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ON THE IRREDUCIBILITY OF CERTAIN TRINOMIALS
AND QUADRINOMIALS

WILHELM LJUNGGREN

The purpose of the present paper is to study the irreducibility over
the field of rationals of the polynomials

f(x) = 2+ e am™+e,2P + ¢4,

where n, m and p are natural numbers, n>m > p, and ¢,, ¢, ¢,, take the
values +1. We can suppose without loss of generality that n=m+p,
since the roots of f(x) are the inverses of the roots of

T+ 583X P £y M 5 .

Further we leave aside the trivial case n=m+p with e;3=¢,¢,, where we
have the obvious factorization f(x) = (x™ + &,)(x? + ¢;). The complete solu-
tion of the problem is given in the following two theorems:

TrEOREM 1. If f(x) has no zeros which are roots of unity, then f(x) is
wrreducible. If f(x) has exactly q such zeros, then f(x) can be decomposed
into two rational factors, one of which is of degree q with all these roots of
unity as zeros, while the other is irreducible.

THEOREM 2. If n=mn,d, m=myd, p=pd, and (n,m;,p)=1
(ny,my—py)=d;, (Mmy,n—p)=dy, (P, n—my)=d;, then all possible
roots of unity of f(x) are simple zeros, which are to be found among the

zeros of
¥ = 11, 2= 11, 2= 11,

In his paper [1] E. S. Selmer has studied the corresponding problem
for the trinomials g(z)=a"+ex™+¢’, n>2m, where ¢ and ¢’ take the
values + 1, without obtaining the complete solution, apart from the case
m=1. As a corrolary we find that theorem 1 is valid also if f(z) is re-
Placed by g(x). The corresponding form of theorem 2 was already given
by Selmer. See theorem 3 below. We could of course have presented a
simpler proof by direct application of the method in this note.
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2.
Assuming irreducibility of f(x), let
(1) f(x) = %(x)'/’s(ﬂ«”), r+s =mn,

where ¢,(x) and y,(z) are monic polynomials with integral coefficients,
of positive degrees r and s respectively.
At first we prove two lemmas.

Lemua 1. In (1) one at least of the two factors must be a reciprocal
polynomial.

Proor. Putting

(@) fi®) = wo N le) = 3 eant,

we get

(3) Fu®) = e pia) = wnfia) = 3 oy
and

(4)  fi@)fal@) = (" + &, 2™ + 2P + £5) (832" + £2" P + &y 2" ™+ 1)
Equating the coefficients of 22 and of z® in the two expressions for
f1(®)fo(x), we find

CoCp = €3 and C2+C2+C2+...+cE =4,
or
(5) CoCp = &3 and ¢ 2+c %+ ...4c0 = 2.

Now (5) implies that two of the ¢;’s, 1=1,2,3,...,n—1, say ¢;, and ¢,
k, < k,, must be equal to +1, and the other c;’s must be equal to zero.
The first expression for the reciprocal polynomial f,(x)f,(x) is then
reduced to
(6) f1(x)f2(x) = cocnxzn + ck1 cnx2n—k1 + ckg cnz‘Zn—kz +
+CoCh, &1 4 coep, a2 4 0 cp AR L dgn L
By multiplication (4) yields
(7)  filx)fa(x) = &2 + £, 230P + gy 22— -
+ € EgTMTM 4 £ £g TP £ £, X" HMP L 4™ - L L
In order to compare (6) and (7) we shall arrange the exponents of the
various powers of z, according to their magnitude, in two descending

sequences, each containing just the first three terms, For (6) we then get
the following four possibilities:
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(6,1) K, < % 2 > 2m—k, > 2m—k,.
(6,2) ky > g ky < n—k, 2 > 2m—ky = ntky,
(6,3) ky > g, % 2k >n—ky: 2n>mn+ky, > 2n—k,,
(6,4) k, > ?—;, k, > % 2n > n+ky > ntk,.

For (7) we have only to distinguish between two cases:

(7,1) n = 2m : 2n > 2n—p > 2n—m,

(7,2) 2m >n = n+p : 2n > 2n—p 2 n+m.

Combining (6,1), (6,2), (6,3) and (6,4) with (7,1), we find in order the
following four possibilities:

(8) (ky, k) = (p,m), (p,m—m), (m,n—p) or (R—m,n—Dp).

