)~ % (By 0, n+1) if there are sequences of homomorphisms «;: 4
— B, and f;: B, — A, with k;<n;<k;,,, such that

Bioo; =~ k., and o0 =~ 0, for eachi.

If we have such o, and B; with Boo; >y, , ., We say (A, Y n+1) 56 (B Onns 1)

It is clear that S is transitive and that ~ is an equivalence relation. If

(Am)’n, n+ 1) ~e (Bm 0n,n+ 1)

then . (Am 'Yn,n+ 1) SW (Bm 0n,n+ 1) and (Bm 0n,n+ 1)5%(/‘1",)’",” 1)7 but the
converse is not true.

PROPOSITION 4.7. Let (A Yy n+1) and (B,, 0, .. 1) be inductive systems of C*-
algebras, with abelianizations (A,, ¥y »+1) and (B,, 0, ,+1)- If

(An,')’"'"+ l) ~ g (Bm 0n.n+ 1)
(respectiuely (Am ’Yn,n+ 1) s.?’ (Bm 0n,n+ l)), then

(’Im'yn,n+l) ~ gE (E", gn,n+1)

(respectively (A, ¥y, n+1) S5@ (B Oy n+1))- A similar statement holds for &, and
y%lo

ProoF. Abelianize the maps «; and §; and the homotopies.

The following may be regarded as the fundamental theorem in the shape
theory of C*-algebras.

THEOREM 4.8. Let A and B be C*-algebras in € with shape systems (A, Vn,n+1)
and (B,,0, ,.,) respectively (in ). If there exist inductive systems (C,, Wy y+1)
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and (D,, 0, ,+,) in € (not necessarily shape system) which are equivalent in € and
with

A= !_l_ﬂl (Cn’ wn,n+ l) and B = l!_g} (an 5n,n+1) s

then (A Ynn+1)~¢ By 0nn+1) An analogous statement holds if (C,)<¢(D,).

Proor. Suppose we have g;: Cp,— D, and 0;: Dy — C, | with p;<gq;
<Pj+1and gjoQ;>w, ;. 0;+1°0;=6, . . We will construct the maps «; and
B; inductively. Suppose ay,p;,...,%,_;,B,-, have been chosen, with the
following properties:

(1) B,-y: B,  — A satisfies B,_,=pfob, . ., for some B:B, .,
— Akr;
(2) there are numbers gq;_, and p; with n,_, +2<gq;.., <p;<k,;
(3) identifying 4 with lim 4, and with lim C,, there is a map
é: Bn,_,+2 - Dq,_

1

such that ykvoﬂzwmoaj-loé as maps from B,  ,,toA,and 4, o&~0, .,as
maps from B, ,, to

B = limB, = limD, .

If r=1 we take the conditions to be vacuous. We will construct «, with
analogous properties to (1)—(3), such that «,0f,_,~6,  ,. The construction
can then be repeated inductively to yield the equivalence. The map «, is
constructed in several steps. First, regarding

Yk+3 = Yk +4°Vk +3,k+4° A 43> A s A

as a map into lim C,, by semiprojectivity of y; ,3 s ,4and Theorem 3.1 there is
a map y: 4y .3 — C, for sufficiently large s with w, oy ~7y; ,3 Then

wp,°v/°yk,.,k,+3°ﬂ o~ )’k,°ﬁ ot wp'owpﬁp.oaj_pf

as maps from B, _ ,,to A=Ilim C,; so by Theorem 3.3, the semiprojectivity of
0, _,+1,n,_,+2 implies that by increasing s we may obtain

f= W°')’k,,k,+3°B°0n,_l+1,n,_,+2 > wp],p,oaj—-1°€°0n,_1+l,n,_l+2 = 8.
* Now regard
h = 6400,0007k 43 Ay 42— Ay 43— B = limB, .