If (7,1) is replaced by (7,2), the result is

(8,) (kvkz) = (p,mn—m), (p,m), (n—m,’”f"P) or (m:’n"P) .
Putting (k,,k,) = (p,m), we obtain from (6) and (7)

CoCp = &3, C

pCn = & and c,c, = &,

whence
fi(®) = ¢y (e3a™ + 62" P + gy 2" ™+ 1) = ¢, 2" f(x 1),

from which it readily follows that
vi(@) = oty (aY) .
If (ky,ky) = (n—m,n—p) we find by the same reasoning
CoCn = €35 CoCpopy = & aDd  €4Cppy, = &5,
Fu®@) = co(am+ e10m + 6327+ 5) = cof (@),
7,(z) = ez (@) .

In the cases (k,,k,)=(p,n—m) and (ky,k,)=(m,n—p) a closer examina-
tion shows that both imply n=2m, the final result being the same as
before, i.e. either ¢,(x) or y,(x) is a reciprocal polynomial.

Lemma 2. If A and A-! are both roots of f(z), then we must have one of
the following three possibilities:

b
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o] -~

1° 1" = —¢g and A™P = —g¢¢,,
2° = —geg and AP = —g,,
3° A= —ge and Avm = —g

Proor. From the two equations
A4y Am 4 eadP + 85 = 0, AP+ e,65A" P+ e 654" M+ gy = 0
it follows by subtraction

E08g A" P 4 6,84 A" — g AP — g, AP = 0,
or
(9 (82A™P + £1)(e3 A" ™ — g1 8,47) = 0,

hence either A? = —¢;6,A™ or 17 =¢; £,£;A"~™. Inserting these values in the
equation f(4) =0, we conclude either A" = —¢; or (A™+¢,&,)(A* ™ +¢,)=0,
from which the lemma readily follows.

3.

In this section we prove our two theorems. If a reciprocal polynomial
has a zero A, then it has also the zero A-1, and theorem 1 now follows
immediately from the two lemmas.

Since (n,m — p)=dd,, it is possible to find two integers 4 and v such
that dd,=nu+ (m—p)v, hence A% = +1. In the same way it is found
that 1% = + 1 and 2% = + 1. Then it remains to show that such a root
is always a simple root. Combining the expressions in 1°, 2° and 3° with
the equation
nA"+mA™ +piP = 0,
we obtain, omitting some trivial calculations, the following necessary
conditions that 4 should be a multiple root: n=m+p and e3=¢,¢,. But
we have left aside this case, and theorem 2 is proved.

4.

Then we shall give the conditions which have to be imposed on
n, M, P, &, & and &, in order that the two equations in 1° should be com-
patible. We restrict ourselves to consider this first case, since the re-
maining ones give similar conditions.

(1°, 1) ny/dy 0dd, (my—p;)[d; 0dd and &5 = ey, A% =

(1°, 2) n,y/d, even and &= —1: A% = _g¢,,
(1°,3) (ny—py)/d, even and g6 = —1: A% = g,
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5.

TaHEOREM 3. If n=nd, m=md, (n,m)=1, n=2m, then the
polynomial
g(x) = a”+ex™+ ¢, e=+1, ¢ = +1,
1s trreducible, apart from the following three cases, where ny+m;=0 (mod3):

Ny, my both odd, e=1; n, even, ¢’ =1; m, even, ¢’ =¢, g(x) then being a

roduct of the polynomial
p f poty x2d+eme’"xd+l
and a second irreducible polynomial.

Proor. If n=2m and ¢ =1, there is nothing to prove. If n=2m and
¢ = —1, or if n>2m, we can make use of our theorems 1 and 2, noticing
that

(xr+exm &)@ —¢') = et —ge'a™ -1,
where 2n>n+m>m and in case n=2m, e;+¢,6,. Here we have

2n,m+m,m) = (m,n) = d,

dy = (2ny,my) = my,  dy = (ny+my, 20y —my) ,
and
dg = (my,n;—my) = 1.

For d, we find the values 1 or 3 according as n;+m;=0 (mod3) or
not. It is obvious that a possible root of unity, 4 of g(x), cannot satisfy
an equation A¢= + 1.

If d,=1, then g(x) must be irreducible.

The equations corresponding to case 2°, lemma 2, are here

Antm — ¢ and A-m = gg’
or B =¢ and A3 = g’
If dy=3, we conclude e=1, A3=¢" or ¢'=1, ¥=¢ or e¢=¢', A3¢=¢,
from which we get the last statement in the theorem.

6.

It is a tedious but straight-forward job to find all cases where f(x) is
irreducible. We therefore restrict ourselves to state the following simple
result:

If ny,m, and p, are all odd integers, then the polynomials x™+ a™ +xP + €5
are irreducible.

By means of the simple method used in this paper we may also derive
other criteria of irreducibility. However, we don’t enter into this here.
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