By semiprojectivity of y; . 43 and 3.1 there is a map a: 4 ,, — B, for
sufficiently large 1> q, with 6,0d~h. So we have

91°&°7k,,k,+2°3°0n,_,+l,n,_,+2 o~ 5q'onof"z 5q,°0;°8 ~ 5ql_lofoe,,'_l+1,n_l+2
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'(since 5‘1‘09’00)”‘,’00‘]_1 25‘1,_, by assumption) ~6, ;. Again by 3.3 we can
increase | so that a,0B,_,~60, ,, where k,=land « ,=0&oYy; 4 +2 For the next

stage in the induction, the analog of ¢ is Yovi 42k, +3 The construction in the
proof is summarized in the diagram of Fig, 1.

COROLLARY 4.9. Any two shape systems for a C*-algebra in € are equivalent.

DEFINITION 4.10. 4 and B have the same shape in %, or are shape equivalent
in %, written Shg (4)=Shg¢ (B), if (4,,Ynn+1)~@ By 0, n+1) for some (hence
any) shape systems for A and B in %. The shape of B dominates the shape of 4,
written Shy (4)< Shy (B), if (ApYp,ns1)S¢ B0y ns 1)

By 4.8, Shy, (4)=Sh¢ (B) if and only if 4 and B have equivalent inductive
systems in 4. If Shy (4)=Shg (B), then Shy (4)=She (B) for any category
€ 2%.

This definition agrees with the topological definition: if X and Y are
compact metrizable sbaces, then Sh (X)=Sh (Y) (respectively Sh (X)<Sh (Y))
if and only if

Shgg, (C(X)) = Shyg (C(Y))

(respectively Shgyg (C(X)) £ Shgg, (C(Y))). There are spaces X and Y for
which Sh (X)<Sh (Y) and Sh(Y)<Sh(X) but Sh(X)#*Sh(Y). In fact, the
spaces X (t) constructed in [4; VIL.8.2] satisfy

Sh(X(t)) < Sh(X(¢) foralltt,
since X (t) is homeomorphic to a retract of X (¢') even when t£¢t’; but
Sh(X () + Sh(X () for t*¢ .
If A is unital, then there is no distinction between Shy (4) and Shy, (4)
(except formally).

We now obtain some more corollaries of Theorem 4.8.

COROLLARY 4.11. If A and B are homotopy equivalent in € [9; § 2], then
Shy, (4)=Shy (B). If B homotopy dominates A, then Shy (4)<Shy (B).

Proor. A homotopy equivalence between A and B induces an equivalence
between the systems (4,id,) and (B,idp).

Of course, the converse is not generally true, as shown by the circle and the
“Warsaw circle” [9; § 5]. So shape equivalence is a strictly weaker notion than
homotopy equivalence.
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CoroLLARY 4.12. If A and B have faithful inductive systems which are
semiprojective in the sense of [9], and A and B have the same shape in the sense
of [9], then Shy, (4)=Shg (B).

The converse is not clear, since it is not obvious that such inductive systems
are shape systems in our sense (and are in fact probably not in general)
However, among unital C*-algebras which have faithful strong shape systems,
such as inductive limits of algebras of the form C(S!)® F, the two notions of
shape equivalence coincide.

CoRrOLLARY 4.13. If X and Y are locally compact metrizable spaces, then
Shy (Co(X)) = Shy (Co(Y))
if and only if Sh (X)=Sh (Y).

Proor. One directipn follows from 4.8, and the other from 4.2, 4.7, and the
remarks after 4.10.

COROLLARY 4.14. Let A, B, C, D be (separable) C*-algebras with Shg (4)
=Shy (C) and Shy (B)=Shg (D). Then

Sh.V (A®maxB) = Shy (C®max D),
Shy (A®min B) = Shy (C®minD) ,

and
Shy (A*B) = Shy (C+D);

if the algebras are unital, then

Shy (A#cB)'—‘Shy (C*cD) .

Proor. Let (Am Vn,n+ 1)’ (Bm en,n + 1)’ (Cm WOy, n+ 1)7 (Dm 5n,n + 1) be Shape systems
for A’ B’ C> D. Then (An®max Bm ’)’n.n+1®max 0n,n+l) and (Cn®max Dm
Opn+1OmaxOnn+1) are equivalent systems for  A® B and
C® pmax D- The other parts are similar.

Finally, as in [9], if 4 and B are AF algebras, then Shy (4)=Sh (B) if and
only if A~B.

5. Shape theory and K-theory.

One of the main features of topological shape theory is that standard
cohomology and K-theory are shape invariants. We prove analogous results
for the non-commutative case.
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If A is a C*-algebra, we denote by H(A) the semigroup of equivalence classes
of projections in A ® X, with orthogonal addition, and K,(4) and K, (A) the
K-groups of A. There is a canonical homomorphism from H(A) into K,(A);
denote the image by K¢(A4),. (K¢(A4),Ky(4),) is a “pre-ordered” group; in
general, it fails to have the two properties necessary for an ordering, namely

(1) Ko(A4)+ —Ko(4); =Ko(4)  and
) Ko(4)+ N(-Ko(4),)=1{0}.

If AQ ¢ has an approximate identity of projections (i.e. 4 is “stably unital”),
then K (A4) can be identified with the Grothendieck group of H(A), so
(Ko(A), Ko(A4),) satisfies (1). If, in addition, A® ¥ contains no infinite
projections (i.e. A is “stably finite”), then (K,(A4), K,(A4),) satisfies (2) also.
Thus if A4 is stably unital and stably finite, then (K,(4), Ko(4),) is an ordered
group.

We denote by X (A) the subset of H(A) (or its image in K,(A)) corresponding
to the projections of 4. X(A) is called the scale of A. Even if A4 is simple, stably
unital, and stably finite, we can have X(4)={0} [3; 5.1(3)]. Z(A) does not in
general generate K,(A4) even if A is simple, unital, and stably finite [3; 4.12].
(H(A), Z(A)) is called the scaled semigroup of 4, and (K¢ (4), Ko(A4) +, Z(A4)) is
called the scaled pre-ordered K, group of A.

PropositioN 5.1. If A—hm (ApsYn,n+1), then (H(A),Z(A)) is the algebraic
direct limit of ((H(A,),Z (A,,)) (Yn.n+1)4) in the obvious sense, and similarly for
Ko(A) and K, (A).

Proor. This follows in a manner similar to the case of faithful inductive limits,
but one needs to use 2.14 and 2.23 to handle the noninjectivity of the
connecting maps. Details are left to the reader.

ProposiTioN 5.2. If Shy(A)=Shgy(B), then (H(A),Z(A))=(H(B),Z(B)) as
scaled semigroups, (K (A), Ko(A) 4,2 (A))= (Ko(B), Ko(B) +, Z(B)) as scaled pre-
ordered groups, and K,(A)=~K,(B). If Shy(4)<Shy(B), then H(A), Ky(A),
K, (A) are direct summands of H(B), K,(B), K, (B), with the induced order and
scale.

Proor. Let (4,,y,,+1) and (B,,0, ,.,) be shape systems for 4 and B. An
equivalence between the systems gives a diagram

A= = Ay —————— D A, A

Np N A

Bl—’"

B
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where the triangles commute up to homotopy. This diagram induces diagrams

H(A)-»-- —»H(Akl) (Akz) — . —=H(A)

AN

H(Bl) - . . rH(B ) ...... ._._..H(B)

(and similarly for K, and K,) which actually commute, so one obtains an
isomorphism between the direct limits. All the homomorphisms preserve order
and scale, and the order and scale of the direct limits is the direct limit order
and scale. In the case that Shy(4)< Shg(B), only the odd triangles commute,
so one obtains scaled homomorphisms a,: H(A) —» H(B) and B,: H(B)
— H(A) with B, oa, =idy,, and similarly for K, and K.

CoRroLLARY 5.3. If Shy (4)=Shy (B) and Shy (C)=Shy (D), then
Ko(A®maxB) = Ko(C®nax D) ,
Ko(A®pin B) = Ko(C® i D)
Ko(A*B) = Ky(C+D)
as scaled preordered groups. If A and B are stably shape equivalent (i.e.

Shy (A®X')=Shy, (BX')), then Ko(4)=K(B) as preordered groups.

In connection with the order structure on K, the following proposition is of
interest.

PROPOSITION 5.4. Let A and B be stably unital C*-algebras, with Sh ,(A® X)
SSh,(BRX). If B is stably finite, then A is stably finite.

Proor. Let (4,7, ,+1) and (B0, ,+,) be shape systems for A® " and
B® X respectively. We may assume A, and B, are unital for each n (although
the connecting maps will not be unital.) Then

(A®'x/)1 = E_“},(A.l.,)':.nn)
and
(B®x‘)l = lim (BI,B: nt1)

with unital connecting maps, and (A4},7) 4413 », (Bas 05, n+1)- Let a; and B, be
the maps of 4.6. By assumption, B® X contains no infinite projections; hence
0,(B,) contains no infinite projections; the same is true for
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0(By) = 6,(B)@C,
and hence also for
(BRX) =~ lim 6L(B)) .
Thus (B® X)! contains no nonunitary isometries. Note that a unital inductive
limit
D = li_“}(Dm‘Sn,nn)

contains no nonunitary isometries if and only if, for any k and any isometry
u € Dy, there is an n> k such that J, ,(u) is unitary in D,. If u is an isometry in
A,, choose i with k;>m; then aoy} , (u) is an isometry v in B!, so for
sufficiently large j we have 0}, »,(v) unitary in B,‘,}. Then B;00,, »,(¢) is a unitary in
Ak,,, which is connected by a path of isometries to yp, ; . (). This implies that
Ym,k,,, (1) is unitary, so (A® #)" contains no nonunitary isometries.

5.5. It follows easily from the results of [15] that if A and B are stably shape
equivalent. and if they have shape systems in a suitably nice class of C*-
algebras, then

KK(A®C,D) ~ KK(B®C,D) and KK(C,A®D)~KK(C,B®D)

for all suitably nice C*-algebras C and D. It would be much more satisfactory
to explicitly construct an invertible element in KK(A4, B), and it should be
possible to do so even in cases where the results of [15] do not apply. However,
even when A and B are AF or when A=C(WS') (the Warsaw circle) and B
=C(S") it is difficult to write down an explicit invertible element of KK (4, B).

Note that Kasparov equivalence (existence of an invertible element in
KK (A, B)) is much weaker than stable shape equivalence. For example, if 4 and
B are AF algebras, then KK (A, B)~Hom (Ky(A), Ko(B)), and the intersection
product exactly corresponds to composition of homomorphisms, so 4 and B
are Kasparov equivalent if and only if K,(4)= K, (B) as groups (ignoring the
order structure completely). But A and B are stably shape equivalent if and
only if they are stably isomorphic. It appears to be possible to build some kind
of order structure into the Kasparov groups, which would be preserved under
shape equivalence.

QuesTIONs 5.6. (a) Is the stable shape of a C*-algebra A completely
determined by the K-theory or Kasparov theory of 4 and other C*-algebras
constructed in standard ways from A, including the order structure? In
particular, If A and B are (separable) C*-algebras and Ky(A® D)= K,(B® D)
as preordered groups for all D, is Shy(4® X)=Shy,(BRX)?
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(b) Is there a noncommutative analog of the generalized Whitehead theorem

of topological shape theory? The appropriate notion of “dimension” for a C*-
algebra might be Rieffel’s topological stable rank [14].

—

12.

13.

14,

15.

16.

I plan to investigate some of these questions in a future paper.
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